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Vortex-induced vibrations (VIVs) have been observed on a long-span suspension bridge. The
nonstationary wind in the field characterized by the time-varying mean wind speed is likely to lead
to time-varying aerodynamics of the wind-bridge system during VIVs, which is different from VIVs
induced by stationary or even steady wind in wind tunnels. In this paper, data-driven methods
are proposed to reveal the time-varying aerodynamics of the wind-bridge system during VIV events
based on field measurements on a long-span suspension bridge. First, a variant of sparse identifica-

tion of nonlinear dynamics (SINDy) algorithm is proposed to identify parsimonious, time-varying
aerodynamical systems that capture VIV events of the bridge. Thus we are able to posit new,
data-driven and interpretable models highlighting the aeroelastic interactions between the wind and
bridge. Second, a density-based clustering algorithm is applied to discovering the potential modes
of dynamics during VIV events. As a result, the time-dependent model is obtained to reveal the
evolution of the aerodynamics of the wind-bridge system over time during an entire VIV event. It is
found that the level of self-excited effects of the wind-bridge system is significantly time-varying with
the real-time wind speed and bridge motion state. The simulations of VIVs by the obtained time-
dependent models show high accuracies of the models with an averaged Normalized Mean Square
Error (NMSE) of 0.0023. The clustering of obtained models shows underlying distinct dynamical
regimes of the wind-bridge system, which are distinguished by the level of self-excited effects.

I. INTRODUCTION

Through improved sensors and emerging structural
health monitoring (SHM) system, it is now possible to
continuously assess modern bridge performance in real
time. Not only is it critical that bridges be monitored,
e.g. for structure monitoring and safety, but the rich time
series recordings provided by the sensors allow bridge en-
gineers to gain a new understanding of the aerodynamics
of prototype bridges subjected to real wind. By lever-
aging sparse regression techniques, the so-called sparse
identification of nonlinear dynamics (SINDy) method
provides a new paradigm for data-driven model discov-
ery [1]. The emergence of the SINDy algorithm is allow-
ing researchers to discover governing equations by sam-
pling either the full or partial state space of a given sys-
tem, respectively. Although nonlinear, data-driven sys-
tem identification methods such as SINDy are emerging
as viable techniques for a broad range of applications, the
methods have yet to be applied to the complex aeroelas-
tic interactions observed on bridges. In this paper, we
leverage (i) time-series measurements from the SHM sys-
tem on a long-span suspension bridge and (ii) the SINDy
model discovery architecture to build data-driven mod-
els of the wind-bridge system to reveal and interpret the
time-varying aerodynamics during vortex-induced vibra-
tion (VIV) events. We find that the SINDy architec-
ture is effective in identifying parsimonious, time-varying
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dynamical systems which result from VIV events of the
bridge. Thus we are able to posit new, data-driven and
interpretable models highlighting the time-varying aero-
dynamics of a long-span bridge during VIV events sub-
jected to time-varying wind.

The conventional study of bridge aerodynamics is es-
sentially comprised of theoretical analysis, wind tunnel
tests, and computational fluid dynamics (CFD). The
complex wind loading and fluid-structure interaction of
a long-span bridge result in a variety of aerodynamical
phenomena such as buffeting [2–5], VIV [6–9], and flut-
ter [10, 11]. Tremendous advances in theoretical analy-
sis, wind tunnel tests, and computational modeling have
made significant constributions to characterizing bridge
aerodynamics. Wind tunnel tests with cylinders, sim-
plified sectional models or scaled, full aeroelastic mod-
els are combined with theoretical analysis to discover
bridge aerodynamics [12–16], leading to simplified semi-
empirical models and a number of corresponding aero-
dynamic and aeroelastic parameter identifications [17–
26]. In addition, significant progress has been made in
computational models, resulting in a number of CFD-
based methods [27–29]. Such CFD-based models are
typically idealized versions of the bridge itself. Our pro-
posed model discovery architecture can also help aug-
ment bridge models using the data acquired in field test-
ing for discrepancy modeling [30].

In recent years, the emerging SHM systems on long-
span bridges provide an opportunity to study bridge aero-
dynamics based on the full-scale structure subjected to
real natural wind, although the field monitoring is still
usually limited by the spatial sparsity of measurements
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and type of measurements. For example, only winds and
bridge vibrations can be monitored for wind and wind ef-
fects monitoring. Wind loads and wind pressures are dif-
ficult to monitor in the field. Therefore, how to mine the
dimension-limited data and discover the potential knowl-
edge hidden in the data is the key challenge in studying
bridge aerodynamics by field measurements.

Emerging data-driven methods are allowing for the
discovery of physical and engineering principles directly
from time-series recordings. Our focus is on the SINDy
architecture [1], which has been demonstrated on a di-
verse set of problems, including spatio-temporal [31],
parametric [32], networked [33], control [34], and multi-
scale [35] systems. The underlying algorithms can also be
made robust and can accommodate parametrized func-
tional dependencies [36]. Importantly, the SINDy archi-
tecture promotes sparsity and parsimony which can be
directly related to model selection theory [33] in order to
assess the quality and robustness of the model discovered.
The SINDy method is computationally efficient and the
algorithms for all the innovations mentioned above are
available as open source code. An alternative data-driven
approach to SINDy uses symbolic regression to identify
directly the structure of a nonlinear dynamical system
from data [37–39]. This works remarkably well for dis-
covering interpretable physical models, but the symbolic
regression is computationally expensive and can be diffi-
cult to scale to large problems.

There are numerous alternative approaches to fitting
the data with models, including non-sparsity promot-
ing regressions to polynomial and/or special function
bases [40, 41]. Deep neural networks (DNNs) are
yet another approach to data-driven models, allowing
for future-state prediction of dynamical systems [42–49].
However, a key limitation of these data-driven methods,
is the lack of interpretability of the resulting model: they
are focused on reconstruction error and fitting the data
and do not provide governing equations or clearly in-
terpretable models in terms of the original variable set.
Additionally, models that are parametrized by a larger
number of terms often do poorly when considering model
selection from an information criteria viewpoint, since
there is a linear penalty in the total number of terms us-
ing either Akaike information criteria (AIC) or Bayesian
information criteria (BIC) [33].

Our aim is to use the SINDy architecture to provide in-
terpretable dynamical models that can aid in understand-
ing the time-varying aerodynamics of the wind-bridge
system during VIV events. Using field measurements
data, we discover the nonlinear aerodynamics that re-
sults from wind-bridge interaction during VIV events. In
particular, we discover a parsimonious set of governing
equations which are time-varying. These parsimonious
models are also ideal from a model selection viewpoint
of AIC and/or BIC. The discovered models allow us to
reveal the evolution of aerodynamics with time during
VIV events and identify distinct regimes of the aerody-
namics. Importantly, the sparsity patterns discovered by

SINDy allow one to clearly identify four distinct physical
regimes for different intensity VIV events, i.e. different
dominant balance nonlinear physics that come into play
depending upon the strength of the VIV. Such distinct
dynamical regimes are difficult to identify in models as
they tend to lock-in the wind speed forcing the bridge.
The manuscript is outlined as follows: In Sec. II, VIV

events are discussed in detail as they are the central con-
cern affecting the nonlinear bridge aerodynamics. Sec. III
details the bridge field monitoring and data acquisition
of the time-series measurements used for model identifi-
cation. Sec. IV develops the SINDy architecture for the
bridge data of Sec. III. In Sec. V, we discover the distinct
dynamical regimes of the bridge-wind system by cluster-
ing the discovered models. The paper is concluded in
Sec. VI.

II. VORTEX INDUCED VIBRATION (VIV) OF
LONG-SPAN BRIDGE

A long-span bridge may have intrinsically distinct
modes of aerodynamic behavior such as buffeting, VIV,
and flutter. For modern bridges, flutter must be avoided
in the design stage by increasing the critical flutter wind
speed, because of its unique divergent response which
results from aeroelastic instability. As a consequence,
only buffeting and VIV are observed in modern bridges.
Unlike buffeting, VIV involves aeroelastic effects charac-
terized by fluid-structure interactions which result in a
possible negative aerodynamic damping, thus generating
large vibration amplitudes. VIV occurs during periodic
vortex shedding within a range of shedding frequencies
near the structural natural frequency. Large-amplitude
oscillations occur in this range that appear to control
the shedding process in a fluid-structure interaction phe-
nomenon known as lock-in.
Comprehensive investigations of the mechanisms re-

sponsible for VIV have been performed. Nakamura
and Mizota [12] have observed the lock-in phenomenon
by measuring the lift force and characterizing wakes of
rectangular prisms with various aspect ratios oscillating
transversely in a uniform flow, with the short sides nor-
mal to the flow direction in a wind tunnel. It was found
that the phase angles of the frequency response compo-
nents of both the lift and near-wake velocity show abrupt
changes when approaching the critical reduced wind ve-
locity for vortex shedding. This is suggested to be a
key phenomenon involved when solving the problem of
the vortex excitation of bluff structures. Komatsu and
Kobayashi [13] characterized two types of VIV through a
series of experiments on various cross-sections (such as L-
shaped, T-shaped, H-shaped, and rectangular cylinders)
with various aspect ratios in a wind tunnel. One is a
forced small-amplitude vibration caused by von Kármán
vortex shedding in cylinders (T-cylinders) with a separa-
tion point at the trailing edge. The other is a self-excited
vibration with relatively large amplitude in cylinders (L-
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, H- and rectangular cylinders) with a separation point
at the leading edge, which occurs independently on the
von Kármán vortex street. The generating mechanism
in the latter case is described as a motion-induced vortex
at the leading edge that synchronizes with the motion of
the cylinder. The frequency of this type of vibration does
not change within a certain range of wind velocities and
coincides with the natural frequency of the cylinder, i.e.
the lock-in phenomenon. Li et al. [16] have investigated
the Reynolds number effects on the aerodynamic charac-
teristics and VIV of a twin-box girder within a range of
Reynolds number values (5.85× 103 ∼ 1.12× 105). They
find that the transition point of the separated shear layer
moves upstream, and the bubble size gradually decreases
with increasing Reynolds number values. Such investi-
gations give a strong foundation for a qualitative under-
standing of VIV and critical fluid-structure interactions.
In addition to understanding fundamental mecha-

nisms, accurate VIV modeling is quite important, espe-
cially for the design of a bridge. Rigorous mathematical-
physical modeling of VIV requires simultaneously solv-
ing the Navier-Stokes (N-S) equations and equations of
motion of the structure. However, because of the strong
nonlinearity of the N-S equations, this has proven mathe-
matically and computationally intractable [50]. As a less-
than-ideal alternative, simplified semi-empirical models
have been proposed based on wind tunnel tests. To date,
the most widely accepted empirical model is proposed by
Simiu and Scanlan [9], which is described as

m(ÿ + 2ζω1ẏ + ω2

1y) = F, (1)
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where m is mass per unit span length, ω1 is mechani-
cal circular frequency, ζ is mechanical damping ratio, y
is cross-flow displacement, F is aerodynamic force, ρ is
air density, U is wind speed and assumed to be time-
independent, D is cross-flow dimension of the section,
and K = ωD/U is the reduced frequency of vortex shed-
ding, where ω is vortex-shedding frequency that satis-
fies the Strouhal relation, ωD/U = 2πSt, outside lock-in
regime and St is the Strouhal number. The parameters
λ, Y1, Y2 and C̃L have to be determined by calibration to
experiments. Specifically, λ is a constant denoting the
nonlinear dependence of self-excited force on displace-
ment amplitude, C̃L is the stochastic lift force coefficient,
and Y1 and Y2 are aerodynamic parameters which are
functions of the reduced frequency of vortex-shedding K.

The total force in the model consists of two types of
forces: one is induced directly by vortex shedding around

the bluff body simulated by the third term with C̃L in
Eq. (2), and the other is a motion-induced lift force repre-
sented by the first two terms in Eq. (2) including aerody-
namic damping with Y1 and aerodynamic stiffness with
Y2. The direct forcing term with C̃L is found to be
small relative to the motion-induced force when large-
amplitude oscillations are present [51]. The model (1)
thus may be simplified by dropping the direct forcing
term and then be nondimensionalized to:

η′′(s) + 2ζK1η
′(s) +K2

1η(s) = mrY1
[
1− λη2(s)

]
η′(s)

+mrY2η(s), (3)

where η = y/D is the nondimensionalized cross-flow dis-
placement, mr = ρD2/m is mass ratio, K1 = ω1D/U
is the reduced natural frequency, and primes indicate
derivatives with respect to the dimensionless time, s =
Ut/D.
A solution for the bridge dynamics is then sought in

the form:

η(s) = A(s) cos [Ks− ψ(s)] . (4)

The VIV of a bridge is generally considered as quasi-
linear, i.e., the system has a small amount of nonlinear-
ity where A(s) and ψ(s) are slowly varying functions of
dimensionless time s. The solution η(s) can then be re-
placed by two separate solutions for A(s) and ψ(s), which
are given as follows:

A′(s) = −1

8
αA(s)

[
A2(s)− β2

]
, (5a)

ψ′ =
1

2K

[
mrY2 + (K2 −K2

1 )
]
, (5b)

where α = mrY1λ, β = (2/
√
λ) (1− (2ζK1)/(mrY1))

1/2
.

It should be noted that the wind speed U is assumed to
be time-independent and is thus reduced during nondi-
mensionalization. Actually, this model is proposed from
the wind tunnel test where the wind speed is stationary
or even steady during VIV. However, the real wind in
the field is usually obviously nonstationary with a time-
varying mean wind speed which may get out of VIV
wind speed range for a while during an entire VIV event
and thus lead to the change of aerodynamics with time.
Therefore, this model fails to reveal the possible time-
varying aerodynamics of the bridge subjected to time-
varying wind speed. Our aim is to find time-dependent
models (ordinary differential equations) to highlight and
reveal the time-varying aerodynamics.

III. FIELD MEASUREMENTS AND DATA
PREPROCESSING

The long-span suspension bridge investigated in this
study crosses a narrow water channel that lies between
two islands. An SHM system, including wind and vibra-
tion monitoring, was implemented in 2009 and has since
continuously recorded measurements in real-time.
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Figure 1. Field monitoring on the bridge.
Anemometers and accelerometers are installed at 1/4,
1/2 and 3/4 center span. Anemometers are installed on

both sides of the bridge section.

At each side of the bridge section, the wind speed and
direction are monitored with anemometers. In partic-
ular, Young Model 81000 three-dimensional ultrasonic
anemometers with a sampling frequency of 32 Hz are
located at 1/4, 1/2 and 3/4 center span (locations are in-
dicated by S1, S2 and S3 in Fig. 1, respectively) on both
the upstream and downstream sides. These anemometers
are installed on lighting columns at a height of 6 meters
above the bridge deck surface. The wind data used in
this study are all from the inflow anemometers, which can
measure natural winds without interference from bridge
components. Vertical vibration of the bridge deck is mon-
itored by GT02 force-balance triaxial accelerometers with
a sampling frequency of 50 Hz at S1, S2, and S3.
VIV events of this bridge captured by wind and vibra-

tion histories were identified using cluster analysis in a
previous study [52]. In the present study, we first pro-
cess the original data to identify potential key factors ac-
counting for the bridge aerodynamics during VIVs. First,
the wind data is pre-processed (see Fig. 2). Histories
of the horizontal wind speed V and wind direction θ
are obtained from the measured horizontal wind com-
ponents. The crosswind speed which is the component
perpendicular to the spanwise direction is obtained by
Ũ = V |sin(θ)|. The time-varying mean wind speed U
is determined by applying a low-pass filter to crosswind
speed Ũ .
Besides, the vibration displacements are obtained by

double integrations of acceleration in the frequency do-
main. The power spectral density (PSD) of displace-
ment is further obtained in Fig. 3. It is found that the
vibration amplitude changes slowly with time; the VIV
frequency (0.3252 Hz) is almost identical to the natu-
ral frequency of the bridge (0.32507 Hz), indicating that
ψ(s) is much smaller than Ks in Eq. (4) and does not
lead to a frequency change. We thus only need to focus
on the time-varying amplitude A(s) in Eq. (4). Accord-
ingly, the ordinary differential equation (ODE) of dis-

placement amplitude A described by Eq. (5) is the key
equation describing the VIV aerodynamics. Our aim is to
find some time-dependent ODE of A to replace Eq. (5) to
highlight the potential time-varying aerodynamics during
VIVs subjected to time-varying wind speed.
In normal situations, vehicle and wind are the main

causes of bridge vibrations in the field. Vehicle effect
on the studied bridge is almost always present except
for the closure of the bridge when the typhoon is pass-
ing. It is difficult to remove the vehicle-induced vi-
bration from the measured total effect. However, the
vehicle-induced vibration is generally much smaller than
the wind-induced vibration under strong winds and VIV
which is a kind of resonance. Fig. 4 shows the com-
parison of vehicle-induced vibrations at different times
(around 00:00, 06:00, 12:00, and 18:00) and vehicle-wind-
induced vibration under strong wind. It should be noted
that these four samples are not from the same day be-
cause it is rare that the wind speeds at these four times
on the same day are all close to zero. It can be found
that the vehicle-induced vibration is much smaller than
vehicle-wind-induced vibration under strong winds which
is smaller than VIV (see Fig. 3(b)). We thus believe that
the vehicle effects have little impact on the study of VIV.
Eq. (5) needs to be generalized from wind tunnel tests

to field measurements by carefully considering two key
points: (i) the wind condition during an entire VIV event
is nonstationary with time-varying mean wind speed for
real VIVs while stationary or even steady in wind tunnel
tests; (ii) the spatial dimension of the wind-bridge system
for field measurements, which depends on the constella-
tion of the sensors, is higher than the one-dimensional
section model typically used in wind tunnel tests. To
build our data-driven model and account for these con-
siderations, we extract the envelope of the vibration dis-
placement to obtain the time-varying displacement am-
plitude A and its time derivative Ȧ (see Fig. 5).

IV. DATA-DRIVEN MODEL DISCOVERY:
SPARSE IDENTIFICATION OF TIME-VARYING
AERODYNAMICS OF A LONG-SPAN BRIDGE

We use data-driven model discovery methods to ex-
tract improved characterizations of the nonlinear bridge
aerodynamics. Our aim is to make maximal use of the
time-series data generated by the bridge sensors.

A. The SINDy Algorithm

The primary method used for our model discov-
ery is the SINDy algorithm, which leverages advances
in machine learning and sparse regression to discover
nonlinear dynamical systems from data [1]. SINDy
solves an overdetermined linear system of equations by
sparsity-promoting regularization. The basic algorith-
mic structure of SINDy has been modified to discover
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Time-varying mean
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Figure 2. Preprocessing of wind data. S1, S2, and S3
indicate 1/4 span, midspan, and 3/4 span, respectively,
as shown in Fig. 1. (a) Horizontal instantaneous wind

speed V and wind direction θ are obtained from
original measurements of wind speed. 90◦ and 270◦

indicate the perpendicular direction to the spanwise
direction. (b) The wind speed component perpendicular

to the spanwise direction is determined. (c) The
time-varying mean wind speed is estimated by applying

a low-pass filter.

parametrically-dependent systems [32], resolve multi-
scale physics [35], infer biological networks [33], discover
spatio-temporal systems [31], and identify nonlinear sys-
tems with control [34, 53].
Consider a dynamical system of the form

ẋ = f(x) (6)

Natural frequency 0.32507 Hz        FEM

S1 S2 S3

(a)

(b)

(c)

Figure 3. Time-frequency analysis of measured
acceleration for a VIV event. (a) The power spectral

density (PSD) of the vibration displacement history. (b)
Displacement history of a VIV event. (c) The mode

shape and the natural frequency of the bridge obtained
by an accompanying numerical simulation using FEM.

where the function f(·) is unknown, but assumed to have
only a few dominant contributing terms. The SINDy al-
gorithm posits a large set of potential candidate functions
that comprise f(·), then uses a sparsity-promoting re-
gression to determine the dominant terms. The relevant
active terms in the dynamics can be solved for using an
ℓ1-regularized regression that penalizes the number of ac-
tive terms. The general framework for SINDy is shown
in Fig. 6(b).
Sensor measurements are used to collect time-series

data which are arranged in the data matrix:

X =
[
x(t1) x(t2) · · · x(tm)

]T
, (7)

where the superscript ‘T ’ denotes the matrix transpose.
The matrix X is m× n, where n is the dimension of the
state x ∈ R

n and m is the number of measurements of
the state in time. Similarly, the matrix of derivatives

Ẋ =
[
ẋ(t1) ẋ(t2) · · · ẋ(tm)

]T
, (8)

is collected or computed from the state data in X. Accu-
rate derivatives are critical for model identification, and
the total-variation regularized derivative [54] is used as a
numerically robust method to compute derivatives from
noisy data.
A library of candidate nonlinear functions is con-
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(a) (b)

(c) (d)

Figure 4. Comparison of vehicle-induced vibrations (mean wind speed is close to zero) around (a) 00:00, (b) 06:00,
(c) 12:00, (d) 18:00 and vehicle-wind-induced vibration under strong wind (mean wind speed is 10 m/s).

structed from X. This takes the general form

Θ(X) =
[
1 X X2 · · · Xd · · · sin(X) · · ·

]
, (9)

where Xd denotes the matrix containing all possible col-
umn vectors obtained from time-series of the d-th degree
polynomials in the state vector x. For example, for a sys-

tem with two states x =
[
x1, x2

]T
, the quadratic terms

are given by the matrix X2 =
[
x21(t), (x1x2)(t), x

2
2(t)

]
,

where t is a vector of times at which the state is mea-
sured. Thus, the vector x is a symbolic variable, while
the matrix X is a data matrix.
It is now possible to relate the time derivatives in Ẋ

to the candidate nonlinearities in Θ(X) by:

Ẋ = Θ(X)Ξ, (10)

where each column ξk in Ξ is a vector of coefficients
that determines which terms are active in the k-th row
in Eq. (6). Sparsity promoting algorithms are used
to ensure that most of the entries of the column ξk
are zero. SINDy promotes sparsity by sequential least-
squares thresholding, which has recently been shown to
converge under suitable conditions [55, 56].
By identifying the sparse coefficient vectors ξk, a model

of the nonlinear dynamics may be constructed:

ẋk = Θ(x)ξk, (11)

where xk is the kth element of x and Θ(x) refers to a
row vector whose elements are symbolic functions of x,
as opposed to the data matrix Θ(X).

Using sparse regression to identify active terms in the
dynamics from the candidate library Θ(X) is a convex
optimization. The alternative is to apply a separate con-
strained regression on every possible subset of nonlinear-
ities, and then to choose the model that is both accurate
and sparse. This brute-force search is intractable, and
the SINDy method makes it possible to select the sparse
model in this combinatorially large set of candidate mod-
els.

B. Time-Varying SINDy

The potential for the SINDy algorithm to discover
dominant balance physics has been demonstrated on a
diverse set of problems [33–35]. However, the dynam-
ics in these problems are often assumed to not change
with time, i.e. they generally have constant coefficients,
although the original SINDy algorithm is able to ac-
count explicitly for forcing and parameterized dynam-
ics. More recently, SINDy has been extended to deal
with parametric partial differential equations [32] by al-
lowing the coefficients ξ of each term in the library to
be time-dependent. In the present study, we propose a
time-varying SINDy to discover intrinsically and strongly
time-varying dynamics:

ẋ = ft(x) (12)

where ft changes with time but is not assumed as an ex-
plicitly time-dependent function. Then, the coefficients
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 𝐴𝑘 = 𝐴𝑘+1 − 𝐴𝑘𝛥𝑡
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Calculate derivatives

(a)
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Figure 5. Preprocessing of vibration data. (a) The
time-varying displacement amplitude A is obtained by
extracting the envelop from the displacement history y
which is obtained by integration of acceleration ÿ in the

frequency domain. (b) Vibration amplitudes are
obtained for all the three sensor locations. (c) Time

derivatives of the amplitudes are obtained.

of the terms identified with SINDy are time-varying so
that the active terms can vary dramatically with time:

ẋk = Θ(x)ξk(t). (13)

We assume t ∈ [t − w, t] with window size w over which
the coefficient vector ξk(t) is determined. The basic idea
is shown in Fig. 6. We introduce a time sampling window
w which moves across the time series data collected from
a time-varying dynamical system (see Fig.6(a)), and con-
duct a basic SINDy regression on the data in the window
at each time step (see Fig.6(b)). We can then sort the
obtained active terms and corresponding coefficients in
order to reveal the intrinsically time-varying dynamics.

C. SINDy to Model Time-varying Bridge
Aerodynamics

The time-independent model of VIV described by
Eq. (3) only accounts for a simple laboratory experi-
ment where the wind speed is stationary or even con-
stant. This would give time-independent constants for
the SINDy parameters. However, the real VIV of a proto-
type bridge in the field is typically a time-varying, nonlin-
ear dynamical system characterized by the time-varying
aerodynamic regime which results from the time variabil-
ity of natural wind. Eq. (3) thus fails in simulating real
VIV events. In the present study, we propose a time-
varying SINDy model of vibrational displacement ampli-
tude to discover the time-varying bridge aerodynamics
from measured VIV events of a long-span bridge.
The input to the time-varying SINDy algorithm con-

sists of time-series data of time-varying mean wind speeds
U, vibration displacement amplitudes of the bridge deck
A, and the time derivatives Ȧ obtained by numerical dif-
ferentiation for a measured VIV event. Here, the wind
speed Uk and displacement amplitude Ak, k = 1, 2, 3,
denote the respective measurement at the kth sensor lo-
cation along the bridge. In particular, the subscripts 1,
2 and 3 indicate the sensor locations at the bridge sec-
tions S1, S2, and S3, respectively. We learn the time-
parametrized model over a short-term window with a
duration of 50 seconds, which moves across the VIV
event timeline with a step size of 25 seconds, as shown in
Fig. 6(a). A SINDy regression is then performed for data
in each 50 second time window, as shown in Fig. 6(b).
Although the analytic model in Eq. (5) is unable to de-
scribe the time-varying aerodynamics during an entire
VIV event, it guides our construction of candidate func-
tions for the library Θ. Specifically, we expand the terms
in Eq. (5) and propose a set of polynomial products of
the time-varying mean wind speed U and the vibration
displacement amplitude A:

Ai ⊙Uj , (14)

where i = 0, 1, 2, 3, j = 0, 1, 2, 3, 4, 5 are the element-wise
power, and i and j do not both equal zero. We believe
that the higher order of vibration amplitude A in the
candidate function implies a higher level of self-excited
effects. Note that the Scanlan’s model (see Eq. (5)) has
well described the highest level of self-excited effects in-
duced by constant wind speed in the VIV wind speed
range. The time-varying wind speed in the field which
may get out of the VIV wind speed range is only possi-
ble to decrease the level of self-excited effects. We thus
believe that the highest order of vibration amplitude in
the constructed candidate functions should not be more
than that in the Scanlan’s model (see Eq. (5)), i.e., three.
In addition to the choice of polynomial terms, the

single-section model characterizing wind tunnel tests
with Eq. (5) is generalized to a higher-dimension variant
by incorporating the sensors placed at the S1, S2, and S3
along the bridge span. After computing time derivative
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data Ȧ, the proposed SINDy architecture takes the form

Ȧ(t) = Θ(A,U)Ξ(t), (15)

where the library of candidate functions is defined by

ΘT (A,U) =















A

U

A2

A⊙U

U2

A2 ⊙U
...

A3 ⊙U5















(16)

and ‘⊙’ denotes the element-wise multiplication of A and
U, e.g. A ⊙ U = [A1U1, A2U2, A3U3]

T . Note that the
dynamics of Ak at the kth location depend on sensor
information at all three locations, i.e. they depend on Al

and Ul with l = 1, 2, 3.
The Akaike information criterion with a correction for

small sample sizes (AICc) [57] is proposed to aid the
SINDy regression for model selection. Alternatives, such
as BIC and/or the description length approach used by
Small et al. [41], could also be potentially used in eval-
uating models. Trajectory reconstructions are then used
to ensure the accuracy of the model. For interpretabil-
ity and visualization, we reshape the obtained models ξk
into three sets of models ξlk, l = 1, 2, 3 corresponding to
sensors at locations S1, S2 and S3. For example, ξ1k is a
vector of coefficients of terms

[
U1, . . . , A

3
1U

5
1

]
.

SINDy results in a set of models for a VIV event af-
ter the 50 second time window moves through the entire
event, as shown in Fig. 6(c). It is found that the ac-
tive terms and coefficients vary significantly with time.
It should be noted that the candidate terms are sorted in
ascending polynomial order of vibration amplitude A and
wind speed U from bottom to top in Fig. 6(c), and that
a higher polynomial order of A implies a stronger wind-
structure interaction with a higher level of self-excited
(motion-induced) effects. In the same way, we have con-
ducted the proposed time-varying SINDy on 31 measured
VIV events in total and report the results for three VIVs
in Fig. 7. From the obtained time-varying dynamics for
all the VIV events, We can intuitively find 4 dynamical
regimes which are distinguished by the polynomial order
of vibration displacement amplitudes A. Accordingly, we
rewrite the time-varying SINDy model (see Eq. (15)) for
these discovered different dynamical regimes specifically
and respectively in Table I. The dynamics at any mo-
ment during a VIV event must be from one of or the mix
of the discovered regimes.
The effects of window size and moving step size are fur-

ther studied, as shown in Fig. 8. The time-varying SINDy
results with the three different wind sizes and moving
step sizes have shown almost identical evolution of active
terms and only different time scales. The time-varying
SINDy result in this paper is robust to the window size

and moving step size because the dynamics of the wind-
bridge system changes slowly over time. However, if the
dynamics of the studied system changes fast over time, a
self-adaptive wind size and moving step size as a function
of changing rate of the time-varying dynamics could be
a better alternative.
In the VIV wind speed range for the bridge considered

in [58], we find a strong correlation between the time
variation of aerodynamics and wind speed (see Fig. 9).
Specifically, during the first stage (0 s ∼ 600 s), the
wind speeds at S1, S2, and S3 all stay within the VIV
win speed range, resulting in full development of wind-
structure interaction with an increasing motion-induced
(self-excited) effect. This is indicated by the increasing
polynomial order of A in active terms with time. Dur-
ing the second stage (600 s ∼ 1000 s), the aerodynamic
system reaches the steady state of high wind-structure
interaction with the strong motion-induced (self-excited)
effects. Here, only the terms with the highest polyno-
mial order in A are active. During the third stage (1000
s ∼ end), wind speeds at S2 and S3 fall out of the VIV
wind speed range, resulting in a significant decrease of
motion-induced (self-excited) effects. This is indicated
by the decreasing polynomial order of A in the active
terms, i.e. the system becomes weak coupled. The ob-
tained time-dependent, nonlinear dynamics is capable of
producing a parsimonious model of the aerodynamics of
a real bridge VIV event.

D. Simulation of Measured VIVs by the Obtained
Time-dependent SINDy Models

We have obtained a specific parametric model for
each measured VIV event by the proposed time-varying
SINDy. Each VIV is thus represented by an ODE with
the corresponding time-dependent parameter Ξ(t) (see
Eq. (15)). To validate the obtained models, we simulate
all entire VIV events by numerically solving the paramet-
ric models with the corresponding time-dependent pa-
rameters Ξ(t) given the measured initial states A(t = 0)
and the measured wind histories U(t). The Normalized
Mean Square Error (NMSE) is calculated to evaluate the
prediction performance. The comparisons between the
simulated and measured states for three VIV events as
examples show a near perfect agreement with an aver-
aged NMSE of 0.0023 (see Fig. 10), indicating the high
accuracies of the obtained models.

V. DISTINGUISHED DYNAMICAL REGIMES:
CLUSTERING OF DYNAMIC MODELS

The analysis of the identified time-varying aerody-
namic response from the VIV events (see Fig. 9 for a sin-
gle VIV event) indicates the existence of several distinct
dynamical regimes, all of which contribute to revealing
the underlying, time-varying aerodynamic physics. The
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𝝃2
(normalized)

=
⋯ ⋯ ⋯

 𝐴1  𝐴2  𝐴3 𝑈1 ⋯ 𝑈15 𝐴1 𝐴1𝑈1 ⋯ 𝐴13𝑈15 𝑈2 ⋯ 𝑈25 𝐴2 𝐴2𝑈2 ⋯ 𝐴23𝑈25 𝑈3 ⋯ 𝑈35 𝐴3 𝐴3𝑈3 ⋯ 𝐴33𝑈35 𝝃1 𝝃2 𝝃3
⋯ ⋯



=

Reconstruction 𝝃1 𝝃2 𝝃3
𝝃21 𝝃22𝝃23

Reshape

𝑤 = 50 s
𝑤=50

s
T

im
e

Step Size = 25 s

Ⅲ. Time-varying dynamicsⅠ. Data

Ⅱ. SINDy Regression

(a)

(b)

(c)

Model Selection

⋯
𝚯 𝐴,𝑈 𝐴

Figure 6. Schematic of the time-varying SINDy framework, demonstrated on the aerodynamics of a VIV event on
a bridge. (a) Data is collected from the measurement system, including a history of time-varying mean wind speed

U, amplitudes A and time derivatives Ȧ. (b) A typical SINDy is conducted in a moving time window at each time
instant. The time window is swept across the entire VIV event with a size of 50 seconds and a moving step size of 25

seconds. Each component of the obtained model ξ is reshaped into a 3-column matrix, where each column
corresponds to sensor measurements at one bridge section, respectively, for a more interpretable representation of
the obtained time-varying aerodynamics. (c) A time series of the model in terms of ξ is obtained that captures the

time-varying aerodynamics of an entire VIV event.
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Dynamical Regime SINDy Model Characteristics

Regime 1 Ȧ(t) =
[

U,U2
,U3

,U4
,U5

,A
]

ΞR1(t) No self-excited effect.

Regime 2 Ȧ(t) =
[

A⊙U,A⊙U2
,A⊙U3

,A⊙U4
,A⊙U5

,A2
]

ΞR2(t) Slight self-excited effect.

Regime 3 Ȧ(t) =
[

A2
⊙U,A2

⊙U2
,A2

⊙U3
,A2

⊙U4
,A2

⊙U5
,A3

]

ΞR3(t) Medium self-excited effect.

Regime 4 Ȧ(t) =
[

A3
⊙U,A3

⊙U2
,A3

⊙U3
,A3

⊙U4
,A3

⊙U5
]

ΞR4(t) Strong self-excited effect.

Table I. The obtained SINDy models for the discovered different dynamical regimes which are distinguished by the
polynomial order of vibration displacement amplitude A in the active terms accounting for the level of self-excited
effect in the bridge-wind interaction. ΞR1(t), ΞR2(t), ΞR3(t) and ΞR4(t) are the corresponding subsets of Ξ(t),

respectively.

Time (s)

𝝃𝟐

𝝃𝟐

VIV #1

VIV #2

VIV #3

𝝃𝟐

Figure 7. Time-varying dynamics of three exemplary
VIV events discovered by time-varying SINDy.
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Figure 8. The effects of window size and moving step
size on the time-varying SINDy results for a VIV event

patterns associated with different SINDy model struc-
tures, e.g. as shown in Table. I, indicate distinct dynam-
ical regimes. This motivates the application of cluster
analysis on the model sets to automatically discover the
potential modes of aerodynamic behavior in the VIVs.
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Figure 9. Interpretation of time-varying aerodynamics
for a VIV event and the VIV wind speed range obtained
in the [52]. (a) The time series of model sets ξ2. (b)
The history of time-varying mean wind speeds U

compared with the VIV wind speed. (c) The history of
displacement y2 with the amplitude A2.

A. Clustering algorithm

In the clustering algorithm [59] applied in this study,
two quantities are calculated for each data point i: the
local density ρi and the distance δi. The local density of
data point i is defined as

ρi =
∑

j

e
−

dij
2

dc
2 (17)

where dij is the Euclidean distance between data point

i and j, dc is a cutoff distance, and e
−

dij
2

dc
2 is actually the

Gaussian Radial Distance. The quantity ρi thus mea-
sures the local density of data point i within the radial
radius dc. The distance δi is defined as the minimum
distance between the point i and any other point with a
higher density:

δi = min
j:ρj>ρi

(dij). (18)

But for the point with the highest global density, the
distance δi is defined as the maximum distance between
data point i and any other point as there is no data point
with a higher density.
By plotting all the data points with the two quantities

defined by Eq. (17) and Eq. (18), the cluster centers are
recognized fast and easily as points for which the value
of δi is anomalously large without a definite pre-specified
number of clusters.

After the identification of cluster centers, each remain-
ing point is assigned to the same cluster as its nearest
neighbor of higher density. It is noted that this algorithm
is sensitive only to the relative magnitude of ρ for differ-
ent points and the clustering results are robust against
the parameter dc for large datasets [59].

B. Cluster analysis of the obtained dynamic models

We consider the time series of the model coefficient
vector ξ2 obtained by the time-varying SINDy algorithm
for each of the measured 31 VIV events. Each model set
(consisting of ξ12 , ξ

2
2 , and ξ

3
2) is considered as a data point

in the 23-dimensional model space for this cluster anal-
ysis, where each dimension corresponds to a term in the
candidate function library. With ploting all the model
sets with the two quantities defined by Eq. (17) and
Eq. (18), seven cluster centers are identified as points for
which the value of δi is anomalously large (see Fig. 11).
And the corresponding clusters are obtained after the as-
signment of each remaining model set to the same cluster
as its nearest neighbor of higher density.
The obtained clusters along with their members are

shown in Fig.12. It can be found that the model sets in
the same cluster have common dominant terms. Specifi-
cally, the common dominant terms in C1 are U , U2, U3,
U4 and U5, indicating purely forced vibrations by wind.
C2 and C3 are dominated by the same term A, however
with different signs. Thus, these clusters represent linear
dynamics with respect to A. The most dominant term
in C4 is A2, followed by A and A3. C5 and C6 have the
same dominant term A3, which corresponds to the pa-
rameter α in Eq. (5) related to the aerodynamic parame-
ter Y1 in Eq. (2). We can thus know that the discovered
terms with A3 actually correspond to the aerodynamic
damping component of the motion induced force in the
Simiu and Scanlan’s model (See Eq. (2)). In C7 no term
is dominant, but instead the dynamics are mixed where
both wind-induced force and self-excited force account for
the vibration of the bridge. It can be found that these
clusters are distinguished by the polynomial order of the
vibration amplitude A in the dominant terms, which is
just consistent with the intuitively discovered 4 dynam-
ical regimes shown in Table I, indicating that different
dynamical regimes in VIV aerodynamics of this bridge
are distinguished by the level of self-excited effects in the
wind-structure interaction. As analyzed with Fig. 9, the
temporal dynamical regime of the bridge-wind system is
intrinsically determined by the temporal wind condition
and bridge state.

VI. CONCLUSIONS

In the present work, we have developed a data-driven
method to discover time-varying aerodynamics of a long-
span bridge during vortex induced vibration (VIV) events
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(a) (b) (c)

NMSE = 0.0011 NMSE = 0.0058 NMSE = 0.0003

Figure 10. Simulations for three entire VIV events as examples by solving the ODE with the corresponding
obtained time-dependent parameter Ξ(t) (see Eq. (15)) with only the measured initial state A(t = 0) and the

measured wind history U(t) given. (a) VIV event No. 1 with NMSE of 0.0011. (b) VIV event No. 2 with NMSE of
0.0058. (3) VIV event No. 3 with NMSE of 0.0003.

Figure 11. Decision Graph: seven cluster centers
(colored) are determined by points for which the value

of δ is anomalously large.

based on field measurements. Using the sparse identi-
fication of nonlinear dynamics (SINDy) algorithm, we
are able to identify parsimonious, time-varying dynami-
cal systems which result from VIV events of the bridge
subjected to nonstationary wind characterized by time-

varying mean wind speed. Thus we are able to posit new,
data-driven models highlighting the time-varying aero-
dynamics of the wind-bridge system during VIV events
subjected to time-varying wind, which may get out of
VIV wind speed range for a while.

The wind-bridge aerodynamical system is shown to
have distinct, time-dependent modes of behavior, thus
requiring parametric models to account for the diversity
of dynamics. The obtained time-varying SINDy mod-
els have visualized and revealed the evolution of bridge
aerodynamics over time during VIV events. The varia-
tion of aerodynamics is mainly reflected in the level of
self-excited effects, which is intrinsically determined by
temporal wind condition and bridge motion state. Clus-
tering of obtained models has discovered potential modes
of bridge aerodynamics during VIV events and clearly
show distinct dynamical regimes of the wind-bridge sys-
tem that are distinguished by the level of self-excited ef-
fects. Simulation of VIV displacement amplitude history
by the obtained time-varying SINDy model which is ac-
tually a time-dependent ODE has shown high accuracies
of the model. All the above indicate that time-varying
SINDy architecture and clustering analysis are effective
in identifying parsimonious, time-varying aerodynamical
systems which result from VIV events of the bridge.
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C1
C2 C3 C4

C5 C6 C7

𝑨 𝑨𝟐𝑨𝟑𝑨
𝑨𝟑

𝝃𝟐

Figure 12. The obtained seven clusters in the model sets. The model sets in the same cluster have common
donimant terms except Cluster 7 (C7). These clusters are distinguished by the polynomial order of the vibration

amplitude A in the dominant terms.
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