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Getting a labeling of vertices close to the structure of the graph has been proved

to be of interest in many applications e.g., to follow smooth signals indexed by the

vertices of the network. This question can be related to a graph labeling problem

known as the cyclic bandwidth sum problem. It consists in finding a labeling of

the vertices of an undirected and unweighted graph with distinct integers such that

the sum of (cyclic) difference of labels of adjacent vertices is minimized. Although

theoretical results exist that give optimal value of cyclic bandwidth sum for standard

graphs, there are neither results in the general case, nor explicit methods to reach

this optimal result. In addition to this lack of theoretical knowledge, only a few

methods have been proposed to approximately solve this problem. In this paper, we

introduce a new heuristic to find an approximate solution for the cyclic bandwidth

sum problem, by following the structure of the graph. The heuristic is a two-step

algorithm: the first step consists of traversing the graph to find a set of paths which

follow the structure of the graph, using a similarity criterion based on the Jaccard

index to jump from one vertex to the next one. The second step is the merging

of all obtained paths, based on a greedy approach that extends a partial solution

by inserting a new path at the position that minimizes the cyclic bandwidth sum.

The effectiveness of the proposed heuristic, both in terms of performance and time

execution, is shown through experiments on graphs whose optimal value of CBS is

known as well as on real-world networks, where the consistence between labeling

and topology is highlighted. An extension to weighted graphs is also proposed.

cyclic bandwidth sum problem, graph labeling, complex networks, vertex label-

ing, graph structure, graph topology
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1. Introduction

1.1. Problem statement

In many applications, the structure of a complex network gives insights into the understanding

of the underlying relationships between the vertices: It is advantageous to consider the vertices

in a consistent order according to the topology. A striking example of this is the huge amount of

works about the detection of communities in a network [14]: finding groups of vertices highly

connected between them is for instance a powerful tool to explain the structure of social net-

works and to characterize them. The presence of communities is only one type of organization

encountered in networks, among a much large diversity of structures: in many cases, the topol-

ogy of the network is unknown and cannot be fully characterized explicitly. In this situation, it

is nevertheless beneficial to have a vertex ordering consistent with the structure of the network.

We can point out for example those related to distributed inference over networks [23], diffusion

[6] or visualization of networks [2].
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Figure 1: Example of signals over a network with 50 vertices, with a scalar value assigned to

each vertex. The color codes the value of the signal on each vertex, from black to

white. (a) Original network. (b) Circular representation of the network according to

the index with a random ordering of vertices. (c) Circular representation of the network

with a suitable ordering of vertices. (d) Representation of the signals indexed by the

vertices with a random vertex ordering (top) and a proper vertex ordering (bottom).

A first motivating example comes from the field of signal processing over networks, which

has been extensively developed in recent years [31]. Considering a network with an unknown

topology, a value is assigned to each vertex. This situation could describe for instance a sensor

network, in which a vertex represents a station which measures a quantity, and is in communi-

cation with some stations. Different issues come out from this example where a proper vertex

ordering is of great interest. If we use the assumption that the signal is smooth over the net-

work, one question which may arise is how to represent the signal according to the vertices in

a two-dimensional space, to preserve its smoothness. Another point is the representation of the

network itself, using a linear or circular layout, and how to order the vertices to minimize the

cross of edges and hence improve the visualization. A short example shows that these two ques-

tions are linked and can be directly addressed if it is possible to obtain an ordering of vertices

consistent with the topology of the network. Figure 1 gives an example of network with 50

vertices, with a scalar value is assigned to each vertex. A random vertex ordering gives both

a poor circular representation of the network, and a signal with abrupt variations. Conversely,
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the usefulness of a vertex ordering consistent with the structure is clearly visible in the circular

representation of the network, and gives a smooth representation of the signal on the vertices.
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(a) Cycle graph
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(b) Graph with four communities

Figure 2: Examples of transformation of a network into signals, indexed by the vertices using

[30]. The resulting collection of signals is indexed by the vertices. The first three sig-

nals are displayed on each subplot (left) Random ordering of vertices (right) Suitable

ordering of vertices.

A second example derives from methods of duality between signals and networks, which can

be taken up using two approaches depending on the object of interest: from signals to graphs, for

example for the study of time series [5], or from networks to signals, as in [33] or [30]. The latter

method intends to transform a graph into a collection of signals using classical multidimensional

scaling [3] and has been extended in [19, 18, 17, 20]. The aim in these works is to exhibit

specific frequency patterns and link them with topological properties of the underlying network.

A major issue of the transformation from graphs to signals concerns the indexation of signals,

which is based on the vertex order. If two neighboring vertices in this order are not adjacent

in the graph, then their values in signals might be different and the signals are blurred: It leads

to abrupt variations of the signals over vertices which complicate the spectral analysis and then

the monitoring of frequency patterns. To smooth the signals, the vertex order must take into

account adjacency or at least geodesic distance, in other words the vertex order must reflect as

much as possible the structure of the graph. Fig. 2 shows two examples of the consequence

of a poor indexation to the resulting signals: transformation of a cycle graph leads to smooth

harmonic oscillations if the labeling follows the cycle (2a right), but to high-frequency signals

if the labeling is random (2a left). Likewise, transformation of a graph with communities leads

to signals with many abrupt variations (2b left), when an indexation that is consistent with the

structure in communities highlights plateaus, corresponding to each community. It is easy to

observe that a spectral analysis on the obtained signals might be profitable only if the indexation

is consistent with the topology. This consistency can be described as follows: Two vertices close

in the indexation should be close as well in the graph. But as we may have to deal with periodic

signals, the definition of the proximity (and then of the distance) has to be cyclic, i.e. if the

vertex at the beginning of the indexation and the one at the end have to be close in the network.

We propose in this paper to find such an order that reflects the topology of the underlying

network. The core of the method consists of the study of a related labeling problem, which seek

for a mapping from vertices to integers, in such a way that an objective function is minimized.

This approach is widely made explicit in the following.
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1.2. General framework of graph labeling

Graph labeling consists of assigning labels to vertices or edges of a graph. The way in which

these labels are classically assigned are driven by the minimization of a certain objective func-

tion, defined for the purposes of a specific application. There exists a wide variety of labeling

problems that are related to distinctive applications, as described by Diaz et al [11]. We focus

in this article on the labeling of vertices of an unweighted and undirected graph, with the ob-

jective to find a graph labeling which reflects the topology of the graph. As described above,

such a labeling shall minimize the distances between labels of adjacent vertices, which could be

a challenge with high stake for many applications. We propose in the following to traverse the

graph by tackling the cyclic bandwidth sum problem, which consists in minimizing the distance

between the labels of pairs of connected vertices in the graph.

Let G = (V,E) be a simple connected, unweighted and undirected graph with V the set of

vertices, and E the set of edges. The number of vertices is noted n = #V . Chung [8] proposed a

framework which encompasses many graph labeling problems. It is based on a mapping between

V and the set of vertices of a host graph H = (N,EH) with N = {0, · · · ,n− 1}. Graph labeling

problems are then defined as finding the best mapping π from V to N, according to minimization

or maximization of an objective function often using distances between labels taken between

pairs of adjacent vertices of G. This distance, noted dH , is defined as the length of the shortest

path between the corresponding vertices in the host graph H. Two possible objective functions

are often considered:

1. the maximum distance dH between the labels of two adjacent vertices of G is minimized,

i.e. it amounts to find a labeling π̂ such that:

π̂ = argmin
π

max
{u,v}∈E

dH(π[u],π[v]) (1)

2. the sum of distances dH between all pairs of adjacent vertices of G is minimized, i.e. it

amounts to find a labeling π̂ such that:

π̂ = argmin
π

∑
{u,v}∈E

dH(π[u],π[v]) (2)

The resulting graph labeling problems have been extensively studied in the case where the

host graph is a path graph P, where EP = {{i, i+1} | i = 0 . . .n−2}. The length of the shortest

path between two vertices u and v in this graph is given by:

dP(π[u],π[v]) = |π[u]−π[v]| (3)

These problems are called bandwidth problem (condition 1) and bandwidth sum problem (con-

dition 2).

Lin [24] and Jianxiu [22] introduced the problems where the host graph is a cycle C, where

EC = {{i, i+ 1} | i = 0 . . .n− 2}
⋃

{n− 1,0}. In this case, the distance between two vertices

u,v ∈V is given by:

dC(π[u],π[v]) = min{|π[u]−π[v]|,n−|π[u]−π[v]|} (4)
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The resulting problems are called cyclic bandwidth problem (condition 1) and cyclic band-

width sum problem (condition 2). We focus in this paper on the cyclic bandwidth sum problem

(CBSP). It is thus defined as the minimization of a quantity called cyclic bandwidth sum (CBS):

min
π

CBS(G) = min
π

∑
{u,v}∈E

dC(π[u],π[v]) (5)

Examples of optimal labeling solving Eq. (5) are shown in Fig. 3 for some standard graphs.

We can see that the labeling closely follows the structure.

These problems are generally NP-hard problems, as shown by Papadimitriou for the band-

width problem [26] and Lin for the cyclic bandwidth problem [24].

1.3. Related works

Many works have been done on the study of labeling graph problems: as mentioned previously,

Dı́az [11] proposed a review of several graph labeling problems from an algorithmic point of

view. Among these problems, the bandwidth problem and bandwidth sum problem have been

extensively studied: Papadimitriou [26] proves the NP-Complenetess of the bandwidth prob-

lem, highlighting the necessity of heuristics, as the one developed by Cuthill et al [9], to find

efficiently a good labeling for these problems. Some studies have also been performed on other

graph labeling problems, such that cyclic bandwidth problem [24, 27], antibandwidth problem

[4] or cyclic antibandwidth problem [25], both in terms of theoretical results and algorithms.

Conversely, only few results are available in the literature for solving the cyclic bandwidth sum

problem. Two articles focus on the mathematical aspects of this problem: Jianxiu [22] intro-

duced cyclic bandwidth sum problem and proposed theoretical results for some standard graphs,

such as wheel or k-regular graphs, in terms of optimal value of CBS or upper bounds for this

value. Later on, Chen et al. [7] extend this work by adding some results, for instance for com-

plete bipartite graphs. Whereas these theoretical results do not help to get the optimal labeling

of a graph, they are nonetheless useful to evaluate the quality of a solution of the CBS problem,

especially when it is obtained thanks to heuristic algorithms. To the best of our knowledge, only

one heuristic was proposed to solve the cyclic bandwidth sum problem, published in [29] and

extended in [28]. The heuristic is based on a general variable neighborhood search (GVNS). The

idea of GVNS is to change the labeling both globally and locally to descent to local minima of

CBS, using two distinct phases: A shaking phase in which the labeling is changed by applying

several operations where the vertices are either shifted, reversed, flipped or swapped without

taking into account the proximity of vertices. This operation enables the algorithm to escape

from valleys and to browse the solution space. A local search is then performed to descent in a

valley to a local minima and is performed by switching consecutive vertex or swapping adjacent

vertices whose edge distance (see Eq. 4) is the highest.

1.4. Outline

The following sections present the heuristic we developed to address the cyclic bandwidth sum

problem efficiently, that will be called MaCH for MinimizAtion of Cbs Heuristic. Section 2

sketches the principles of the proposed method. Detailed algorithms are presented in Section 3,

5



while a worst-case complexity study is given in Section 4. The performance of the algorithm

is investigated in Section 5 through the comparison of the solution of our algorithm with the

theoretical results when available, or with GVNS. A study is then performed in Section 6 on

graphs exhibiting common properties encountered in real-world networks, with a qualitative ap-

proach to visually validate the performance of the heuristic to discover the structure of complex

networks. Section 7 discusses extensions of the proposed method to handle weighted graphs and

Section 8 concludes the paper.

2. Heuristic to minimize the Cyclic Bandwidth Sum of a graph
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(f) Graph with cliques

Figure 3: Examples of standard graphs with optimal labeling minimizing the CBS.

The aim of the heuristic is to build a labeling by traversing the graph to discover its structure.

The vertex labels are then constrained by the regularities of the structure, which may have mul-

tiple forms. For instance, in the simple case of a cycle (see Fig. 3b), the correct behavior of the

algorithm should be as follows: Starting from a random vertex, it will label it and recursively

jump to one of its unlabeled adjacent vertices, label it with the next integer, and so forth until all

vertices are labeled. In the less trivial case where the graph is organized by several cliques (see

Fig. 3f), the algorithm should browse all the vertices inside a clique before jumping to another

one. More generally, the algorithm has to adapt its search to the structure of the graph, whatever

the structure is.

One solution to achieve this goal is to perform a self-avoiding random walk on the graph

that successively numbers the vertices when they are reached. However, this approach has one

drawback: the choice of the next vertex depends only on the neighborhood of the current vertex,

and not on a more extended neighborhood. It implies that the random walk has to be controlled to

avoid going to vertices already numbered, and the walk can stop before visiting all the vertices.
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The heuristic we propose below fills in the gaps of a random walk and consists of a two-step

algorithm. The first step performs local searches in order to find a collection of independent

paths with respect to the local structure of the graph, while the second step determines the best

way to arrange the paths such that the objective function of the CBSP is minimized.

2.1. Step 1: Guiding the search towards locally similar vertices

The heuristic starts taking as input a graph where each vertex can be referred by a unique iden-

tifier. The first step consists in finding a collection of paths in the graph, that is to say some

sequences of vertices consecutively connected. The algorithm performs a depth-first search in

which the next vertex is chosen based on its similarity to the current vertex. This similarity

depends on the intersection of the two vertex neighborhoods: the more the neighborhoods of the

two vertices intersect, the closer their labels are. Concretely the search is executed as follows:

Starting from a vertex, the algorithm jumps to the most similar neighbor not yet labeled, and so

on until there is no more accessible vertices. Then, the algorithm starts a new path from a vertex

which has not been yet inserted in a path, and then continues to build paths until all the vertices

are in a path. At the end of this step, a collection of paths is obtained that partitions the graph

vertex set.

Initialization Any vertex not yet inserted in a path can be used as starting node. However, to

favor the computation of longer paths, vertices that are at the periphery of the graph are preferred.

The incentive behind this choice lies on the fact that the path should start at one of the extremity

of the graph if there is one. For example, let us consider a simple path graph: Starting from a

vertex in the middle of the path will generate two paths, although it is obvious that the graph

can be traversed using a single path. There are several measures to determine the centrality of a

vertex, that can also be used to find vertices that are outer of the graph. We chose the simplest

one, to minimize the computational cost, by namely using the degree of the vertices: the vertex

with the smallest degree is selected to start the path.

Construction of a path A path is obtained by performing a depth-first search where the next

adjacent vertex is the one that (1) is not labeled and (2) has a neighborhood that is the most

similar to the one of the current vertex. The neighborhood similarity of two vertices is evaluated

based on the Jaccard index [21], a quantity used to compare the similarity between two sets

by looking at the total number of common elements (including the considered vertices) over

the total number of elements. Let Adj(u) returns the adjacent vertices of the vertex u, i.e. the

neighborhood of u. The similarity index between the vertex u and v, noted J(u,v), is defined by:

J(u,v) =
#
(

(Adj(u)∩Adj(v))∪{u,v}
)

#
(

Adj(u)∪Adj(v)
) (6)

This measure is equal to 1 if the two vertices have the same adjacent vertices, otherwise it

is strictly lower than 1. A value close to 0 means that the total number of vertices in the two

neighborhoods is much higher than the number of common neighbors.
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It may happen that two neighbors of the current vertex u have the same similarity index with

u. In this case, the selected vertex is the first vertex encountered by the algorithm.

It is preferable that the adjacent vertices of degree 1 that are only adjacent, to the current

vertex, are not chosen as the following vertices, despite their high similarity, because it would

end up the path. These vertices are immediately inserted after their unique neighbor to guarantee

that the vertices are as close in the labeling as they are in the graph. However we let the traversal

continue.

End of the search The search for a path ends when all the neighbors of the current vertex

have been inserted in a path. The algorithm starts a new path using the remaining vertices, until

all the vertices belong to a path.

2.2. Step 2: Greedy merge of paths

The second step aims at aggregating the paths obtained in Step 1 in a unique labeling in such a

way that the CBS is minimized. The results of this step is a list of vertices, where the position

of the vertex in the list gives its label. We perform a greedy search that takes the locally optimal

choice while merging a new path in the partial labeling under construction: The algorithm com-

putes the CBS value for the insertion of the path and the reverse of the path at each position of

the current partial solution and retains the argument that minimizes the CBS. The paths are se-

lected in turns according to their length, the largest one being selected first. The rational behind

this choice is so that to broadly explore the space of solutions.

Incremental computing of the CBS The evaluating of the CBS, as given in Eq. (5) is

demanding computationally, as it requires considering every edge of the graph. For each inser-

tion of path, the current CBS is computed twice (ordered and reverse ordered) for each possible

insertion index of the current labeling. It is thus very costly, but can be largely alleviated by

observing that, from an index to the next one, many edges have the same contribution in the

total CBS value. From this perspective, we propose an incremental update of the CBS to take

into account the state before the shift: At each update, only the edges whose adjacent vertex

labels have been modified are considered.

To explain the incremental computation of the CBS, let us consider the insertion of a path,

noted P, into a labeling, noted O, at the index i. The labeling can be decomposed into three

parts: the first part is noted O1 and is made of the vertices located before i. The vertex right after

the index of insertion i is noted k, while the remaining vertices compose the third part called

O2. The path P is inserted into the labeling between O1 and k when the index of insertion is i,

and between k and O2 when the index of insertion is i+ 1. This is schematically represented

in Fig. 4: Line 1 represents the current labeling made of a sequence of vertices O1 followed by

the vertex k at position i and ended by the sequence of vertices O2. P (line 2) is the sequence

of vertices that is currently inserted at the index i (line 3), i.e. just before vertex k. Thus, the

current labeling begins by the path O1, is followed by P, then comes the vertex k and the path

O2. Line 4 gives the current labeling when P is inserted at the position i+1, where the vertex k

has been shifted from right to left.

8



labeling O |−−−O1−−−|− k−|−−−O2−−−|

path P |−−−P−−−|

insertion of P at index i |−−−O1−−−|−−−P−−−|− k−|−−−O2−−−|

insertion of P at index i+1 |−−−O1−−−|− k−|−−−P−−−|−−−O2−−−|

Figure 4: Schema of the insertion of path P in the current labeling O

As the label of vertices are given by the position of the vertices in the labeling, it is clear that

from an index to the next one, only the vertices in P and k will have different labels. Let #P = p

the number of vertices in the path P, and πi[u] the label of vertex u when P is inserted at index i.

The changes in the labels for each group of vertices are the following:

πi+1[k] = πi[k]− p (7)

∀u ∈ P, πi+1[u] = πi[u]+1 (8)

∀u ∈ O1, πi+1[u] = πi[u] (9)

∀u ∈ O2, πi+1[u] = πi[u] (10)

We note CBS(i) the value of the cyclic bandwidth sum when P is inserted at index i. The compu-

tation of CBS(i) can be decomposed according to the different groups of vertices defined above:

CBS(i) =CBS(i)(O1,O1)+CBS(i)(O2,O2)+CBS(i)(O1,O2)+CBS(i)(P,P) (11)

+CBS(i)(k,O1)+CBS(i)(k,O2)+CBS(i)(k,P)

+CBS(i)(P,O1)+CBS(i)(P,O2)

where CBS(i)(X ,Y ) = ∑u∈X ,v∈Y,{u,v}∈E dC(πi[u],πi[v]) is the value of CBS when only the edges

of the graph between the two sets X and Y are considered, with dC(π[u],π[v]) defined in Eq. 4.

The definition of the distance dC shows trivially that if the labels of the endpoint vertices of an

edge are not shifted or are shifted equally, then the value of dC remains the same:

CBS(i+1)(O1,O1) =CBS(i)(O1,O1) (12)

CBS(i+1)(O2,O2) =CBS(i)(O2,O2) (13)

CBS(i+1)(O1,O2) =CBS(i)(O1,O2) (14)

CBS(i+1)(P,P) =CBS(i)(P,P) (15)

When the labels of endpoint vertices are not shifted equally, it is necessary to consider not only

the changes induced by the shift, but also which terms between |π[u]−π[v]| and n−|π[u]−π[v]|
is the minimum, both at index i and i+ 1, as it can vary. We prove in the following the results

when the endpoint vertices are k and a vertex in O1. The other results are given in Appendix A.

Theorem 2.1. Edges between k and the vertices of O1

Let u ∈ O1 and ∆ = πi[k]−πi[u]. We have:

1. if ∆≤ n
2

then CBS(i+1)(k,u) =CBS(i)(k,u)− p.
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2. if ∆≥ n
2
+ p then CBS(i+1)(k,u) =CBS(i)(k,u)+ p.

3. if n
2
< ∆ < n

2
+ p then CBS(i+1)(k,u) =CBS(i)(k,u)+2∆− (n+ p)

Proof. For all u ∈ O1, we have πi+1[u] = πi[u] < πi+1[k] < πi[k] from Eqs 7 and 9. Thus 0 <

πi+1[k]−πi+1[u]< ∆, allowing for the removal of the absolute value in Eq. 4.

Let us consider the case where the minimum term retained to compute CBSi(u,k) in Eq. (4)

is the first term. It means that:

∆≤ n−∆⇔ ∆≤
n

2
(16)

When CBSi+1(u,k) is considered, the first term is retained in Eq. (4) if:

πi+1[k]−πi+1[u]≤ n− (πi+1[k]−πi+1[u]) (17)

∆− p≤ n− (∆− p)

2(∆− p)≤ n

∆≤
n

2
+ p

Symmetrically the second term in the minimum function in Eq. (4) is used for CBS(i)(u,k) if

∆≥ n
2

and for CBS(i+1)(u,k) if ∆≥ n
2
+ p.

Then, using Eq. 7 and Eq. 9, there are 3 possible cases :

1. If ∆≤ n
2
, then the first term is retained for CBS(i)(u,k) and CBS(i+1)(u,k):

CBS(i+1)(k,u)−CBS(i)(k,u) = (πi+1[k]−πi+1[u])− (πi[k]−πi[u]) (18)

= (πi[k]− p−πi[u])− (πi[k]−πi[u])

=−p

2. If ∆≥ n
2
+ p, then the second term is retained for CBS(i)(u,k) and CBS(i+1)(u,k):

CBS(i+1)(k,u)−CBS(i)(k,u) = (n− (πi+1[k]−πi+1[u]))− (n− (πi[k]−πi[u]) (19)

=−(πi[k]− p−πi[u])+(πi[k]−πi[u])

= p

3. n
2
< ∆ < n

2
+ p, then the second term is retained for CBS(i)(u,k) and the first term for

CBS(i+1)(u,k):

CBS(i+1)(k,u)−CBS(i)(k,u) = (πi+1[k]−πi+1[u])− (n− (πi[k]−πi[u])) (20)

= (πi[k]− p−πi[u])−n+(πi[k]−πi[u])

= 2∆− (n+ p)

10



2.3. Comments

2.3.1. Influence of the initialization

The algorithm is completely deterministic and several executions will lead to the same solution

with a similar input. The algorithm can nevertheless return different solutions for a same graph

by changing the initial identifiers of the vertices: three steps of the heuristic produce a stochastic

behavior and all of them originate from the same statement: When a sort is performed, whatever

the criterion of sorting, if several elements have the same value, then the first element encoun-

tered by the algorithm is selected before the other ones. This happens when (1) the vertices

are sorting according to their degree to select the first vertex of a path, (2) when several paths

have the same length and (3) when the path insertion at several positions leads to the same CBS

value. The stochasticity induced by the initial vertex order is studied in Section 5, by randomly

ordering the vertices k times and selecting the minimal value of CBS over the k repetitions, for

different values of k. It shows that when the number of repetitions is high, the solution obtained

is little bit better. However, the improvement of the performance is not really high and indicates

the good robustness of the heuristic, even with a moderate number of repetitions.

2.3.2. Local search against global search

A drawback of the heuristic is that it relies on local searches in the graph. Therefore, the algo-

rithm cannot go to a vertex which is not a neighbor of the previous one. The labeling is hence

really tailored to the structure of the graph, as required. Nevertheless, the optimal labeling is

sometimes either not consistent with the topology of the network for instance if high jumps

should appear, or it is consistent but using a different organization, not reachable by the heuris-

tic. As our main motivation is to follow closely the network structure, the obtained labeling can

lead to bad results in terms of optimal CBS, while finding a path will follow the network.

3. Detailed algorithm

The whole algorithm MaCH comprises the consecutive execution of two steps, introduced in

Section 2. For readability, the algorithm of each step is described separately, respectively in

Algorithms 1 and 2.

From a connected, unweighted and undirected graph G = (V,E) with n vertices, the algorithm

outputs a one-to-one mapping π from V to {0, · · · ,n−1}. We consider in the following a List

as a list of elements with the associated functions List-Insert(A,a, idx) which inserts the

element a in the list A at the index idx (if idx is not given, the element a is inserted at the end

of the list), List-Remove(A,a) which removes the element a from the list A, Length(A) which

returns the number of elements of the list A, and the function Reverse(A), which returns the list

A in the reverse order. The function Degree(u) returns the degree of the vertex u in the graph G,

i.e. the number of vertices adjacent to the vertex u. Finally Adj(u) returns the adjacent vertices

of u.

Algorithm 1 computes the first step of the heuristic as described in Section 2.1. It consists in

building a collection of paths containing the vertices of the graph, each path traversing the graph
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Algorithm 1 Step 1: Guiding the search towards locally similar vertices

Require: G = (V,E)
Ensure: Paths

1: S = List(V )
2: Paths← List()
3: while S is not empty do

4: u0← argminu∈SDegree(u)

5: List-Remove(S,u0)
6: exist successors← True

7: P← List()
8: while exist successors do

9: List-Insert(P,u0)

10: H← List()
11: for all v ∈ Adj(u0)∩S do

12: if Degree(v) = 1 then

13: List-Insert(P,v)

14: List-Remove(S,v)
15: else

16: List-Insert(H,v)

17: end if

18: end for

19: if H is not empty then

20: u0← argmaxw∈HSimilarity Index(u,w)

21: else

22: exist successors← False

23: end if

24: end while

25: List-Insert(Paths,P)

26: end while

following its structure. Line 1 initializes a list S containing all the vertices of the graph, while

Line 2 initializes an empty list which will contain the paths . The search of paths (Lines 3 to

26) is then performed until all vertices are included in a path. A vertex of S minimum degree

value is considered (Line 4). The selected vertex, noted u0, is removed from S (Line 5) and is the

starting vertex of the search from Line 8 to Line 24. The path is defined as a sequence of vertex

added in a list P (Line 7), and is closed when there are no more successor available to extend the

path or when the depth-first search ends. The first step of this loop consists of adding the vertex

u0 to the path P (Line 9). A new list H is then initialized (Line 10) and will contain the potential

successors of u0. These successors are selected among the adjacent vertices of u0 which are still

in the list S, i.e. which have not been included in a path beforehand (Line 11). For each of the

successors, noted v, if the degree of v is equal to 1, i.e. the vertex v has only the vertex u0 as

adjacent vertex, then v is directly added in the path (Lines 12 to 14). Otherwise, it is added to

the list H (Line 16). When all the potential successors have been either added to P or H, the
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next vertex to be considered is chosen among the elements of H, as the one with the highest

similarity with the current u0 according to Eq 6 and given by the function Similarity Index.

The heuristic then loops using the updated value of u0. If H is empty, exist successors is set

to False (Line 22) and the path is inserted in the list of paths (Line 25). If S is not empty, then

u0 is updated using the procedure described in Line 4 and the search of a path from this vertex

is repeated. When S is empty, the first step is completed.

Algorithm 2 Step 2: Greedy merge of paths

Require: Paths

1: Order← argmaxP∈PathsLength(P)
2: List-Remove(Paths, Order)

3: while Paths is not empty do

4: P0← argmaxP∈PathsLength(P)
5: idx,reverse← Incremental CBS(Order,P0)
6: if reverse is True then

7: Insert-List(Order,Reverse(P0), idx)
8: else

9: Insert-List(Order,P0, idx)
10: end if

11: List-Remove(Paths,P0)
12: end while

13:

14: i← 0

15: for i = 0 : (n−1) do

16: π[Order[i]]← i

17: end for

18: return π

Algorithm 2 computes the second step of the heuristic as described in Section 2.2. A list

Order is first initialized as the path in Paths with the highest number of elements (Line 1). This

path is then removed from the list Paths, and the algorithm inserts all the remaining path in the

list Order using a loop from Line 3 to Line 12. The path with the highest number of elements

is selected (Line 4). The function Incremental CBS returns the index and the direction of

insertion of P that minimizes the CBS. Depending on the value of the boolean variable reverse,

the path P0 is inserted reversed (Line 7) or not (Line 9). The path is then removed from the list of

paths Paths and the heuristic loops until all the paths have been inserted in Order. As the result,

the mapping π is built using the vertices as keys and the index of the vertices in the list Order as

values.

4. Worst-case complexity of the algorithm

We now examine the worst-case time complexity of the algorithm MaCH described in the pre-

vious section, when applied on a graph G(V,E) with #V = n and #E = m.
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We first examine the complexity of Algorithm 1. The set S initialized Line 1 can be imple-

mented as a min-priority queue with a binary min-heap. The time to build the binary min-heap

is O(n). Lines 4 and 5 can be done using the EXTRACT-MIN function that takes time O(logn).
Similarly, the set Paths can be implemented as a max-priority queue with a binary max-heap and

Line 13 takes in the worst case a time proportional to the logarithm of the number of paths, that

is in the worst case O(logn). Using aggregate analysis, the while loop in Line 8 is executed at

most once for each vertex of V , since the vertex u0 is removed from S (Line 5). The function

List-Insert is in constant time. The set H of vertices that are adjacent to u and in S is im-

plemented as a max-priority queue using a binary heap data structure that makes possible to run

MAX HEAP INSERT, that inserts a new element into H (Line 16) while maintaining the heap

property of H in O(log(#H)), that is in the worst case in O(log(#Adj[u])). Thus, the loop on

Lines 8-18 in is executed #Adj[u] times and at each iteration (1) the similarity index computation

takes time Θ(min(#Adj[u],#Adj[v])) and (2) MAX HEAP INSERT takes time O(log(#Adj[u])).
Therefore, loop Lines 8-18 is in O(#Adj[u]2). Line 20 can be done using EXTRACT MAX in

time O(log(#Adj[u])) and the total complexity of Lines 8-24 is in O(#Adj[u]2). Consequently,

the total time is O(∑u∈V (#Adj[u]
2)). As K. Das established in [10] that

∑
u∈V

#Adj[u]2 ≤ m

(

2m

n−1
+n−2

)

(21)

we can conclude that the total cost of Algorithm 1 is in O(n logn+mn) = O(mn)
We can also use an aggregate analysis to evaluate the time taken by the Algorithm 2. Lines 2

and 5 are in O(n), when almost all the vertices have already been merged in Order. Incremental CBS

runs through (1) all the edges between the vertices of the current path P and the ones of Order

and (2) between the vertex of Order at position Position and the other vertices of Order∪P.

• Step (1) takes O(mn) since all the edges of the graph are examined when aggregating the

analysis over the all paths: the adjacency list of each vertex is examined once. Further-

more, for each of these m edges, the n positions of Order are evaluated.;

• Step (2) is also in O(mn) since aggregating the adjacency lists of the vertices of Order

leads to the m edges of the graph that are evaluated for each of the at most n paths.

The other instructions of the loop are executed in constant time. Therefore, the total time spent

in Algorithm 2 is O(mn).
Finally, we have that the whole algorithm has a worst case complexity in O(mn).

5. Computational experiments

This section describes the computational experiments that we carried out to assess the perfor-

mance of the heuristic MaCH discussed in the previous sections. The aim of this part is to test

the ability of the algorithm to obtain a good approximate solution for the CBSP, in a reasonable

amount of time.
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5.1. Experimental setup

The assessment of the heuristic is performed on three aspects:

Performance The value of CBS obtained using MaCH is compared with a reference value,

chosen as the theoretical results when available, or as the value of CBS achieved using

an existing method. For each instance of graph, random identifiers are assigned to the

vertices, and the heuristic MaCH is executed, returning the labeling and the value of CBS

achieved at the end. 30 repetitions of this process are performed to obtain 30 values of

CBS for each instance, in order to check the robustness of the results;

Robustness The value of CBS obtained using MaCH is compared for different numbers of

repetitions of the heuristic, to assess the stochasticity of the heuristic and its influence on

the results. The process described above is repeated k times, and the minimal value over

these k repetitions is retained. The algorithm is tested for k ∈ {10,20,50}: For each value

of k, 30 repetitions are performed as above, to obtain 30 values of CBS;

Execution time The average execution time of the algorithm is observed to assess the speed

of the heuristic. For each instance, the time in seconds for the 30 repetitions of MaCH is

used to obtain an average time execution for one repetition.

A comparison is performed between the median value of CBS over the 30 repetitions, noted

median CBS, with a reference value, noted ref, which depends on the type of graphs, by com-

puting the relative distance rd:

rd =
median CBS− ref

ref
(22)

The sign of rd indicates if median CBS is greater (rd > 0) or lower (rd < 0) than the reference

value, while its value gives how far median CBS is far from ref. For example, rd = 0.80 indicates

that median CBS is 1.80 times higher than the reference value while rd =−0.25 means that the

median of the value of CBS is 1.25 times lower than the reference value. Raw data of median

CBS and ref are available in Appendix B.

MaCH algorithm is implemented in Python 2.7 using the module Networkx [16]. All the

experiments were conducted on a 2.60 GHz Intel Core i7 with 8 GB of RAM.

5.2. Datasets

Eight types of graphs have been considered for the experiments: a detailed description of each

data set follows.

5.2.1. Graphs with known CBS optimal value

Path graphs A path graph is defined as a sequence of vertices such that each vertex, except

the first and the last ones, are linked with its previous and next vertices in the sequence. The

optimal value for a path Pn of size n is CBSopt(Pn) = n−1. The data set consists of all the paths

up to 448 vertices.
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Cycle graphs A cycle graph is a path whose first and last vertices are linked, forming a

circular sequence of vertices. The optimal value for a cycle Cn of size n is CBSopt(Cn) = n. The

data set consists of all the cycles up to 448 vertices.

Wheel graphs A wheel graph is defined as a cycle whose all vertices are also linked to a single

vertex called hub. The optimal value of CBS for a wheel Wn with n vertices is CBSopt(Wn) =
n+ ⌊1

4
n2⌋ as proved in [22]. The data set consists of all the cycles up to 448 vertices.

Power graphs of cycles (PGC) The kth power of a cycle graph Cn is a graph with n vertices

and edges such that u and v are linked if and only if the length of the shortest path between u

and v in Cn is equal or lower than k. The optimal value for the kth power of cycle graph Ck
n is

CBSopt(C
k
n) =

1
2
nk(k+1) as proved in [22]. The data set consists of all the kth power of cycles

up to 448 vertices, with k ∈ {2,10}.

Complete bipartite graphs (CBG) A complete bipartite graph is composed of two sets with

respectively n1 and n2 vertices: each vertex of the first set is linked with all the vertices of the

second set and there is no link between two vertices of the same set. Chen et al. [7] proved that

the optimal value of CBS for a complete bipartite graph Kn1n2
is given by:

CBSopt(Kn1n2
) =







































n1n2
2+n2

1n2

4
if n1 and n2 are even

n1n2
2+n2

1n2+n1

4
if n1 is even and n2 is odd

n1n2
2+n2

1n2+n1+n2

4
if n1 and n2 are odd

n1n2
2+n2

1n2+n2

4
if n1 is odd and n2 is even

The data set consists of all the complete bipartite graphs up to 448 vertices with three different

ratios between n1 and n2: 1, 3 and 7. Only the values of n1 and n2 eligible for the desired ratios

have been retained.

5.2.2. Graphs with upper bound of the CBS optimal value

Cartesian products The Cartesian product of two graphs G = (VG,EG), with #VG = m, and

H = (VH ,EH), with #VH = n, noted G×H, is the graph with vertex set VG×VH = {(u,v)|u ∈
VG,v∈VH}. The vertices (uG,uH) and (vG,vH) are adjacent if and only if uG = vG and (uH ,vH)∈
EH or uH = vH and (uG,vG) ∈ EG.

Jianxiu [22] proved upper bounds for the optimal value of CBS when G and H are either a

path, a cycle or a complete graph. A complete graph with n vertices, noted Kn, is the graph
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where all pairs of vertices are linked. Using the notations given above, we have:

CBSopt(Pm×Pn)≤ m(n−1)+n2(m−1), m≥ n (23)

CBSopt(Cm×Cn)≤ m(n2 +2n−2), m≥ n≥ 3 (24)

CBSopt(Km×Kn)≤
1

6
mn

(

n2 +3n
⌊m

2

⌋⌈m

2

⌉

−1
)

, m≥ n (25)

CBSopt(Pm×Cn)≤ n(m2 +m−1) (26)

CBSopt(Pm×Kn)≤
1

2
m2n

⌊n

2

⌋⌈n

2

⌉

+n(m−1) (27)

CBSopt(Cm×Kn)≤ n

(

1

2
m2

⌊n

2

⌋⌈n

2

⌉

+2m−2

)

(28)

The data set consists of the Cartesian products of graphs cited above, with m and n up to 25,

with the specific constraints on m and n if necessary.

5.2.3. Graphs with unknown CBS optimal value

Random connected graphs A random graph [13] is a graph where the edges between the

vertices are randomly drawn. The Erdös-Rényi model has been used to generate random graphs:

for each pair of vertices, an edge between the two vertices has a probability p to appear. The data

sets consists of 50 random graphs built as follows: for each value of p ∈ {0.1,0.3,0.5,0.7,0.9},
10 instances of the Erdös-Rényi model are generated with a fixed number of vertices set to 100.

Harwell-Boeing collection The Harwell-Boeing Sparse Matrix Collection Graphs [12] con-

sists of a set of standard matrices arising from various problems in engineering and scientific

fields. Graphs are derived from these matrices as follows: Let Mi j be the element of the ith row

and the jth column of a sparse matrix M of size n×n, the resulting graph has n vertices such that

there is an edge between vertices i and j if and only if Mi j 6= 0 and i 6= j. We selected 27 matrices

from this collection, from small graphs (24 vertices) to large graphs (1454 vertices), representing

a wide variety of structures. Table 12 gives the list of matrices used with the number of vertices

and the number of edges of the resulting graphs.

5.3. Performances of the heuristic MaCH

5.3.1. Comparison with known CBS optimal value

The heuristic MaCH achieves the optimal value of CBS given by the theoretical results for

all instances from the following datasets: paths, cycles, wheels, power graphs of cycles and

complete bipartite graphs.

5.3.2. Comparison with the upper bound of the CBS optimal value

The values of CBS obtained using the heuristic MaCH have been compared with the theoretical

upper bound given by Jianxiu [22]. Table 1 shows a summary of the results: each line concerns

one type of Cartesian products. The first two columns give the two graphs used in the Cartesian

17



products and the third column the number of graph in the collection, corresponding for all couple

of values m and n. The fourth column gives the relative distance averaged over all graphs of the

collection. Finally, the fifth column refers to the table of detailed results in the Appendix.

G H # graphs mean rd Table

Path Complete 400 -0.84 6

Cycle Complete 400 -0.83 7

Complete Complete 210 -0.20 8

Path Cycle 400 0.50 9

Path Path 210 0.76 10

Cycle Cycle 210 0.83 11

Table 1: Summary of the performance of the heuristic MaCH on the Cartesian products of paths,

cycles and complete graphs. The first two columns give the two graphs used in the

Cartesian products and the third column the number of graph in the collection. The

fourth column gives the averaged relative distance. The fifth column refers to the table

of detailed results in the Appendix.

The results highlight the different behaviors of the heuristic MaCH according to the topology.

When the graph is organized as a succession of linear well-structured subgraphs, the heuristic

MaCH is highly efficient: in the case of the Cartesian product of a complete graph and a path

or a cycle graph, the graph is a succession of cliques in a linear or cyclic arrangement. The

heuristic MaCH is then guided by this organization to discover the underlying structure, and

the value of CBS is consequently very low compared to the upper bound. However, when the

structure presents regularities but not along a linear arrangements, the heuristic MaCH tends to

fail to find the optimal value. This happens for the grid (Cartesian products of paths), the torus

(Cartesian products of cycles) and the cylinder (Cartesian product of a path and a cycle): the

heuristic MaCH has many consistent ways to traverse the graph. The discovery of the structure is

nevertheless performed, but without minimizing as much as possible the value of CBS. Detailed

results (Tables 8 9 10 and 11) show that when the graph is a little unbalanced, for example

when the number of vertices in G and H is different, the value of CBS achieved is better, as the

heuristic MaCH follows this imbalance.

5.3.3. Comparison with the heuristic GVNS

A comparison with the algorithm developed by Satsangi et al. [29] has been performed for the

graphs where theoretical results for the optimal value of CBS do not exist: the dataset of random

graphs and the graphs from the Harwell-Boeing collection. To assess the performance of the

heuristic MaCH, the heuristic GVNS [29] has been executed using the code provided by the

authors. It has been run using Matlab R2012b. The algorithm has been initially developed to

start using the initial identifiers of vertices as set at the generation of the graph. These identifiers,

especially for the graph from the Harwell-Boeing collection, have a topological meaning since

these matrices describe engineering problems: the value of CBS is then naturally low using

these identifiers. To check the algorithm in blind conditions, we added a randomization of the
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identifiers of the vertices before applying GVNS. For each instance, the minimum value of CBS

over the 50 repetitions, as defined in [29], has been retained. Detailed results in Appendix

show the value of CBS obtained using GVNS without and with this randomization, respectively

noted CBS w/o r and CBS w/ r. We can note that the results without randomization CBS w/o

r are consistent with results presented in the paper [29]. The reference value used to compute

the relative distance rd is the value of CBS achieved with randomization (CBS w/ r), as we

work without any prior information on the topology of the graph. Table 2a gives a summary

of the results for the graphs from the Harwell-Boeing collection and Table 2b for the dataset of

random graphs. The two first columns give the name of the graph and the number of graphs

in the collection, while the third column provides the value of mean rd averaged over all the

graphs.

Name # graphs mean rd

bcspwr 6 -0.76

dwt 9 -0.74

can 12 -0.55

(a) Harwell-Boeing collection

p # graphs mean rd

0.1 10 0.23

0.3 10 0.10

0.5 10 0.08

0.7 10 0.05

0.9 10 0.02

(b) Random graphs

Table 2: Summary of the performance of the heuristic MaCH on the graphs from the Harwell-

Boeing collection and on random graphs. The first two columns indicate the name of

the collection and the number of graphs inside. The fourth column gives the average

relative distance averaged. Detailed results are given in Tables 12 and 13.

The results of the heuristic MaCH on the graphs from the Harwell-Boeing are better than those

obtained using the heuristic GVNS. These graphs are indeed highly structured, and the heuristic

MaCH is specially designed to traverse this type of graphs. Conversely, the results on random

graphs are on average less positive compared with those obtained using the heuristic MaCH, es-

pecially when the density decreases. By definition, random graphs do not exhibit well-structured

topology: the heuristic MaCH has then no support, explaining its reduced performance.

5.4. Robustness of the heuristic MaCH

The influence of the stochasticity on the results achieved using the heuristic MaCH is studied,

by determining how better the results are when the heuristic MaCH is repeated several times.

In this experiment, the median value median CBS is compared to the minimal value obtained

over all the repetitions, set as the reference value. Tables 3a and 3b show the results of the tests

to assess the robustness of the heuristic MaCH. For each table, the first two columns give the

name and the number of graphs in the collection, while the next three columns give the relative

distance averaged over all graphs for the different values of k.

The results show that in both data sets, the heuristic MaCH is robust since the increase of

the number of repetitions does not highly improve the obtained results: for the graph from the
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Collection Relative distance

Name # graphs k = 10 k = 20 k = 50

bcspwr 5 0.09 0.07 0.06

dwt 6 0.10 0.08 0.05

can 9 0.10 0.08 0.06

(a) Harwell-Boeing collection

Collection Relative distance

p # graphs k = 10 k = 20 k = 50

0.1 10 0.00 0.00 0.00

0.3 10 0.00 0.00 0.00

0.5 10 0.00 0.00 0.00

0.7 10 0.00 0.00 0.00

0.9 10 0.00 0.00 0.00

(b) Random graphs

Table 3: Summary of the study of the robustness of the heuristic MaCH on the graphs from

the Harwell-Boeing collection and on random graphs. The first two columns indicate

the name of the collection and the number of graphs in the collection. The next three

columns report the relative distance between the median value of the minimal value of

CBS over k repetitions and the minimal value obtained over all repetitions, for three

values of k. Detailed results are given in Tables 14 and 15.

Harwell-Boeing collection, the advantage is slight, while there is no improvement in the case

of random graphs. These two examples show that even if the heuristic MaCH has a stochastic

behavior, it has only a slight influence on the results.

5.5. Execution time

The speed of the heuristic MaCH is assessed by looking at the average execution time for dif-

ferent instances of graphs. Table 4 shows the average execution time in seconds of the heuristic

MaCH for different values of n on different types of graphs.

|V | Path Cycle Wheel PGC 2 PGC 10 CBG 1 CBG 3 CBG 7

8 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

64 < 0.01 < 0.01 0.01 0.02 0.05 0.07 0.46 0.17

128 0.02 0.02 0.02 0.03 0.1 0.26 2.02 1.03

192 0.01 0.01 0.03 0.04 0.14 0.75 10.2 3.35

256 0.03 0.04 0.04 0.03 0.18 1.58 24.7 7.86

320 0.01 0.03 0.08 0.05 0.24 2.82 32.7 15.3

384 0.03 0.04 0.12 0.07 0.3 4.49 41.9 26.2

448 0.05 0.05 0.13 0.05 0.32 6.61 52.5 42.9

Table 4: Averaged execution time in seconds of the heuristic MaCH on several types of graphs

for different values of n.

When the topology of the graph is simple, as for instance for the paths, the cycles or the

wheels, the algorithm goes quite fast, running in less than one second. The computational cost

of the algorithm hugely increases when the graph is the complete bipartite graph, which can be
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explained by the peculiar structure of these graphs: Indeed, the algorithm will first of all compute

a first path containing all the vertices of the smaller subset and the same number of vertices in

the other one. All the remaining vertices will be considered as a path of length 1 (since they

are isolated when the smaller subset is removed), and the algorithm will spend a huge amount

of time to merge one by one all these vertices with the first path. This very greedy step makes

explode the computational cost when n increases for these graphs.

Detailed results in Appendix B display the average execution time for one execution of the

heuristic MaCH for the other collections. These results show that the heuristic MaCH is well-

adapted for real-world graphs from hundreds to thousands of vertices. The computational cost

prevents however the use of the heuristic MaCH when the graph has millions of vertices. It is

nevertheless, in view of our computational results, the fastest solution to minimize the cyclic

bandwidth sum on graphs.

6. Applications on complex networks

We focused in this section on the assessment of the performances of the heuristic MaCH on

complex networks. Contrary to the previous section, the experiments are guided by the motiva-

tion to discover the structure of the network. We then propose to use the value of CBS only to

assess the robustness of the heuristic, as performed previously. Then a visual validation of the

performance of the heuristic is done to check the match between topology and labeling.

6.1. Properties of complex networks

Three well-known properties of real-world complex networks are often encountered: presence

of communities, scale-free property and small-worldness.

Graph with communities (COM) One definition of a community is a group of vertices

such that the number of edges between the vertices of a community is significantly higher than

between vertices belonging to different communities. This property is for instance well-known

in social networks, where people tends to belong to groups of people. We considered the fol-

lowing stochastic block model to build a graph with three communities: each vertex is randomly

assigned to one of the three communities. For each pair of vertices, an edge exists with a prob-

ability pintra if the two vertices belong to the same community, and with a probability pinter

otherwise, with pinter < pintra. In our experiments, we set pinter = 0.01 and pintra = 0.9.

Scale-free network (SF) Scale-free property means that the distribution of degrees follows

a power law. This property has been highlighted in many real-world networks, such that social

networks. It exists several methods to generate a scale-free network, among them we used the

Barabási-Albert model [1]: from an initial connected graph, vertices are sequentially added, and

attached to one existing vertex, chosen according to a probability which depends on the degree

of the vertex. The higher the degree is, the higher the probability. The new vertices tend then to

connect to vertices with high degree.
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Small-world networks (SW) The small-worldness is a property of networks whose the av-

erage shortest path length is small with regard of the number of vertices. The generative model

used is the Watts-Strogatz model [32]: starting from a regular ring lattice of degree k, an edge

between two unlinked vertices is drawn with a probability p. We choose k = 4 and p = 0.1.

6.2. Robustness of the heuristic

As previously performed in Section 5.4, the robustness of the heuristic is tested on complex

networks with 100 vertices. Tab. 5 shows the results of the tests. For each table, the first two

columns give the name and the number of graphs in the collection, while the next three columns

give the relative distance averaged over all graphs for the different values of k.

Collection Relative distance

Name # graphs k = 10 k = 20 k = 50

SF 10 0.02 0.02 0.01

SW 10 0.00 0.00 0.00

COM 10 0.00 0.00 0.00

Table 5: Summary of the study of the robustness of the heuristic MaCH on complex networks.

The first two columns indicate the name of the collection and the number of graphs in

the collection. The next three columns report the relative distance between the median

value of the minimal value of CBS over k repetitions and the minimal value obtained

over all repetitions, for three values of k. Detailed results are given in Tab. 16.

The results confirm the good robustness of the heuristic: for complex networks with three

different properties, the value of CBS slightly improved for the scale-free network when the

number of repetitions increases, and is at a standstill for the other networks.

6.3. Visualization of networks before and after labeling

A visual validation of the consistence between labeling and topology is succinctly performed in

this section. For one instance of each type of networks, the graph is displayed using a layout

consistent with the topology. The label of each vertex is displayed using a shade of gray defined

such that two close colors denotes a short distance within the meaning of Eq.4. Figs. 5, 6 and 7

show for the three type of networks two representations of the graphs, before and after relabeling.

These illustrations show that the three types of networks highlight peculiar structures: the

scale-free network has a stringy structure, the small-world has regular structures with random

links and the structure in communities present three dense parts. The labels before relabeling

do not follow in any sense this structure. The heuristic corrects this by relabeling the vertices in

accordance with the topology.
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Figure 5: The left and right figures show the vertices of a scale-free network respectively before

and after applying the heuristic MaCH to relabel vertices. The color of the vertex

depends on the label: two close colors means that the labels are close as well.

CBS value before relabeling: 2734 ; CBS value after relabeling: 375.

Figure 6: The left and right figures show the vertices of a small-world network respectively

before and after applying the heuristic MaCH to relabel vertices. The color of the

vertex depends on the label: two close colors means that the labels are close as well.

CBS value before relabeling: 5283 ; CBS value after relabeling: 752.
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Figure 7: The left and right figures show the vertices of the network with communities respec-

tively before and after applying the heuristic MaCH to relabel vertices. The color of

the vertex depends on the label: two close colors means that the labels are close as

well.

CBS value before relabeling: 45270 ; CBS value after relabeling: 26589.

7. Extension to weighted graphs

Until now, the analysis was focused on unweighted graphs as up to our knowledge, there is

no theoretical study about the cyclic bandwidth sum problem when the graph is considered as

weighted. It is hence easier to assess the performance of the heuristic to restrain our study on

that category of graphs. It is relevant nevertheless to consider the weight on graphs, as they are

very common, especially in real-world graph analysis. The problem of CBSP can be extended

to take into account the weight of each edge in the sum of difference of labels. If we note wuv

the weight between adjacent vertices u and v, the weighted CBSP is defined by:

min
π

f (π) with f (π) = ∑
{u,v}∈E

wuvdH(π(u),π(v)) (29)

The weighted version of the heuristic is very similar to the one in the unweighted case. Two

minor modifications have to be considered: the computation of the Jaccard similarity index in

Step 1, as the neighborhood is influenced by the weights, and the incremental computation of

CBS in Step 2. The first problem can be addressed by defining a weighted similarity index

between two vertices u and v as the following:

Jw(u,v) =
N(u,v)

D(u,v)
(30)

where N(u,v) represents the weight of neighbors shared by the two vertices and is defined by:

N(u,v) = 2wu,v + ∑
x∈V
x∼u
x∼v

min(wux,wvx) (31)
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and D(u,v) represents the total weight of neighborhood of u and v, and is defined by:

D(u,v) = 2wu,v + ∑
x∈V
x∼u
x∼v

wux +wvw

2
+ ∑

x∈V
x∼u
x≁v

wux + ∑
x∈V
x≁u
x∼v

wvx (32)

We can note that if all weights are set to 1 i.e. the graph is unweighted, we have N(u,v) = 2+
♯{Common neighbors of u and v} and D = 2+ ♯{All neighbors of u and v} which corresponds

to the similarity index defined previously.

Adaptation of the incremental CBS is, for its part, trivial, since it is only necessary to multiply

each term we add and remove by the weight of the considered edge.

There is no theoretical study about the weighted cyclic bandwidth sum problem to test the

validity of the heuristic in the weighted case. Besides, it could be quite tricky to clearly char-

acterize the structure of a weighted graph. We propose here only to illustrate the good behavior

of the algorithm, by applying the heuristic on a weighted real-world complex network. The net-

work is collected from data sets of the SocioPatterns projects [15]: it represents a face-to-face

networks between students and teachers in a primary, where the people are the vertices of the

graph and the weight between the vertices measures the cumulative duration of contact for one

day.

Fig. 8 shows the network after relabeling using the same color code as in the previous section.

The layout is given by the data.

The relation between the labeling and the topology is less obvious than previously. It stays

nevertheless consistent with the positions of the vertices: the colors in the networks looks ho-

mogeneous. Each pile of vertices corresponds to a class in the school, and the vertices inside

each class have close colors. Even if guarantees about the good behavior of the heuristic are

not available, this example shows that the heuristic produces a reasonable result, in line with the

ground truth, when it deals with weighted graphs.

8. Conclusion

The topology of a network is a crucial element in the analysis of processes lying over it. If the

structure of networks can be described by models, it remains in many cases delicate to easily

obtain an ordering of the vertices. We proposed in this paper a heuristic to discover the topology

of the network without any assumptions on its structure. This heuristic has been of great inter-

est to find an approximate solution of a known labeling problem called cyclic bandwidth sum

problem, which has been used as a criterion to check the consistence between the topology and

the labeling. Many extensions of this algorithm can be considered: we considered briefly the

weighted graphs in the end of the paper. One could also deal with the case of directed graph,

using the same idea of taking into account the local and global structure of the network.
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Figure 8: Visualization of the face-to-face network in a primary school from the SocioPatterns

project [15]. Each vertex represents either a student or a teacher. The color of the

vertex depends on the label: two close colors means that the labels are close as well.

The position of the vertices is from the data and reflects the topology of the network.

The thickness of the edge denotes its weights.
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A. Incremental CBS

This appendix presents the results of the changes of the CBS value for the incremental update of

CBS introduced in Section 2.2. The proofs of the following models follow the same reasoning

as the proof of Theorem 2.1.

Theorem A.1. Edges between k and the vertices of O2

Let u ∈ O2 and ∆ = πi[u]−πi[k]. We have:

1. if ∆≤ n
2
− p then CBS(i+1)(k,u) =CBS(i)(k,u)+ p.

2. if ∆≥ n
2

then CBS(i+1)(k,u) =CBS(i)(k,u)− p.

3. if n
2
− p < ∆ < n

2
then CBS(i+1)(k,u) =CBS(i)(k,u)−2∆+(n− p)

Theorem A.2. Edges between k and the vertices of P

Let u ∈ P and ∆ = πi[k]−πi[u]. We have:

1. if (p+1)− n
2
≤ ∆≤ n

2
then CBS(i+1)(k,u) =CBS(i)(k,u)−2∆+(p+1).

2. if ∆ > n
2

then CBS(i+1)(k,u) =CBS(i)(k,u)−n+(p+1).

3. if ∆ < (p+1)− n
2

then CBS(i+1)(k,u) =CBS(i)(k,u)+n− (p+1)

Theorem A.3. Edges between the vertices of P and the vertices of O1

Let u ∈ P, v ∈ O1 and ∆ = πi[u]−πi[v]. We have:

1. if ∆≤ n
2
−1 then CBS(i+1)(u,v) =CBS(i)(u,v)+1.

2. if ∆≥ n
2

then CBS(i+1)(u,v) =CBS(i)(u,v)−1.

3. if n
2
−1 < ∆ < n

2
then CBS(i+1)(u,v) =CBS(i)(u,v)

Theorem A.4. Edges between the vertices of P and the vertices of O2

Let u ∈ P, v ∈ O2 and ∆ = πi[v]−πi[u]. We have:

1. if ∆≤ n
2

then CBS(i+1)(u,v) =CBS(i)(u,v)−1.

2. if ∆≥ n
2
+1 then CBS(i+1)(u,v) =CBS(i)(u,v)+1.

3. if n
2
< ∆ < n

2
+1 then CBS(i+1)(u,v) =CBS(i)(u,v)

B. Detailed results of computational experiments

This section presents the results for the Cartesian products of graphs described in Section 5, for

different values of m and n.
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B.1. Performance

For the following tables, the first two columns give the name of the graphs used in the Cartesian

products, the third column displays the median values of the distribution of the CBS over 30

repetitions, the fourth column the median absolute deviation of the distribution of the CBS value

over 30 repetition and the fifth column the theoretical upper bound. Finally the sixth column

displays the mean execution time in seconds for one repetition of the heuristic.

G H median CBS mad CBS ub rd time (s)

P5 K5 200 0 395 -0.49 0.01

P5 K10 1225 0 3165 -0.61 0.01

P5 K15 3700 0 10560 -0.65 0.03

P5 K20 8250 0 25080 -0.67 0.09

P10 K5 425 0 1545 -0.72 0.01

P10 K10 2550 0 12590 -0.80 0.05

P10 K15 7625 0 42135 -0.82 0.08

P10 K20 16900 0 100180 -0.83 0.15

P15 K5 650 0 3445 -0.81 0.01

P15 K10 3875 0 28265 -0.86 0.05

P15 K15 11550 0 94710 -0.88 0.13

P15 K20 25550 0 225280 -0.89 0.27

P20 K5 875 0 6095 -0.86 0.03

P20 K10 5200 0 50190 -0.90 0.08

P20 K15 15475 0 168285 -0.91 0.13

P20 K20 34200 0 400380 -0.91 0.31

Table 6: Results for the Cartesian products of a path and a complete graph

G H median CBS mad CBS ub rd time (s)

C5 K5 225 0 415 -0.46 < 0.01

C5 K10 1325 0 3205 -0.59 0.04

C5 K15 3925 0 10620 -0.63 0.05

C5 K20 8650 0 25160 -0.66 0.07

C10 K5 450 0 1590 -0.72 0.02

C10 K10 2650 0 12680 -0.79 0.02

C10 K15 7850 0 42270 -0.81 0.07

C10 K20 17300 0 100360 -0.83 0.15

C15 K5 675 0 3515 -0.81 0.01

C15 K10 3975 0 28405 -0.86 0.07

C15 K15 11775 0 94920 -0.88 0.16

C15 K20 25950 0 225560 -0.88 0.25

C20 K5 900 0 6190 -0.85 0.03

C20 K10 5300 0 50380 -0.89 0.1

C20 K15 15700 0 168570 -0.91 0.19

C20 K20 34600 0 400760 -0.91 0.24

Table 7: Results for the Cartesian products of a cycle and a complete graph
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G H median CBS mad CBS ub rd time (s)

K5 K5 547 20 474 0.15 0.01

K10 K5 2305 2 3324 -0.31 0.02

K10 K10 21349 466 14149 0.51 0.2

K15 K5 6130 7 10800 -0.43 0.06

K15 K10 33347 18 44475 -0.25 0.17

K15 K15 169974 1766 102900 0.65 1.07

K20 K5 12571 9 25399 -0.51 0.1

K20 K10 62644 31 103299 -0.39 0.23

K20 K15 187710 13 236199 -0.21 0.47

K20 K20 740458 3582 426599 0.74 3.46

Table 8: Results for the Cartesian products of complete graphs

G H median CBS mad CBS ub rd time (s)

P5 C5 158 7 145 0.09 0.01

P5 C10 481 28 290 0.66 0.05

P5 C15 920 50 435 1.11 0.06

P5 C20 1508 108 580 1.60 0.1

P10 C5 448 47 545 -0.18 0.02

P10 C10 1472 96 1090 0.35 0.12

P10 C15 3031 218 1635 0.85 0.33

P10 C20 4493 315 2180 1.06 0.65

P15 C5 739 112 1195 -0.38 0.09

P15 C10 2680 108 2390 0.12 0.35

P15 C15 5464 338 3585 0.52 0.94

P15 C20 8839 410 4780 0.85 1.95

P20 C5 1000 94 2095 -0.52 0.09

P20 C10 3751 333 4190 -0.10 0.48

P20 C15 8105 519 6285 0.29 1.28

P20 C20 13902 816 8380 0.66 3.74

Table 9: Results for the Cartesian products of a path and a cycle

G H median CBS mad CBS ub rd time (s)

P5 P5 142 13 120 0.18 < 0.01

P10 P5 426 47 265 0.61 0.03

P10 P10 1397 85 990 0.41 0.08

P15 P5 759 78 410 0.85 0.05

P15 P10 2671 305 1535 0.74 0.31

P15 P15 5199 621 3360 0.55 0.6

P20 P5 1164 77 555 1.10 0.12

P20 P10 3882 320 2080 0.87 0.41

P20 P15 7734 791 4555 0.70 1.49

P20 P20 11858 1670 7980 0.49 3.42

Table 10: Results for the Cartesian products of paths
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G H median CBS mad CBS ub rd time (s)

C5 C5 194 7 165 0.18 0.01

C10 C5 488 52 330 0.48 0.04

C10 C10 1821 68 1180 0.54 0.18

C15 C5 853 139 495 0.72 0.11

C15 C10 3376 180 1770 0.91 0.42

C15 C15 6610 357 3795 0.74 0.79

C20 C5 1086 172 660 0.65 0.15

C20 C10 4606 545 2360 0.95 0.84

C20 C15 9737 728 5060 0.92 2.06

C20 C20 16637 705 8760 0.90 3.65

Table 11: Results for the Cartesian products of cycles
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For the following tables, the first three columns give the name of the graph if the graph is from

the Harwell-Boeing collection, of the value of p is the graph is a random graph, and the number

of vertices (#V ) and the number of edges (#E) of the graph. The next three columns give the

results for the heuristic MaCH, with the median value of CBS value over 30 repetitions (median

CBS), the median absolute deviation (mad CBS) and the execution time for one execution in

seconds. (time). The next three column five the results for the heuristic GVNS, with the CBS

value obtained without randomizing initial vertex ordering (CBS w/o r), the CBS value obtained

with randomizing initial vertex ordering (CBS w/ r) and the execution time in seconds (time).

Finally the last column gives the relative distance between median CBS and CBS w/ r.

Graph MaCH GVNS

Name #V #E median CBS mad CBS time (s) CBS w/o r CBS w/ r time (s) rd

bcspwr01 39 46 106 3 0.01 212 241 104.0 -0.56

bcspwr02 49 59 164 3 0.02 350 388 114.0 -0.58

bcspwr03 118 179 850 64 0.23 2035 3585 270.0 -0.76

bcspwr04 274 669 6280 322 1.5 34135 36627 1060.0 -0.83

bcspwr05 443 590 6032 440 3.78 41194 51486 1590.0 -0.88

bcspwr06 1454 1923 38434 3621 89.0 84704 622141 8620.0 -0.94

dwt59 59 104 322 29 0.03 545 923 189.0 -0.65

dwt72 72 75 204 10 0.08 180 744 127.0 -0.73

dwt87 87 227 1118 86 0.11 2785 3339 392.0 -0.67

dwt162 162 510 3235 669 0.35 5779 15628 349.0 -0.79

dwt193 193 1650 30811 1322 0.77 46150 66408 1590.0 -0.54

dwt221 221 704 6633 642 0.7 15414 30433 972.0 -0.78

dwt419 419 1572 24779 1231 3.8 84803 141523 3510.0 -0.82

dwt592 592 2256 43185 2119 9.47 72302 292871 3700.0 -0.85

dwt992 992 7876 286660 14260 34.1 800566 1827354 23800.0 -0.84

can24 24 68 207 11 0.02 232 229 76.7 -0.10

can61 61 248 1553 0 0.02 2385 2556 291.0 -0.39

can62 62 78 247 15 0.03 389 713 125.0 -0.65

can73 73 152 1003 43 0.12 1413 1838 155.0 -0.45

can96 96 336 2512 145 0.12 3884 5535 237.0 -0.55

can144 144 576 11204 94 0.06 12055 15342 490.0 -0.27

can187 187 652 5363 775 0.57 14112 23658 1070.0 -0.77

can229 229 774 11272 1191 0.83 18362 35230 972.0 -0.68

can268 268 1407 36046 2867 1.03 44034 77680 1510.0 -0.54

can715 715 2975 87773 4651 12.7 149144 473748 4830.0 -0.81

can838 838 4586 373361 16932 15.4 547732 880386 6560.0 -0.58

can1054 1054 5571 335935 30665 33.2 562451 1359525 12800.0 -0.75

Table 12: Results for the graph from the Harwell-Boeing collection.
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Graph MaCH GVNS

p #V #E median CBS mad CBS time (s) CBS w/o r CBS w/ r time (s) rd

0.1 0 455 11236 0 0.32 9315 9355 413.0 0.20

0.1 1 524 13169 0 0.29 10600 10883 470.0 0.21

0.1 2 497 12682 0 0.31 10379 10423 376.0 0.22

0.1 3 501 13013 0 0.26 10194 10225 383.0 0.27

0.1 4 533 14011 0 0.3 10901 11191 408.0 0.25

0.1 5 488 12295 0 0.28 10105 10317 401.0 0.19

0.1 6 510 12772 0 0.28 10783 10303 520.0 0.24

0.1 7 487 12439 0 0.21 10081 10094 578.0 0.23

0.1 8 465 11654 0 0.14 9529 9401 578.0 0.24

0.1 9 517 13036 0 0.32 10703 10866 660.0 0.20

0.3 0 1500 37587 0 0.52 33331 34209 2110.0 0.10

0.3 1 1449 35784 0 0.24 32354 33373 2420.0 0.07

0.3 2 1494 38841 0 0.36 34174 34139 3120.0 0.14

0.3 3 1537 39000 0 0.16 35006 35281 3080.0 0.11

0.3 4 1541 39524 0 0.4 35246 35424 2660.0 0.12

0.3 5 1475 36670 0 0.35 33872 33975 2450.0 0.08

0.3 6 1463 36893 0 0.24 33488 32930 2390.0 0.12

0.3 7 1511 38280 0 0.25 34399 34551 2720.0 0.11

0.3 8 1482 38131 0 0.32 33813 33962 2770.0 0.12

0.3 9 1506 37388 0 0.41 34492 34374 3000.0 0.09

0.5 0 2406 60937 0 0.4 56308 55603 3880.0 0.10

0.5 1 2482 62238 0 0.32 57704 58516 6050.0 0.06

0.5 2 2446 61217 0 0.26 57293 56651 5290.0 0.08

0.5 3 2437 61659 0 0.42 57678 56448 5650.0 0.09

0.5 4 2471 62437 0 0.4 58010 57770 5200.0 0.08

0.5 5 2503 62970 0 0.7 58613 58754 4480.0 0.07

0.5 6 2500 63012 0 0.47 58612 58699 4800.0 0.07

0.5 7 2453 61796 0 0.58 57868 57506 2820.0 0.07

0.5 8 2468 61736 0 0.45 58727 58030 3590.0 0.06

0.5 9 2425 60957 0 0.42 57344 56866 3730.0 0.07

0.7 0 3468 87649 0 0.66 83380 84035 8580.0 0.04

0.7 1 3470 88077 0 0.46 82910 83215 9900.0 0.06

0.7 2 3432 86837 0 0.61 82959 82992 8300.0 0.05

0.7 3 3437 87006 0 0.66 83165 82268 7250.0 0.06

0.7 4 3450 87801 0 0.46 83799 82603 4770.0 0.06

0.7 5 3436 87372 0 0.48 83288 82933 5360.0 0.05

0.7 6 3473 88352 0 0.65 84383 83628 6700.0 0.06

0.7 7 3483 88322 0 0.46 84468 84277 8700.0 0.05

0.7 8 3443 87339 0 0.78 83285 81972 6640.0 0.07

0.7 9 3518 88014 0 0.64 84904 84211 6210.0 0.05

0.9 0 4428 111117 0 0.67 108761 109564 13200.0 0.01

0.9 1 4480 113297 0 0.67 110700 110148 12500.0 0.03

0.9 2 4459 113026 0 0.87 110413 110317 9540.0 0.02

0.9 3 4468 112714 0 0.92 110782 109953 6480.0 0.03

0.9 4 4469 113236 0 0.68 109824 109934 8890.0 0.03

0.9 5 4460 112747 0 0.67 110390 109940 11100.0 0.03

0.9 6 4433 111787 0 0.68 108919 108971 8780.0 0.03

0.9 7 4471 112802 0 0.88 110596 110817 8070.0 0.02

0.9 8 4457 112511 0 0.5 109174 109762 6560.0 0.03

0.9 9 4451 112342 0 0.66 110106 109668 5300.0 0.02

Table 13: Results for the random graphs.
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B.2. Robustness

For the following tables, the first column gives the name of the graph if the graph is from the

Harwell-Boeing collection, of the value of p is the graph is a random graph. The next two

columns give the results for the heuristic MaCH, with the median value of CBS value over 30

repetitions (median CBS) and the median absolute deviation (mad CBS) when k repetitions are

performed. The next four columns give the results for respectively k = 20 and k = 30. Finally

the last column gives the minimum value of CBS achieved for all repetitions.

Graph k = 10 k = 20 k = 50

Name median CBS mad CBS median CBS mad CBS median CBS mad CBS min CBS

bcspwr01 102 1 101 1 100 1 99

bcspwr02 157 1 156 0 155 0 154

bcspwr03 784 17 767 10 756 6 722

bcspwr04 5159 112 5083 200 4918 121 4543

bcspwr05 5290 147 5166 105 5049 106 4469

dwt59 280 4 277 4 274 3 261

dwt72 184 6 183 5 177 4 169

dwt87 1011 12 1000 8 995 5 979

dwt162 2309 127 2228 75 2155 68 2025

dwt193 28335 568 27340 478 27364 523 25693

dwt221 5078 179 5087 147 4773 92 4475

can24 192 2 192 2 190 0 190

can61 1553 0 1553 0 1553 0 1553

can62 226 5 220 5 215 4 203

can73 949 17 940 14 914 16 888

can96 2055 86 2051 91 1929 32 1832

can144 11110 0 11110 0 11110 0 11110

can187 4073 84 4031 135 3920 117 3544

can229 8923 361 8530 260 8435 298 7574

can268 30414 962 29929 969 28289 654 24826

Table 14: Results for the graph from the Harwell-Boeing collection
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Graph k = 10 k = 20 k = 50

p median CBS mad CBS median CBS mad CBS median CBS mad CBS min CBS

0.9 11236 0 11236 0 11236 0 11236

0.9 13169 0 13169 0 13169 0 13169

0.9 12682 0 12682 0 12682 0 12682

0.9 13013 0 13013 0 13013 0 13013

0.9 14011 0 14011 0 14011 0 14011

0.9 12295 0 12295 0 12295 0 12295

0.9 12772 0 12772 0 12772 0 12772

0.9 12439 0 12439 0 12439 0 12439

0.9 11654 0 11654 0 11654 0 11654

0.9 13036 0 13036 0 13036 0 13036

0.9 37587 0 37587 0 37587 0 37587

0.9 35784 0 35784 0 35784 0 35784

0.9 38841 0 38841 0 38841 0 38841

0.9 39000 0 39000 0 39000 0 39000

0.9 39524 0 39524 0 39524 0 39524

0.9 36670 0 36670 0 36670 0 36670

0.9 36893 0 36893 0 36893 0 36893

0.9 38280 0 38280 0 38280 0 38280

0.9 38131 0 38131 0 38131 0 38131

0.9 37388 0 37388 0 37388 0 37388

0.9 60937 0 60937 0 60937 0 60937

0.9 62238 0 62238 0 62238 0 62238

0.9 61217 0 61217 0 61217 0 61217

0.9 61659 0 61659 0 61659 0 61659

0.9 62437 0 62437 0 62437 0 62437

0.9 62970 0 62970 0 62970 0 62970

0.9 63012 0 63012 0 63012 0 63012

0.9 61796 0 61796 0 61796 0 61796

0.9 61736 0 61736 0 61736 0 61736

0.9 60957 0 60957 0 60957 0 60957

0.9 87649 0 87649 0 87649 0 87649

0.9 88077 0 88077 0 88077 0 88077

0.9 86837 0 86837 0 86837 0 86837

0.9 87006 0 87006 0 87006 0 87006

0.9 87801 0 87801 0 87801 0 87801

0.9 87372 0 87372 0 87372 0 87372

0.9 88352 0 88352 0 88352 0 88352

0.9 88322 0 88322 0 88322 0 88322

0.9 87339 0 87339 0 87339 0 87339

0.9 88014 0 88014 0 88014 0 88014

0.9 111117 0 111117 0 111117 0 111117

0.9 113297 0 113297 0 113297 0 113297

0.9 113026 0 113026 0 113026 0 113026

0.9 112714 0 112714 0 112714 0 112714

0.9 113236 0 113236 0 113236 0 113236

0.9 112747 0 112747 0 112747 0 112747

0.9 111787 0 111787 0 111787 0 111787

0.9 112802 0 112802 0 112802 0 112802

0.9 112511 0 112511 0 112511 0 112511

0.9 112342 0 112342 0 112342 0 112342

Table 15: Results for the random graphs.
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Graph k = 10 k = 20 k = 50

Name Repetition median CBS mad CBS median CBS mad CBS median CBS mad CBS min CBS

SF 0 373 7 373 7 373 7 358

SF 1 374 2 374 2 374 2 366

SF 2 381 3 381 3 381 3 366

SF 3 315 3 315 3 315 3 305

SF 4 391 1 391 1 391 1 388

SF 5 306 3 306 3 306 3 296

SF 6 351 1 351 1 351 1 345

SF 7 379 1 379 1 379 1 374

SF 8 401 2 401 2 401 2 394

SF 9 354 3 354 3 354 3 347

SW 0 752 0 752 0 752 0 752

SW 1 937 0 937 0 937 0 937

SW 2 662 0 662 0 662 0 662

SW 3 977 0 977 0 977 0 977

SW 4 571 0 571 0 571 0 571

SW 5 741 0 741 0 741 0 741

SW 6 742 0 742 0 742 0 742

SW 7 891 0 891 0 891 0 891

SW 8 563 0 563 0 563 0 563

SW 9 1035 0 1035 0 1035 0 1035

COM 0 26338 20 26338 20 26338 20 26292

COM 1 27352 37 27352 37 27352 37 27315

COM 2 27880 10 27880 10 27880 10 27831

COM 3 31573 0 31573 0 31573 0 31573

COM 4 31599 49 31599 49 31599 49 31515

COM 5 27067 49 27067 49 27067 49 26822

COM 6 29546 22 29546 22 29546 22 29400

COM 7 28102 136 28102 136 28102 136 27890

COM 8 27571 22 27571 22 27571 22 27549

COM 9 26943 0 26943 0 26943 0 26943

Table 16: Results for the complex networks.
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