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Abstract: The technology in the field of digital media generates huge amounts of tex-
tual information every day, so mechanisms to retrieve relevant information are needed.
Under these circumstances, many times current web search engines do not provide
users with the information they seek, because these search tools mainly use syntax
based techniques. However, search engines based on semantic and context information
can help overcome some of the limitations of current alternatives.

In this paper, we propose a system that takes as input a list of plain keywords pro-
vided by a user and translates them into a query expressed in a formal language
without ambiguity. Our system discovers the semantics of user keywords by consulting
the knowledge represented by many (heterogeneous and distributed) ontologies. Then,
context information is used to remove ambiguity and build the most probable query.
Our experiments indicate that our system discovers the user’s information need bet-
ter than traditional search engines when the semantics of the request is not the most
popular on the Web.
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1 Introduction

Nowadays, the World Wide Web is an information resource with a virtually un-
limited potential. However, this potential is not fully exploited by traditional
web search engines, because they only retrieve the documents containing the
user keywords, and many documents may convey the desired semantic infor-
mation without containing those keywords. Besides, current search engines do
not consider the context of the user keywords: the same keywords can be used
by different users with the purpose of accessing to different information, i.e.,
keywords can be interpreted differently as they lack explicit semantics. So, it is
required to consider the different possible meanings (senses) of the user keywords
and to take into account the context of each keyword to improve the retrieval of
information from the Web.

As a motivating example, let us suppose that a user wants to find information
about the life of famous people and therefore writes the following keywords: “life
of stars”. In this case, Google returns about 192,000,000 hits1 when we enter
those keywords but, unfortunately, the first tens of hits link to astronomy-related
1 Obtained on October 15, 2007.
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web pages. We see how syntactic-based search engines are very influenced by
the enormous amount of information about popular issues on the Web. Similar
results are obtained if the keyword is “Java”: Java as programming language
eclipses the rest of possible senses (the Indonesian island, a coffee plant, different
US cities, etc).

In this context, the increasing pools of ontologies (which offer a formal, ex-
plicit specification of a shared conceptualization [Gru93]) available on the Web
can help to discover the semantics of user keywords, because ontologies pro-
vide us with a non-ambiguous description of their terms. Moreover, the more
ontologies consulted (each one representing the point of view of their creators),
the more chances to find the semantics that the user assigned to the entered
keywords.

In this paper, we propose a system that takes as input a list of plain keywords
provided by a user, finds out their possible semantics (their meanings or senses)
and outputs a formal query which express the user’s information need without
ambiguity. Firstly, the system discovers the semantics of the user keywords in
run-time by accessing to the shared knowledge stored in different ontology pools
available on the Web, and so, for each keyword, it obtains a list of possible
senses for each keyword. Secondly, the system deals with the possible semantic
overlapping among senses and removes the redundancy among them by using
a synonymy probability measure. Thirdly, a disambiguation method is used to
select the most probable intended sense of each user keyword by considering
the possible senses of the rest of keywords and a semantic relatedness measure.
Finally after the system has selected a sense for each user keyword, those senses
are combined to build a query expressed in a knowledge representation language;
this query represents what the user is looking for in an unambiguous way. The
obtained query could be used to retrieve underlying relevant data indexed by
the pool of ontologies [CFV07, MI01] or query expansion in traditional search
engines [GMV99, PTBW05], but these tasks are out of the scope of this paper.
We have developed a prototype and executed some experiments that indicate
that our system behaves better than traditional web search engines in obtain-
ing the intended meaning of user queries when their semantics is not the most
popular on the Web.

The rest of this paper is as follows. In Section 2, we overview our approach
and describe the main steps performed by the system. In Section 3 we show
how the possible senses of each user keyword are obtained. In Section 4 we
describe the algorithm that computes the synonymy probability between senses
to eliminate the possible redundancy. In Section 5, we present how to remove the
ambiguity of user keywords. In Section 6 we explain how to build queries and
rank them. Some experimental results of the developed prototype are shown
in Section 7. Related work can be found in Section 8. Finally, conclusions and
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future work appear in Section 9.

2 Overview of the System

The target of our system is to translate a list of plain keywords provided by a user
into a query expressed in a knowledge representation language, which expresses
the user’s information need without ambiguity. The main steps performed by
the system are the following (see Figure 1):
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Figure 1: General overview of the system.

1. Extraction of keyword senses: Like in traditional search engines, the user
must provide the system with a list of keywords K = {k1...kn}. The system
queries WordNet [Mil95], Swoogle [FDP+05] and other ontology repositories
to find ontological terms that match the normalized keywords. The system
builds a sense for each matching obtained and then the extracted senses are
semantically enriched with the ontological terms of their synonyms by also
searching in the ontology pool. The result is a list of candidate keyword senses
for each user keyword. A detailed description of this process is presented in
Section 3.

2. Alignment and merging of redundant keyword senses: As the obtained senses
were built with terms coming from different ontologies, they could represent
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the same semantics. An incremental algorithm is used to remove these pos-
sible redundancies, aligning the different keyword senses and merging them
when they are similar enough: Each input sense is compared with the rest of
stored senses in order to decide whether it can be integrated with some other
sense. The senses are merged when the estimated synonymy probability be-
tween them exceeds a certain threshold. Thus, the result is a set of different
possible senses for each user keyword entered. A more detailed description
of this process can be found in Section 4.

3. Disambiguation of keyword senses: A disambiguation process is needed to
select the most probable intended sense of each user keyword by considering
the possible senses of the rest of keywords. The system uses a semantic
relatedness measure based on information provided by Google, to compute
the correlation between the senses of a particular user keyword and the
senses of its neighbor keywords. Thus, the best sense for each keyword will
be selected according to its context. A more detailed description of this
process can be found in Section 5.

4. Construction and ranking of queries: From the selected senses in the pre-
vious step, the system builds a ranked list of queries that represent the
possible semantics intended by the user for the initial keyword set. These
queries are expressed in a knowledge representation language (for example
in OWL [DS04] and BACK [Pel91], but any other is possible). The system
combines the ontological information of the involved senses with the different
operators of the chosen language by using parsing techniques and a Descrip-
tion Logics reasoner [BCM+03]. Besides, a weight (relevance probability) is
associated to each query to rank them. This weight represents the probability
that the query expresses the intention of the user. The system can use any
language although the specific queries generated depend on the expressivity
of the chosen language. A more detailed description of this process can be
found in Section 6.

The obtained semantic queries could be used for different purposes: 1) to re-
trieve underlying relevant data indexed by the pool of ontologies [CFV07, MI01,
FB03]; 2) even if the utilized ontologies do not index data, semantic queries are
still useful to address query expansion in traditional search engines, as they do
in [GMV99, PTBW05], or 3) to select a particular set of results provided by
search engines which use clustering or classification techniques (as for example
Clusty2), because those queries have a well-defined semantics that can be used
to find semantic correspondences with the returned clusters.
2 http://www.clusty.com
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3 Extraction of Keyword Senses

In this section we detail our contribution to automatically retrieve candidate
keyword senses from a set of user keywords (see Figure 2).
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Figure 2: Obtaining the possible senses of user keywords.

Initially, the user keywords are normalized (e.g., rewriting them in lower-
case, removing hyphens, etc.) generating a list of normalized keywords NK =
{nk1...nkn}. Then, the sense discovering module queries different third-party
knowledge pools: Swoogle [FDP+05], which indexes many ontologies available
on the Web, remote lexical resources as Wordnet [Mil95], and other ontologies
not indexed by Swoogle to find ontological terms that match those normalized
keywords. A black list of ontologies is managed to avoid known low-quality on-
tologies, and a buffer stores previously parsed ontology terms to avoid accessing
the same remote data twice. We advocate using a pool of ontologies instead of
just a single one, like WordNet (as many works do [LDKG04]), because many
technical or subject-specific senses of a keyword cannot be found in just one
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ontology. For example, for the keyword “developer”, WordNet does not provide
the sense “someone who programs software”. However this sense can be obtained
from the Software Project Ontology3, so it can be added to the senses retrieved
from WordNet (and others) to be considered by our system.

Secondly, the sense extractor module builds a sense for each URI (Uniform
Resource Identifier) obtained in the previous step. In our approach, a sense
(meaning) of a normalized keyword nk, denoted by snk, is represented as a tuple
snk = <s, grph, descr, pop, syndgr>, where s is the list of synonym names4 of
normalized keyword nk, grph describes the sense snk by means of the hierarchi-
cal graph of hypernyms and hyponyms of synonym terms found in one or more
ontologies, descr is a description in natural language of such a sense, and pop

and syndgr measure the degree of popularity of this sense; pop is the number
of times it appears in the ontology pool and syndgr represents a percentage
of synonymy degree of different ontological terms integrated in the sense (see
section 4 for more details). Thus, senses are built with the information retrieved
from matching terms in the ontology pool [EGTM06]. Notice that the more on-
tologies or knowledge bases accessed, the more chances to find the semantics that
the user is looking for. As matching terms could be ontology classes, properties
or individuals, three lists of candidate keyword senses are associated with each
normalized keyword nk: Sclass

nk , Sprop
nk and Sindv

nk .
Thirdly, each keyword sense extracted is enhanced incrementally with their

synonym senses by the synonym extractor module (which also searches the on-
tology pool). The module that aligns senses integrates the keyword sense with
those synonym senses representing the same semantics, and discards the syn-
onym senses that do not enrich the keyword sense. So the result is a list of
possible senses for each keyword. We will provide more details later in this sec-
tion.

Notice that the whole process can be limited in time. Also, senses obtention is
executed in parallel for each keyword; within that task, the semantic enrichment
of each keyword sense with its synonym senses is performed in parallel too.

In Figure 3, we show the first three steps of the extraction of keyword senses
when user keywords are “life of stars”. Our prototype finds 16 matches denoted
by URIs for the keyword “life” and 13 for “star”. For simplicity we only show
three. Notice that the second sense of keyword “star”, s2class

star , has the seman-
tics assigned by the user (“famous people”). However s3prop

star corresponds to a
different interpretation (it represents a property sense with the class “hotel” as
domain).

3 http://keg.cs.tsinghua.edu.cn/persons/tj/ontology/software.owl
4 The system extracts the synonym names of a term by consulting the synonym rela-

tionships defined in the ontology of such a term. For example the relations equiva-
lentClass and equivalentProperty of OWL.
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s1 = <{WN1#star}, star, "(astronomy) a celestial body of hot...", 1, 1>

actor

co−star

Figure 3: Extraction of senses of the user keywords “life” and “star”.

Semantic Enrichment of Keyword Senses with Synonym Senses

We explained before that each user keyword is searched (syntactically) in the
ontology pool, and a sense is built for each matching term by considering its
ontological context. However, we realized that something was missing with such
a simple ontology matching: many relevant ontology terms do not match just
because their names differ from the searched keyword; for example, if the user
was looking for “lorry” information about “truck” was not obtained. So we
decided to make our approach not so dependent on the words chosen (user
keywords are just a guide to begin the search of senses) by considering the
synonyms found during the process. In other words, the system retrieves similar
results whether the user keyword is lorry or truck, if any ontology classifies them
as synonyms.

Therefore our system takes advantage of the shared ontologies available on
the Web and semantically enriches the keyword senses with senses extracted from
their synonyms. After the senses extractor module obtains the synonym names
of a term by consulting the synonym relationships of its ontology; the synonym
extractor module performs a process similar to discovering and senses extrac-
tor modules, to build new senses from other ontologies which match with the
synonym names. Notice that synonym names are stored in the sense structure
shown before, which gets upgraded every time a sense is integrated with a (very
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similar) sense coming from other ontology. In order to evaluate the semantic sim-
ilarity between the sense of a keyword and their synonyms, the system performs
the sense alignment step (detailed in Section 4) which determinates whether the
semantics of the keyword sense and each synonym sense found represent the
same semantics or not.
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key holderall principals
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syn3       = < {ONT1#principal}, principal , "", 1, 1 >
principal

class

syn1        = < {ONT1#lead},   lead  , "a soft heavy toxic ...metalic element", 1, 1 >
lead

class
element subtance

pure element 

ONT1 = http://reliant.tecnowledge.com/DAML/SUMO.owl#ElementalSubstance

synonym term "lead"

Step 4: Synonym Extractor

Step 5: Sense Alignment (sense + synonyms)

Enriched sense with synonym terms of keyword "star" 

Discarded synonym senses of keyword "star" 

ONT1 = http://rhizomik.net/ontologies/2006/10/relonto−r.ow#principal

synonym term "principal"

Figure 4: Semantic enrichment of the sense of keyword “star” s2class
star .

In Figure 4, we show the steps given to semantically enrich the sense of
“star” s2class

star . On the bottom left, circles represent the senses extracted from
the ontology pool (the sense of keyword star s2class

star is represented by the biggest
circle). Two senses intersect when they have some degree of synonymy. Our
prototype finds terms lead and principal as synonyms of s2class

star in WordNet.
However, we see that some “synonyms”, for example, syn1class

lead from ONT1, do
not represent the same semantics as their keyword sense; in the example, s2class

star

although lead was classified as synonym of “star” by some ontology (WordNet
in this case): the reason is that the word “lead” has also different semantics
in different ontologies. Something similar happens with the synonym named
“principal”: its semantic distance to the sense of star s2class

star is too high to be
integrated with it. The system finally discards senses syn1class

lead and syn3class
principal
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because they do not correspond to the searched semantics (s2class
lead ). However

one matching of lead (syn2class
star ) represents a semantics very similar to s2class

star

and therefore both senses are integrated into only one (s2′class
star ); as suggested

by [Ala06], we focus on integrating only the interesting parts (senses) rather
than whole ontologies. The values of s, grph and descr of the integrated sense
are the union of the equivalent parameters in the original senses; however the pop

value is the add of the pop values of the original senses and syndgr is the product
of the syndgr values of the original senses. As result of this semantic enrichment,
now the system knows that a “star” is also a “stage player”, according to certain
possible sense (s2). Notice that when consulting different ontologies created by
different people, it is very unusual that terms defined as synonyms are expressed
exactly in the same way (same ontological graph).

4 Alignment and merging of redundant keyword senses

We explain in this section the sense alignment process that can be seen in Fig-
ure 2, on the right. Notice that this step is used in two situations by our sys-
tem: 1) to check which synonym senses from other ontologies represent the same
semantics as their candidate keyword senses, and 2) to avoid redundancy in the
list of possible senses of each user keyword. However both tasks share a common
goal: to find when two given senses represent very similar semantics; in that case
they will be considered synonyms and both senses will be integrated5. Later, in
this section, we detail the synonymy measure that compares the ontology con-
text of two senses and how the merging (integration) of two senses is performed
if they are synonyms.

In the following we explain graphically why our proposal for sense alignment
is not just a comparison between two senses but an iterative process. Let us
suppose that the system has extracted a new sense, which must be compared
to the previously obtained candidate sense list (<sense1, sense2>). In Figure 5,
the new sense is compared to sense1 (step a) but their synonymy degree is
below a certain threshold6 (they semantically intersect only in terms within the
area C). Then, the new sense is compared to sense2 (step b); in this case, as
their common knowledge is big enough (area D) they are integrated and the
result is new sense’. Other approaches finish here their sense alignment step
and the new list of different senses would be <sense1, new sense’>. However,
although sense1 and sense2 were different enough (they do not represent the
same semantics), we can see in step c that it is possible for the new integrated
sense to be integrated with sense1: their common knowledge (areas B and C) is

5 The integration process we propose, which is not the main goal of this paper, can be
found in [EGTM06].

6 Graphically, we consider that two senses should integrate if their intersection is above
25% of their areas. In our prototype, the threshold used is 0.65 (65%).
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above the threshold, therefore they should be integrated, and then the resulting
list of possible senses is just <new sense”>. In other words, each new integrated
sense must be considered as candidate to integrate with the rest. For the same
reason, new senses that do not integrate are stored because they could become
the missing semantic gap between two senses that do not integrate. Although
this method is costly (we limit its execution time), it performs a much better
ontology alignment among senses.
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D
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new sense

sense1 sense2

A

(a)

synonymy < threshold

A
B

B
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D
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new sense’’ (result)

(c)

new  sense’

B
C

B
C

C

C

D

C C

D

C

D

C

D

C
B

Figure 5: Iterative sense alignment: new integrated senses are considered for
integration

The enrichment of senses could be extended by considering other semantic
relationships. For example, a query for hotel facility could retrieve senses includ-
ing classes, such as rooming house restaurant, hotel online reservations, or casino
hotel, that are related by a kinship relationship.

In the following we detail how the system computes the synonymy probability
between two candidate senses in order to decide if they must be integrated (as
a single sense) or not.

4.1 Synonymy probability between two keyword senses

The aim of estimating the probability of synonymy is to conclude whether the se-
mantics of two ontology terms represent the same sense or not. Thus the system
avoid redundancy among the possible senses of a keyword. Our system does not
compare senses coming from the same ontology; we suppose that different occur-
rences of a term in the same knowledge source always describe different senses
if that ontology is free of redundancy, as expected in a well-formed ontology. At
present, several solutions to determine the matching among ontological terms
of different ontologies have been proposed, see [PE05] for recent surveys. Our
approach computes coefficients of synonymy degree in the [0-1] range, however
other approaches as semantic matching [GSY06] can be used as well.
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The synonymy measure used relies on both linguistic and structural char-
acteristics of ontologies. As most mapping algorithms we follow the following
steps: 1) an initial computation using linguistic similarity, which considers labels
as strings, 2) a recursive computation using structural similarity, which exploits
the semantics of terms (ontological context) until a certain depth, and 3) the
above values are combined to obtain the resultant synonymy measure.

In a variety of approaches, the similarity measure is only calculated among
ontological terms that are classes. However, we propose a way to obtain the
synonym probability according to the type of senses that we compare. As the
ontology term that determines a sense can be a class, a property or an individual,
a question can arise: is it possible, for example, for a class to be equivalent
to a property? for instance, the property “teacher” of class “student” in some
ontology o1 could seem similar to the class “teacher” in ontology o2, as both
terms represent teachers. However, according to [MI01], the answer is no, due
to the different semantic nature of classes and properties. What it is possible
is that the property “o1#teacher” of class “o1#student” is equivalent to the
property “o2#name” of class “o2#teacher”. Thus, synonymy probability is only
meaningful between two classes, two properties, or two individuals.

In the following we explain how the synonymy probability between a previous
sense st1 and a new one st2 is computed, when t1 and t2 are classes, properties
or individuals.

4.1.1 Synonymy Probability between Classes

We propose a synonymy probability function spclass which is a linear com-
bination of: 1) l(t1, t2), the string similarity between class names t1 and t2,
2) vsm(descrst1 , descrst2), the similarity between class descriptions of t1 and
t2, 3) spctx, the similarity between the hypernym and hyponym hierarchies (let
us call them ontological contexts) of t1 and t2, with a certain depth d, and
4) sppropSet, the similarity between the property sets of the classes t1 and t2:

spclass(st1, st2, d) = wname · l(t1, t2) + wdescr · vsm(st1descr, st2descr)+
wctx · spctx(st1grph, st2grph, d)+
wpropSet · sppropSet(st1, st2, d)

wname, wdescr, wctx, wpropSet ≥ 0 ∧ wname + wdescr + wctx + wpropSet = 1

In our implementation, we use the Jaro-Winkler metric [WT91] to calculate
the string similarity between two class names (l function). This process also uses
the synonyms extracted for each term in the comparison7. In order to calculate
vsm(st1descr,st2descr) we use the Vector Space Model (VSM) algorithm [RW86].

7 Due to this reason, when the system computes l(“star”, “lead”) the result is 1.
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VSM is a way of representing documents through the words that they contain.
Each document is represented as a vector, where components are term weights
assigned to that document. The weights of the terms are computed using their tf

(term frequency) and idf (inverse document frequency) factors in each document.
Our prototype builds a document for each description (st1descr and st2descr) after
filtering non-containing-bearing “stopwords”. The structural similarity (spctx) in
our system depends on the factor d (depth) chosen:

spctx(st1, st2, d) =

⎧⎪⎪⎨
⎪⎪⎩

wh · vsm(hst1 , hst2) + wH · vsm(Hst1 , Hst2) if d = 1

cd · (wh · vsm(hst1 , hst2) + wH · vsm(Hst1 , Hst2))
+(1 − cd) · hH(st1, st2, d − 1) otherwise

hH(st1, st2, d) = wh · tl(hst1 , hst2 , d) + wH · tl(Hst1 , Hst2 , d)

tl(l1, l2, d) =
∑

i∈l1
maxj∈l2 spclass(i,j,d)+

∑
j∈l2

spclass(i,j,d)

|l2|
2·|l1|

wh, wH ≥ 0 ∧ wh + wH = 1

where, hst1 , hst2 are sampled sets of hyponyms of the hierarchical graph in senses
st1 and st2, respectively; Hst1 , Hst2 are sampled hypernyms, |X | is the cardi-
nality of the set X , and cd represent the certainty degree (see [RMBA05]) for
obtaining the sample size for the four sets of terms: hst1 , hst2 , Hst1 , and Hst2 .
The vsm(hst1 , hst2) and vsm(Hst1 , Hst2 ) compute the linguistic similarity be-
tween the contexts; while the function hH(m, n, d) calculates synonymy prob-
ability of the contexts (hypernyms and hyponyms) of the ontological terms m

and n, with depth d by means of the function tl (similarity between two sets of
hypernyms/hyponyms).

The structural similarity spctx is propagated through neighboring entities
(hypernym/hyponym relationships). It follows a statistical approach to incre-
mentally calculate the degree of similarity between two terms by analyzing a
sample of the hypernym/hyponym relationships between terms, with a certain
depth; sampling techniques are used to improve performance in case of ontolo-
gies are very populated. The vsm(hst1 , hst2) and vsm(Hst1 , Hst2 ) are performed
similarly to vsm(st1descr, st2descr) but considering “bags of ontological terms”
(extracted from hyponyms and hypernyms respectively) instead of descriptions.
The function tl(l1, l2, d) detects the contribution of each element of the first set
(l1) with all the elements of the second set (l2). In this way we avoid obtaining
high values of similarity when only one element in both sets matches.
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The synonymy probability sppropSet between the property sets of the two
class senses st1, and st2 is computed in the next way:

sppropSet(st1, st2, d) =

∑
n∈propSetst2
m∈propSetst1

spprop(m,n,d)

|propSetst1 ||propSetst2 |

where, propSets denotes the property set of ontology terms belonging to sense
s, and spprop(m, n, d) estimates the synonymy probability of two ontology prop-
erties, with a certain depth d (explained in the following).

4.1.2 Synonymy Probability between Properties.

In order to calculate the synonymy probability between two properties sp1 and
sp2, i.e. spprop(sp1, sp2, d), we consider the information obtained from the seman-
tic context of properties8 sp1 and sp2 and the semantic context of their domain
and range classes (using the method shown previously for classes).

spprop(sp1, sp2, d) = wnameP · l(p1, p2) + wctxP · spctx(sp1, sp2, d)
+wdomain · spclass(domain(sp1), domain(sp2), d)
+wrange · spclass(range(sp1), range(sp2), d)

wnameP , wctxP , wdomain, wrange ≥ 0 ∧wnameP + wctxP + wdomain + wrange = 1

where wnameP , wctx, wdomain, and wrange are the weights of the above synonymy
measures, and domain(spi) and range(spi) return the domain class and range
class of the property spi, respectively.

4.1.3 Synonymy Probability between Individuals.

To compute the synonymy probability spindv(si1, si2, d) between two individuals
of different ontologies, we consider the synonymy of the class they belong to,
with a certain depth d.

spindv(si1, si2, d) = wnameI · l(i1, i2) + wclassI · spclass(class(si1), class(si2), d)

wnameI , wclassI ≥ 0 ∧wnameI + wclassI = 1

where wnameI , and wclassI are the weights of the above synonymy measures, and
class(si) returns the concept from which si is an instance.

8 Properties are organized in hierarchies in some ontologies.
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Concerning our example, we provide the details of the synonymy probability
functions described above. We consider the sense s2class

star and the synonym sense
syn2class

lead (shown in Figure 4) in order to compute their synonymy probability in
the semantic enrichment step. Remember that both senses are classes, therefore
we use spclass(st1, st2, d) in order to decide if that two senses must be integrated
(as a single sense) or not. In Figure 6, we show the senses s2class

star and syn2class
lead

(of the keywords “star” and its synonym “lead” respectively) with a full descrip-
tion of their ontological context to depth=2 (in this case there are not hyponyms
with depth=2). On the right, the term “lead” have two hypernyms (“actor” and
“stage player”) and four hyponyms (“co-star”, “film star”, “idol” and “television
star”). Notice that although the terms “actress”, “heavy”, “ham” and “mime”
(enclosed in the shadow ellipse) do not describe the term “lead”, they are con-
sidered because these terms are used to compute the degree of similarity of their
neighbouring entities.

vsm h
star

vsm H
star

vsm h
actor

actor

film star idol television starco−star

s2     = < {WN#star, WN#lead, WN#principal},   star   , "an actor who plays a principal role", 1, 1>star
class

performer

actor
vsm h

vsm H
actor

vsm H
lead

stage player
vsm H

vsm h
leadfilm star idol television starco−star

performer theatrical
performer

...
barnstormer

actress tragedian
character actormimeham

vsm H
actor

actor stage player

actress
heavy ham

mime

ONT2 = http://www.loa−cnr.it/ontologies/OWN/OWN.owl#LEAD_STAR

syn2        = < {ONT2#lead},    lead   , "",  1, 1 >
lead

class

Figure 6: Full description of the context of s2class
star of “star” and syn2class

lead of
“lead”.

Firstly, our algorithm computes the string similarity between the terms “star”
and “lead” (l(“star”, “lead”)). This process uses in the comparison, the syn-
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onyms extracted of each term, that is star, lead and principal for “star” and
only lead for ”lead”; therefore the returned value is 1. In order to compare the
description of the terms (vsm(s2class

star descr, syn2class
lead descr)) the description of

star is represented by the set {actor, play, principal, role} and the term “lead”
does not have a description, so the obtained value is 0.

Secondly, in order to calculate the neighboring information of both terms,
our algorithm computes the similarity between the values vsm(hstar , hlead) and
vsm(Hstar , Hlead) with depth = 1. In our motivating example Hstar is the set
{actor}, while that Hlead is the set {actor, stage player}. Then, it computes
(spctx) for depth=2 and detects the contribution of each element of the first
set with all the elements of the second set; the algorithm compares the term
“actor” of the sense s2class

star with the terms “actor” and “stage player” of the
sense syn2class

lead .
Finally, the linguisty matching calculates the synonymy probability between

the properties of “star” and “lead”. These senses do not have properties so the
result of sppropSet is 0.

Notice that spclass and spprop formulas are recursive and the same calcula-
tions can be required several times, so partial results are stored to compute each
comparison only once to improve the performance. The system stores pairs of
terms already compared. Each pair is represented by a tuple mt = <sourceTerm,
targetTerm, typeTerm, synonymy probability>, where sourceTerm and target-
Term are the names of the terms compared, typeTerm describes the type of
terms (classes, properties or individuals) and synonymy probability is the result
of computing the synonymy probability between both terms. Two terms will be
merged if the value of synonymy probability exceeds a certain threshold (in our
prototype 0.65). We show a summary of the performed comparisons in Table 1
and the resultant integrated sense is shown in the bottom of Figure 4.

source Term target Term type synonymy
star lead Class 0.93
actor actor Class 0.65
co-star co-star Class 0.95
film star film star Class 0.95
... ... ... ...

Table 1: List of mapping elements between the senses of s2class
star and syn2class

lead .

In Figure 7 we show the results of aligning the candidate keyword senses of
user keywords. Due to space limitations we only show a partial list of senses
managed by the system. Remember that s2class

star of keyword “star” was semanti-
cally enriched with syn2class

lead and became s2′class
star . Now the final sense alignment

1922 Trillo R., Gracia J., Espinoza M., Mena E.: Discovering the Semantics ...



process integrates sense s3class
life of keyword “life” with s10class

life and s5class
life into

the single sense s3′class
life .

s1 =   < {WN1#star},  star,  "(astronomy) a celestial body of hot...", 1, 1 >star

class

...

celestial body

binary star supernova

domain (hotel)

star

prop
s3  =  < {TravelOntology#star},   star   , "", 1, 1 >

s2     = < {WN5#star, ONT2#lead},   star   , "an actor who plays a principal role", 2, 0.93 >
class’

star

co−star ... film star

actor stage player

performer

stars2         =’
class

star

class
s2       + syn2

class

lead

some final senses of keyword "star" (3/11)

s3      ,
class

life
s2      ,

class

life
s1      ,

class

star
s2        ,

star
’ class

s1      ,
class

life
s3          , ......

star

prop

s1 =   < {WN6#life},  life,  "the period between birth an the present...", 1, 1 >
class

life

s2 =   < {WN4#life,WN1#animation,...},  life,  "the condition of living...", 1, 1 >
class

life

s10      +life

class
s3      =

class’

life
s5life

class
s3      +life

class

time period

being

ghetto

state

being

survival skin eternal life

Step 6: Sense Alignment 

some final senses of keyword "life" (3/13)

"a characteristic state or mode of living"
s3 =   < {WN2#life}, life,       "the course of existence of an individual"      , 3, 0.9 >

class    ’

life

Figure 7: Sense alignment and merging of candidate keyword senses for “life”
and “star”.

5 Disambiguation of Keyword Senses

The previous steps provide a set of possible (non-redundant) senses for each user
keyword, but what is the intended meaning of each keyword? In most cases the
user intention is implicitly contained in the set of keywords that he or she entered.
For example, if the keywords are “star astronomy planet”, the intended meaning
of “star” could be “celestial body”; but in “Hollywood film star” the meaning
for “star” is probably “famous actor”. To identify the right meaning in these
contexts is an easy task to a human observer, but it is difficult to be performed
automatically. Other examples are still ambiguous even for a human, as our
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motivating example “life of stars” (where the user wants to retrieve information
about the life of famous people).

We understand disambiguation as the process of picking up the most suitable
sense of a polysemous word according to a given context. In our case the initial
context to disambiguate is the set of user keywords, but it can be enriched with
the ontological context of their associated senses, as we have extracted them on
the previous steps.

In short, the method that we use to perform this disambiguation step pro-
cesses each user keyword iteratively, taking into account the possible senses of the
other keywords to disambiguate it. Its output is a single sense for each keyword.

Such an algorithm compares each keyword sense with the selected ones of
previously disambiguated keywords, and with all the possible senses of still not
processed keywords. This comparison is performed by computing a relatedness
measure based on Google frequencies9 to measure each possible semantic relation
between each sense and the senses of the other keywords.

We define the Google-based semantic relatedness between two search terms x
and y as:

relGoogle(x, y) = e−2NGD(x,y) (1)

where NGD(x,y) is the Normalized Google Distance [RLC07] between x and
y. Initially the function (1) can be applied to any pair of search terms indexed by
Google. Nevertheless in our disambiguation algorithm we need to discover how
much semantically related a pair of senses are, so we must convert keyword senses
into convenient search terms (strings) that let us to perform queries on Google.
These strings are built using part of the available semantics that characterize
the considered keyword senses snki and snkj , extracted from the ontology or
ontologies where the keyword senses were found.

We consider two levels of characterization: Level 0 the term itself and its
synonyms, and Level 1 its father terms and their synonyms. Consequently two
different search terms can be built to characterize a single sense snki : slev0

nki
and

slev1
nki

. We calculate the semantic relatedness between senses computing each level
separately and then combining them with certain weights.

relGoogle(snki , snkj ) = w0 · relGoogle(slev0
nki

, slev0
nkj

) + w1 · relGoogle(slev1
nki

, slev1
nkj

)

The construction of these two levels of characterization can follow different
strategies. The one we consider here is to define slev0

nki
as a disjunction of synonyms

(if they are available):

synonym1 + OR + synonym2 + OR + ... + synonymn

9 any other search engine can be used
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The construction of slev1
nki

depends on the type of term considered (class,
property or individual):

1. snki ∈ Sclass
nki

: We characterize slev1
nki

by their direct hypernyms, as the con-
junction of the disjunction of synonyms of each direct hypernym in the cor-
respondent ontology:

(synonym11 + OR + synonym12 + OR + ...) + AND

+(synonym21 + OR + synonym22 + OR + ...) + AND

+... + (synonymN1 + OR + synonymN2 + OR + ...)

where synonymij is the j − th synonym of the hypernym i − th.

2. snki ∈ Sprop
nki

: Although properties have their own is− a hierarchy in ontolo-
gies, it is not usual in most of them. Therefore we adopt the domain of the
property (that is a class) to characterize the level 1 instead of its fathers in
the hierarchy of properties. We built its search term as a disjunction of the
synonyms of the domain.

3. snki ∈ Sindv
nki

: If the value is an instance of a class, we build the search term
for slev1

nki
as a conjunction of the synonyms of the associated concept. If it

is an instance of a property, we use the conjunction of the synonyms of its
domain.

For example we can compute the semantic relatedness between s3′class
life and

s2′class
star in this way:

relGoogle(s3′class
life , s2′class

star ) = w0 · relGoogle(“life”, “lead OR star”) + w1 ·
relGoogle(“being”, “actor AND “stage player””)

resulting a value of 0.476 (with w0 = w1 = 0.5).
The computed relatedness among senses described above is used to calculate

a relevance degree for each keyword sense: we choose the maximum ones com-
puted between the sense and the set of senses of each other keyword (as they do
in [TP05]). We add them and normalize according to the number of keywords,
giving a final relevance degree for each sense. Then the list of initial senses are
rearranged according to these values. A filtering process is also applied to omit
the less relevant ones, according to a configurable threshold.

The method can operate in two modes: 1) Automatic: The system selects the
one with the highest relevance degree, so avoiding user intervention but trusting
the decision taken by the computer. 2) Semiautomatic: The system proposes to
the user the rearranged and filtered list of senses obtained automatically, and he
or she selects the most suitable one for each keyword.
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Our disambiguation method does not need large semantically tagged corpora
needed by supervised learning approaches, and also overcomes other limitations
of many traditional disambiguation techniques [Res95, TP05, LC98]: It is inde-
pendent on a single lexical resource as source of keyword senses (many traditional
methods only deal with WordNet synsets), and it is independent on a particular
ontology or corpus to compute the semantic relatedness measure used by the
algorithm (the above mentioned relatedness relies on Google, where almost any
possible keyword and implicit interpretation could have been indexed, instead
of depending on a single ontology where its description could be limited or even
non-existent).

As result of applying this disambiguation method to our motivating example
our system selects automatically these senses as the most probable ones: for
the keyword “life” the selected sense s3′class

life is “the course of existence of an
individual or a characteristic state of mode of living”, and the sense s2′class

star

(“an actor who plays a principal role”) is proposed for the keyword “star” (see
Figure 8.).

, class

star

the most probable sense of keyword "star"
performer

...co−star film star

stage playeractor star
’
class class

stars2      +
class
leadsyn2

s2     = < {WN5#star, ONT2#lead},   star   , "an actor who plays a principal role", 2, 0.93 >

s2       =

s1      ,
class

life
s2      ,

class

life life

class
s3          , ......

prop
s3’      ,

star

class
s1      ,

class

star
s2        ,

state

being

ghetto

s3 =   < {WN1#life}, life,     "the course of existence of an individual"    , 3, 0.9 >

Step 7: Keyword sense s5
life life life

classclassclass
s10     +s3    +

’

the most probable sense of keyword "life"

life

class’

life
,class    

s3      =

"a characteristic state or mode of living"
disambiguation

Figure 8: Disambiguation of possible keyword senses for “life” and “star”.

As other illustrative example we will mention that the disambiguation of
the keyword set “Astronomy star planet” (our prototype provides 1, 10 and
4 possible senses respectively for those keywords) selects a sense for “star” as
subclass of “celestial body”, giving it a higher score than the other senses (as
the one with description “an actor who plays a principal role”), which seems to
be in accordance with the intuition of a human observer.

For a more detailed description of the disambiguation process see [GTEM06].
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6 Construction and ranking of queries

In this section, we detail our approach to translate the keyword senses selected in
the previous step into queries expressed in a knowledge representation language.
Although the system knows the correct sense of each keyword, the user could
have used such keywords for different information requests (different queries). For
example, although the keyword “vehicle” means “a conveyance that transports
people or objects” and the keyword “house” means “a dwelling that serves as
living quarters for one or more families” for a specific user, the user could be
asking for motor homes or houses with a parking lot. In other words, different
queries are possible even when each individual keyword has a fixed sense. The
possible queries depend on the expressivity of the query language used.

There exists a module called Parser Builder which, taking as input a free
context grammar describing the syntax of a knowledge representation language,
outputs a new grammar. The new grammar generates all possible queries for
each permutation of terms, taking into account the expressivity of the knowl-
edge representation language chosen. The resulting grammar has two kinds of
rules: 1) the type of constraint of each operator (e.g., And is a Class constraint)
and 2) the ordered list of operands of each operator (e.g., the parameters of Fills
are a property and a class). Notice that this process filters out the syntax sugar
of the input language. In Figure 9 we can see the grammar obtained for a subset
of the knowledge representation language BACK [Pel91]. Thus, the parser cor-
responding with the output grammar will be used to build the possible formal
queries for the terms obtained from the user keywords. This parser is built just
once for each knowledge representation language.

Subset of BACK language grammar

Class                   Fills(Property, Individual)

Class                   All(Property, Class)

Property               propertyName

Individual             individualName

And                      Class Class

All                        Property Class

Class                   And | All | Fills | className
Class                   And(Class, Class)

Fills                       Property Class

Grammar obtained from characteristics of BACK

Figure 9: Subset of BACK language and its equivalent grammar obtained.

The main steps followed to construct queries that combine the keyword senses
selected previously are the following (see Figure 10):

– Permutation of terms. In this step, the system obtains all the possible per-
mutations of the input terms. For example, if the input is a property p1, a
class c1 and another class c2, the permutations obtained are: p1 c1 c2, p1 c2
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Formal queries

Parser builder

Description Logic reasoner 

Figure 10: Construction and ranking of queries.

c1, c1 p1 c2, c2 p1 c1, c1 c2 p1 and c2 c1 p1. In this way, we can build queries
where the position of the keywords is different from the original; that is, the
order of the keywords is relevant but it does not limit the possible queries.

– Building of possible combinations. Using the parser built in the process of
configuration of the module, all possible queries are generated for each per-
mutation of terms.

– Removing inconsistent possible combinations. Some queries obtained in the
previous step could be inconsistent combinations, e.g., and(c1, c2) is incon-
sistent if it happens that disjoint(c1, c2); i.e., although and(c1, c2) is correct
syntactically, it is not correct semantically (no object belongs to and(c1,
c2)). The system automatically removes such queries by using a Descrip-
tion Logics reasoner [BCM+03] (compliant with the chosen language) such
as RacerPro, FACT, Pellet or BACK [BCM+03, Pel91].

– Ranking of queries. Each query in the previous step defines possible classes of
objects which the user could be interested in. Probably, the user is interested
only in one of the output queries. So, it is needed to compute a relevance
probability (the probability that a query expresses the intention of the user)
for each possible query. The system proposes the most relevant query to
the user; then, she/he can change this default selection if it is not right. In
order to compute the relevance probability the system takes into account the
following factors: 1) the order of keyword senses, the more similar to the
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original order of terms the query is the more relevant it is, 2) the kind of
selected senses considered (class, property or instance), and 3) the type of
operators used in the construction of queries.

Compared with the well-known system SeamSearch [LUM06], this approach
has the following advantages: 1) it does not depend on a specified knowledge
language, 2) it is not required that one of the keywords entered by the user is
a class, and 3) combinations of operands and operators are not predefined with
templates so our prototype considers all the possible combinations.

7 Experimental Evaluation

We have developed a prototype in order to put into practice our ideas. Even
though we have to test our system in a more detailed and systematic way to
evaluate the benefits of our approach, we have already performed some initial
experiments whose results are very promising. Our goal is to evaluate if the
system discovers the semantics assigned by the user to the input keywords.

Our initial tests have been oriented to evaluate the quality of the semantics
that we give in a particular scenario: when the user query is highly ambiguous
(even for a human observer). We had the intuition that, when there exist many
possible interpretations, traditional search engines fail in providing some of them
among their first results, due to the dominance of some terms highly extended
on the Web.

From a larger set of deliberately constructed ambiguous queries, we finally
selected ten (the ones with higher ambiguity according to the point of view of
several users). After that, we requested 20 users to assign their own meanings
to each keyword set. Each keyword set was the input of our system and each
user had to identify the first sense provided by our system that described well
his assigned meaning. Similarly, users had to identify the first web document
returned by Google with the intended meaning after entering each keyword set.
We want to remark that we are not comparing directly the output of our system
with the output of Google (we return semantic queries while they return links to
web pages). We want to compare, the semantics contained in the queries that our
system returns with the (implicit) semantics underlying the pages that Google
retrieves.

We have devised a normalized measure to evaluate how closed the user inter-
pretations and an “ideal” distribution are. For example if a user thinks of three
possible interpretations for “java” (as “an island”, “coffee”, or “a programming
language”), the ideal distribution for that user is when the system provides these
senses in the first three positions of the returned answer without regarding the
order. In this case the measure value must be 1. The worst situation (no senses
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according to the user interpretations were returned) gives a value of 0. Other-
wise the measure ranges between 0 and 1. For each keyword set we compute the
measure as follows:

1) For each user j we compute the “distance” between the ideal distribution
and the real distribution of senses: Dj = 1

n · ∑
(posi) − n

2 ; where posi is the
position of the ith interpretation returned by the system, and n is the number
of user interpretations10.

2) We average the previous value among all the users, and normalize its
value between 0 and 1 proportionally to the proximity to the ideal case. p =
−1

30·m · ∑
(Dj) + 1; where m is the number of users interviewed and Dj is the

value calculated in the previous step.

Figure 11: Suitable senses provided by each system

The results are shown in Figure 11. As we can see, our system provides more
suitable interpretations to some keyword sets than Google, according to users’
opinion. For example, many users interpreted “java” not only as “programming
language” but also as “island” or “coffee”. Our system provides these senses
which are very difficult to find in links returned by Google, as the score shows.
Nevertheless, in three of the ten studied cases our system behaved worse than
Google due to various reasons: for “glasses catalogue” our system did not find in
the ontology pool the senses that “glasses” have in singular (“glass”); for “sun”,
no accessed ontologies described it as “newspaper” (a popular interpretation);
and for “virus infection” some users were not satisfied with the descriptions pro-
posed by our system for “infection” (they were extracted from the ontology pool).
Anyway, those detected anomalies can be fixed by improving our morphological
analysis (to consider singular and plural forms, for example) and consulting new

10 If the user interpretation is not found, a position of 30 is applied: we assume that
the wanted senses should appear in the first 30 results as the user’s patience is finite
when using our system or Google.
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ontologies, which is very easy to do in our system. The interesting result is that
our experiments indicate that our system behaves better than web search engines
when the semantics assigned to keywords by the user is not the most popular
on the Web; that is, our system can provide more interpretations for ambiguous
keyword sets than a traditional search engine. Even we do not consider this re-
sult conclusive, it shows us a promising result and motivates us to continue in
our line.

Regarding the performance, although thousands of ontologies were consid-
ered, our system spent six seconds in average11 to return the possible senses of
each keyword set.

8 Related Work

Semantic knowledge extracted from ontologies is used for different purposes: en-
hanced design of class diagram for the business domain [RS06], development of
sophisticated question answering [LMU06], or query enrichment [TGS06]. Key-
word senses obtained with our proposal are closely related to the last two appli-
cations cited. In [RS06] they use an ontology search engine to retrieve ontology
files which contain candidate classes for the purchase order domain; besides their
system deals with synonyms to refine the search. Unfortunately they assume that
domain experts define a dictionary or ontology that specifies synonyms. On the
contrary our system takes advantage of the shared ontologies available on the
Web and semantically enriches the keyword senses with senses extracted from
their synonyms. In [LMU06] they propose a system which exploits the avail-
ability of distributed, ontology-based semantic markup on the Web to answer
questions posed in natural language. However they do not precise the mechanism
used to index and locate an ontology. Also, unlike this work, we use a measure
of synonymy among senses that does not depend on a single lexical resource as
WordNet. In [TGS06] they propose a method that uses ontologies to improve the
retrieval quality by query enrichment. However, the architecture proposed in this
work only accesses their own (single) ontology. Our work has inherent advan-
tages as queries third-party ontology pools; so we advocate a shared knowledge
approach.

Concerning our subtask of integrating different ontology terms, from the
works that also exploit linguistic and structural information, [QHC06] is the
most similar to ours. They propose the idea of virtual documents, which contain
the local descriptions and the neighboring information to reflect the intended
meaning. Besides they use traditional vector space techniques to compute docu-
ment similarity. In [Hes06] they propose an iterative algorithm for ontology map-
ping which is based on established string distance metrics and on a structural
11 The total time spent depends on the number of candidate senses found in ontologies.
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similarity measure based on a vector representation of the relations between en-
tities. In [LDKG04] a linear combination of name similarity, label similarity and
description similarity is used in order to discover the mapping between classes.
However, these works do not use statistical sampling to optimize the hierarchy
comparison in depth, they do not consider the kind of term (class, property,
or individual) when comparing and integrating, and our search of synonyms to
calculate the name similarity is extended to an ontology pool instead of just a
single resource as WordNet.

Regarding the disambiguation step, we have already mentioned some advan-
tages with respect to other traditional approaches [Res95, TP05, LC98]. The
most remarkable one is its independence of using a particular lexical resource
(both to compute the semantic relatedness measure and as source of keyword
senses). Other approaches, as the Structural Semantic Interconnection technique
described in [NV05], differ from us due to a similar reason: even its good behav-
ior, they rely on the graph representation that they use in several pre-selected
lexical resources. Partial manual pre-processing is also needed. In contrast we
want to use a method where the semantic context can be discovered in no pre-
established knowledge sources.

9 Conclusions

In this paper we have presented a semantics-guided approach to discover the pos-
sible senses of a set of user keywords; the output is a query expressed in a formal
language, which represents the user intended semantics. The main features of
our proposal are the following:

1. It uses an iterative approach to retrieve from different knowledge repositories
the possible senses of each user keyword, in a parallel manner. A sense is
represented basically as the (multi)ontological context of a term, and the
system is able to deal with senses corresponding to different kind of ontology
terms (classes, properties, and individuals).

2. It considers not only the senses corresponding to ontology terms that syn-
tactically match the user keywords, but also the senses of ontology terms
matching the synonyms of the user keywords, recursively, in order to se-
mantically enrich the keyword senses retrieved within a certain synonymy
threshold.

3. It measures the synonym degree between two senses by considering their lin-
guistic and structural similarity. Statistical techniques like sampling and par-
allel processing are used to improve the performance of this process. Senses
whose synonym degree is above a certain threshold are merged automatically.
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4. It applies a disambiguation method to select (automatically or with user
intervention) the most suitable sense for each keyword. This method does
not rely on a particular ontology or lexical resource and uses a semantic
relatedness measure based on Google frequencies.

5. It combines the selected keyword senses into a query (in a knowledge repre-
sentation language) which expresses without ambiguity the user’s informa-
tion need. This method uses parsing and techniques based on Description
Logics and it is valid for most knowledge representation languages.

Our initial experiments show that our system is able to discover keyword senses
not easily found by traditional web-based search engines. We believe that this
technique to find out the semantics of user keywords can be applied to many
fields, such as the retrieval of relevant data underlying ontologies on the Semantic
Web, and to improve traditional web search engines.

As future work, we plan to process the semantic query obtained in the process
described in this paper to retrieve relevant data from the Semantic Web.
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