Discovering the World with Fuzzy Logic

With 36 Figures and 13 Tables

Physica-Verlag

A Springer-Verlag Company

Table of Contents

Preface					
P	Part I. Fuzzy Logic Approaches to Human-Consistent Systems				
In	stroduction to Part I	3			
T	oward a Logic of Perceptions Based on Fuzzy Logic Lotfi A. Zadeh	4			
1	Introduction	4			
2	The Basics of the Logic of Perceptions	9			
3	Reasoning with Perceptions — Generalized Constraint Propagation	17			
4	Concluding Remarks	25			
U	ncertainty-Based Information: A Critical Review George J. Klir	29			
1	Uncertainty and Information	29			
2	Uncertainty Formalization	30			
3	Uncertainty Measurement	37			
4	Uncertainty Utilization	44			
5	Conclusions	50			
P	art II. Structure of Truth Values	_			
Iı	ntroduction to Part II	57			
T	riangular Norms — Basic Properties and Representation				
T	Pheorems Erich Peter Klement, Radko Mesiar, Endre Pap	63			
1	Triangular Norms and Conorms	63			
2	Properties of t-Norms	67			
3	Ordinal Sums	71			
4	Representation of Continuous t-Norms	74			
5	Concluding Remarks	80			
S	emantics for Fuzzy Logic Supporting Truth Functionality Jeff Paris	82			
1	Introduction	82			
2	Voting Semantics	85			
3		88			
4		88			

5	Risk, or Dialogue, Semantics	92
6	Acceptability Semantics	93
7	Measurement-Theoretic Justifications	96
8	Approximation Semantics	96
9	Implication	99
10	Conclusion	102
St	ates on Perfect MV-Algebras	105
	Antonio Di Nola, George Georgescu, Ioana Leuştean	
1	Introduction	105
2	Preliminaries on MV-Algebras	106
3	Pseudo-Subalgebras of an MV-Algebra	109
4	Completeness Properties	112
5	States on MV-Algebras	114
6	Local States on Perfect MV-Algebras	116
7	Extension Theorem	117
A	Glance at Implication and T-Conditional Functions	126
	Enric Trillas, Adolfo R. de Soto, Susana Cubillo	100
1	Introduction	
2	Preliminaries	
3	Implication Functions	
4	T-Conditional Generating Functions	
5	μ-Relative T-Conditionality: Fuzzy Logical T-States	139
6		1/19
	tions	143
P	art III. Metamathematical Aspects of Fuzzy Logic	
Ir	atroduction to Part III	151
o	n the Metamathematics of Fuzzy Logic	155
1	Introduction	155
2	Fuzzy Propositional Logics	
3	Predicate Calculi	
4	Comments and Conclusions	
F	uzzy Metalogic for Crisp Logics	175
	Giangiacomo Gerla	
1	Introduction	175
2	Abstract Fuzzy Deduction Systems	
3	Fuzzy Deduction Systems in Hilbert Style	
4	An Extension Principle for Necessities and Fuzzy Herbrand Models.	
5	Abstract Similarity Logic	

_	ntroduction to Part V 2	
P	art V. Fuzzy Quantifiers	
o	Conclusion	50
8	Conclusion	
7	Consistency of Fuzzy Theories	_
6		88 88
4 5	McNaughton Theorem in Fuzzy Logic	
ა 4	Some Properties of Fuzzy Theories	
2	Preliminaries	
1	Introduction	
,	Vilém Novák, Irina Perfilieva	71
in	Yilden North Joine Borflions	71
	ome Consequences of Herbrand and McNaughton Theorems	
4	Completeness of Fuzzy Propositional Logic	
3	Axiom System for Fuzzy Propositional Logic	
2	Semantics of Fuzzy Propositional Logic	
1	Esko Turunen Introduction and Preliminaries	
F	uzzy Propositional Logic24	43
In	troduction to Part IV	39
Pa	art IV. Formal Systems of Fuzzy Logic	_
_		_
6	Conclusions and Further Research	32
5	Logics of Incomplete Truth and Incomplete Knowledge 22	
	plete Knowledge ¹ 21	12
4	A Comparison of Logics of Incomplete Truth and Logics of Incom-	•
3	Logics of Incomplete Knowledge	
2	Logics of Incomplete Truth	
1	Stephan Lehmke Introduction	วว
D	egrees of Truth and Degrees of Validity	92
7 8	Similarity-Based Prolog	
6	Similarity Logic Associated with a Crisp Logic	
_		
Ta	ble of Contents	X

Many			
	Petr Hájek		
1	Introduction		
2	Fuzzy Quantifiers		
3	Many		
O	n T-Quantifiers and S-Quantifiers		
	Radko Mesiar, Helmut Thiele		
1	Introduction		
2	Cardinal Quantifiers		
3	T_* and S_* Quantifiers		
4	T* and S* Quantifiers		
Pa	art VI. Reasoning in Impreciseness		
In	troduction to Part VI		
\mathbf{R}	easoning on Imprecisely Defined Functions		
	Daniele Mundici		
1	Prologue		
2	The Classical $(y \mapsto x)$ Problem		
3	The General $(y \mapsto x)$ Problem		
4	Descriptions with Constraints		
5	Epilogue: Revisiting the Prologue		
6	Appendix: MV-Algebras, Partitions, Logic		
Si	imilarity-Based Reasoning		
	Fracesc Esteva, Pere Garcia, Lluis Godo		
1	Introduction		
2	Similarity and Fuzzy Sets		
3	Upper Approximation Mappings		
4	Graded Entailment Relations Induced by Upper Approximation		
	Mappings		
5	A Simple Application to Interpolative Reasoning		
6	Multi-modal Systems Based on Approximation Relations 382		
7	Conclusions		
P	ert VII. Relational Systems in Fuzzy Logic		
Introduction to Part VII			

Table of Contents XI

Generalized Solvability Behaviour for Systems of Fuzzy Equa-				
tic	ons			
_	Siegfried Gottwald			
1	Introduction			
2	Solvability of Fuzzy Relational Equations			
3	Solvability of Fuzzy Arithmetical Equations			
4	Solvability of Systems of Fuzzy Equations			
5	Solvability Degrees and Approximate Solutions			
6	Towards more Difficult Equations			
7	Concluding Remarks			
Fι	ızzy Points, Fuzzy Relations and Fuzzy Functions 431			
	Frank Klawonn			
1	Introduction			
2	GL-Monoids and Fuzzy Equality			
3	Fuzzy Points			
4	Fuzzy Functions			
5	Conclusions			
F	atroduction to Part VIII			
6	Retrospective and Perspective			
7	Illustrative Examples			
	Unified Compilation Style Labelled Deductive System for Iodal, Substructural and Fuzzy Logics			
	Introduction			
2	The CLDS Approach			
3	The E_{CLDS} System			
4	The L_{CLDS} System			
5	The F _{CLDS} System			
6	Conclusions			
A	uthor's Index			

XII	Table of Contents
Index	551