
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Xiao, Han; Rozenshtein, Polina; Gionis, Aristides
Discovering topically- and temporally-coherent events in interaction networks

Published in:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016,
Proceedings

DOI:
10.1007/978-3-319-46227-1_43

Published: 01/01/2016

Document Version
Peer reviewed version

Please cite the original version:
Xiao, H., Rozenshtein, P., & Gionis, A. (2016). Discovering topically- and temporally-coherent events in
interaction networks. In Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2016, Proceedings (pp. 690-705). (Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9852 LNAI).
https://doi.org/10.1007/978-3-319-46227-1_43

https://doi.org/10.1007/978-3-319-46227-1_43
https://doi.org/10.1007/978-3-319-46227-1_43

Discovering topically- and temporally-coherent
events in interaction networks

Han Xiao1, Polina Rozenshtein2, and Aristides Gionis2

1Helsinki Institute for Information Technology and
Department of Computer Science

University of Helsinki, Finland
hxiao@cs.helsinki.fi

2Helsinki Institute for Information Technology and
Department of Computer Science

Aalto University, Finland
firstname.lastname@aalto.fi

Abstract. With the increasing use of online communication platforms,
such as email, Twitter, and messaging applications, we are faced with a
growing amount of data that combine content (what is said), time (when),
and user (by whom) information. Discovering meaningful patterns and
understand what is happening in this data is an important challenge. We
consider the problem of mining online communication data and finding
top-k temporal events. A temporal event is a coherent topic that is dis-
cussed frequently in a relatively short time span, while its information
flow respects the underlying network.
Our method consists of two steps. We first introduce the notion of in-
teraction meta-graph, which connects associated interactions. Using this
notion, we define a temporal event to be a subset of interactions that
(i) are topically and temporally close and (ii) correspond to a tree that
captures the information flow. Finding the best temporal event leads
to a budget version of the prize-collecting Steiner-tree (PCST) prob-
lem, which we solve using three different methods: a greedy approach, a
dynamic-programming algorithm, and an adaptation to an existing ap-
proximation algorithm. Finding the top-k events maps to a maximum
set-cover problem, and thus, solved by greedy algorithm. We compare
and analyze our algorithms in both synthetic and real datasets, such as
Twitter and email communication. The results show that our methods
are able to detect meaningful temporal events.

Keywords: social-network analysis, temporal networks, event detection

1 Introduction

Event detection is a fundamental data-mining problem in many different do-
mains, such as, time series and data streams [10], point clouds and vector
spaces [4], and networks [3]. In this paper we focus on the problem of detecting

events in networks, in particular, networks that contain both content and time
information. An interaction (u, v, α, t) occurs whenever a piece of information α
is exchanged between two network entities u and v at time t. Examples of inter-
action networks include data communication networks, such as email, Twitter,
or online messaging systems.

Our goal is to summarize the network activity by finding the top-k events.
We consider an interaction network H = (N, I), where interactions I take place
among a set of network entities N . The interactions in I are directed, annotated
with content information, and time-stamped. We define an event in the interac-
tion graph H to be a subset of interactions, I ′ ⊆ I that are (i) temporally close,
(ii) topically similar, and (iii) correspond to a tree that captures the information
flow in the network. The intuition behind representing events as trees is similar
to the work by Yang [19].

We convert the interaction network H = (N, I) into a weighted interaction
meta-graph G = (I, E), that is, a graph whose vertices are the interactions I.
Two interactions i, j ∈ I are connected in G if it is possible to explain the infor-
mation flow between i and j. In particular, we consider three types of flow: broad-
cast, relay and reply. The edge weights of the interaction meta-graph G measure
the topic dissimilarity between connected interactions. Our transformation from
the interaction network to the interaction meta-graph has the interesting prop-
erty that an event in the interaction graph H corresponds to a tree T in the
interaction meta-graph G. The root of the tree T is interpreted as the source
of the event. Downstream interactions (interactions that are reachable from the
root) are due to information propagation.

Motivated by the previous discussion, we formalize the task of interaction-
network summarization as the problem of finding top-k trees in the transformed
interaction meta-graph G = (I, E). We decompose this task into two sub-
problems. First, we find a set of independent candidate events that are tem-
porally and topically coherent. Since our goal is to summarize the interaction
network we aim to find large events. We show that this problem is the budget
version of prize-collecting Steiner-tree problem in directed acyclic graphs. We
provide three algorithms, among which a greedy approach performs the best.

The second sub-problem is to select k events that maximize the overall node
coverage. This task maps to the maximum set-cover problem, and it can be
approximated using a standard greedy algorithm. To speed up further our algo-
rithm, we also propose a search strategy that avoids evaluating candidate events
at all possible tree roots, but heuristically selects the most promising ones.

Example 1. Consider the email communication network of a company, such as
the one shown in Fig. 1. The interaction network is shown in Fig. 1(a) and
the corresponding interaction meta-graph in Fig. 1(b). The edges between in-
teractions (2, 4), (1, 2), (2, 3) in Fig. 1(b) are examples of edge types broadcast,
relay, and reply, respectively. In this toy example there are two main events. (i)
progress: The ceo asks a project manager (pm) about progress on a project, and
the pm forwards the request to team members 1 (tm1) and 2 (tm2). Later, tm1
reports back to pm, who in turn reports back to ceo. The information flow of

CEO

Project manager (PM)

Team member 1 (TM1)

Team member 2 (TM2)

(1,‘progress’,Mon)

(4,‘progress’,Thu)

(6,‘suggestion’,Thu)

(2,‘progress’,Tue)

(2,‘progress’,Tue)

(3,‘progress’,Wed)

(5,‘suggestion’,Wed)

(7,‘football’,Fri)

(a)

1

2

3

4

5

6

7

relay

reply

broadcast

(b)

Fig. 1: A toy example showing the email communication network within a
company. (a) The interaction network. Each edge corresponds to one interac-
tion/email, labeled as (interaction id, message topic, timestamp). (b) The
corresponding interaction meta-graph. Topics in both graphs are depicted using
different colors. Edges in the interaction meta-graph are depicted by a different
color according to their type (relay, reply, or broadcast). Edges are solid if they
have small weight (topic dissimilarity). Otherwise, they are dashed.

this event follows the interactions 1→ 2→ 3→ 4. (ii) suggestion: Motivated by
the first event, tm2 comes up with some suggestion, which she sends to pm. The
pm finds the suggestion useful and forwards it to ceo. The information flow of
this second event is 5→ 6. A third event, football, is smaller in size, and it is not
included in the top-2 events. Note that due to time ordering of the interactions,
the interaction meta-graph G is a directed acyclic graph.

The problem considered in this paper has many applications in different
domains. In our experimental evaluation, we focus on analyzing textual data in
social media. We experiment with one email dataset (Enron) and three Twitter
datasets. We provide a comparison of the different approaches, as well as many
examples in which our methods discover meaningful events.

The contributions of this paper are summarized as follows1:

– We propose a novel formulation for the problem of discovering events that
are temporally and topically coherent in interaction networks, such as, online
communication networks.

– We present a transformation of the interaction network to an interaction
meta-graph, which captures temporal and topical association of interactions

1 All scripts are available at https://github.com/xiaohan2012/lst

as well as the information flow in the network. This transformation helps to
provide a cleaner abstraction to the event-detection problem.

– For the problem of finding high-volume events while satisfying constraints of
temporal and topical coherence we present and we evaluate three different
algorithms: a greedy approach, a dynamic-programming algorithm, and an
adaptation to an existing approximation algorithm.

– We address the problem of finding the top-k events that summarize the net-
work activity. The classic greedy algorithm is the standard way to approach
this problem, but here, to speed-up the computations, we also propose and
evaluate a search strategy that avoids construction of candidate events at all
possible tree roots, but adaptively selects the most promising ones.

– We compare and analyze our algorithms on both synthetic and real datasets,
such as Twitter and email communication. We show that our methods are
able to detect meaningful temporal events.

2 Related work

Phrase-based event detection. The problem of detecting events in social
media has attracted significant attention. Leskovec et al. [14] and Yang et al. [20]
treat events as short, distinctive phrases that propagate relatively intact through
in a network. Their work offers a graph formulation for clustering variants of
phrases based on string edit distance. Although their objective is similar to ours,
there are significant differences. First, our methods focus on interaction networks,
aiming to capture information flows in communication networks, rather than
action networks. Second, we explicitly impose topic-coherence constraints, where
the edit distance is insufficient for this goal. Third, instead of representing events
by phrases, we derive higher-level representation using topic terms.

Text summarization. Text summarization techniques attempt to select a sub-
set of sentences [6] or tweets [11] to summarize textual content. Similarly, we
select a subset of interactions under a topic-coherence constraint. However, we
also impose temporal coherence constraint, whereas they take a static view.

Statistical methods. Statistical and machine learning approaches for event
detection are gaining increasing attention in recent years. Mathioudakis et al. [15]
develop an interactive system for identifying trends (events). The system first
identifies “bursty” keywords, then clusters them based on co-occurrence and later
performs trend analysis using dimension-reduction methods. Becker et al. [1]
focus on online event identification. Their approach relies on online clustering
techniques in order to discover topically-related tweets as an event and feature-
based modeling in order to distinguish events from non-events. The difference of
this approach with our work is that we offer a graph-theoretic formulation.

Graph-based methods. Other event-detection methods are based on con-
structing a word graph [5, 16, 18]. Weng et al. [18] combines wavelet analysis
and graph-partitioning techniques to cluster the words into events. Meladianos
et al. [16] construct a word graph to represent a sequence of tweets, however,

they focus on identifying key sub-events inside the sequence. Cataldi et al. [5]
detect events by locating strongly connected components. Compared to those ap-
proaches, in this paper we explicitly model interactions, and take into account
temporal constraints and topical-coherence constraints.

3 Model

An interaction network H = (N, I) consists of a set of n nodes N and a set of
m time-stamped interactions I between pairs of nodes. I is represented as:

I = {(ui, vi, αi, ti)} , with i = 1, . . . ,m, such that ui, vi ∈ N, ti ∈ R, αi ∈ RL,

indicating that nodes ui and vi interacted at time ti. Each interaction is anno-
tated with textual content represented by αi. The representation is independent
to our main methodology. We can use various text modeling techniques such as
bag-of-words representation or latent Dirichlet allocation (LDA) [2].

For generality we consider that interactions are directed. More than one
interaction may take place between a pair of nodes, with different timestamps.
Conversely, more than one interaction may take place at the same time, between
different nodes. Online communication networks, such as email networks, are
examples of interaction networks.

Given an interaction network H we construct a directed weighted interaction
meta-graph G = (I, E, c). The vertices I in G correspond to the interactions I
in H. There is an edge from vertex i = (ui, vi, αi, ti) ∈ I to a vertex j =
(uj , vj , αj , tj) ∈ I if the following holds:

1. Interaction i takes place before interaction j (time comprehension): ti ≤ tj .
2. Information comprehension takes place in one of the following ways:

(a) interactions i and j share the same start node in N : ui = uj (broadcast);

(b) the end node of interaction i is the start node of interaction j and the
end node of j is not the start node of i: vi = uj and vj 6= ui (relay);

(c) the end node of an interaction i is the start node of an interaction j and
the end node of j is the start node of i: vi = uj and vj = ui (reply).

Note, that due time comprehension the G is a directed acyclic graph (DAG).

For the edges of the interaction meta-graph G we use weights to measure
the topical (dis)similarity between interactions. Thus, given two interactions
(ui, vi, αi, ti) and (uj , vj , αj , tj) connected by an edge in G, our edge-weighting
function c : E → R is a distance function between topic vectors αi and αj .

Finally, given a meta-graph G = (I, E, c) and a time interval [s, f] we define
the time-induced meta-graph G([s, f]) = (I([s, f]), E, c), where I([s, f]) are the
interactions that occur in [s, f]: I([s, f]) = {(u, v, α, t) ∈ I | s ≤ t ≤ f} .

4 Problem formulation

We aim at summarizing the top-k events in an interaction network. We define
an event to be a rooted subtree T of the interaction meta-graph G. An event
naturally has a source vertex (or interaction) and is spread in the network. We
are interested in events of high volume, which translates into a large number
of iterations included into the tree T . We are also interested in events with
temporally close and topically coherent interactions.

These aspects can be incorporated into the optimization cost function in dif-
ferent ways. Our primary objective is to obtain k events that have high enough
coverage to represent the whole network, and thus, we aim to maximize the num-
ber of interactions that are included in the event. To incorporate temporal and
topical coherence we set constraints on the time interval spanned by the event
tree (temporal coherence), and on total weight of its edges (topical coherence).

To simplify the problem of finding the best k events, we decompose the main
task into two subproblems: (1) finding a set of independent candidate events that
satisfy the constraints and maximize volume of interactions, and (2) selecting the
top-k events to maximize total coverage. The first problem is defined as follows.

Problem 1. Time-constrained maximum tree (TMaxTree): Given an in-
teraction meta-graph G = (I, E, c), a root vertex r ∈ I, time budget I, and
dissimilarity budget B, find a directed subtree T = (Ve, Ee) ⊆ G, rooted at r,
which satisfies the constraints∑

e∈Ee

c(e) ≤ B and (max
i∈Ve

ti − min
j∈Ve

tj) ≤ I,

while maximizing the number of vertices |Ve|.

Note that the time constraint can be omitted, if we restrict the input graph
to be induced by the time interval [tr, tr + I], where tr is the root timestamp.
By omitting the time constraint, our problem can be written as follows.

Problem 2. Maximum tree (MaxTree): Given a weighted directed acyclic
graph G([s, f]) = (I([s, f]), E, c), a root vertex r, and cost budget B, find a
subtree T = (Ve, Ee) ⊆ G([s, f]), rooted at r, that satisfies

∑
e∈Ee

c(e) ≤ B
while maximizing the number of vertices |Ve|.

We observe that MaxTree is directly related to budget version of the prize-
collecting Steiner-tree problem (PCST) [12]. However, we are dealing with a
special case of the budget PCST, as vertex prize is uniform and our input graph
is a DAG. Despite so, this special case is still NP-hard.

Proposition 1. MaxTree is NP-hard.2

2 The full version of the paper can be found at http://arxiv.org/abs/1606.09446

As the interaction network is likely to contain more than one event, we are
interested in finding k events that describe different aspects of the whole network
while covering as much activity as possible. This is captured in the following
problem formulation.

Problem 3. Maximum k trees (k-MaxTrees): We are given an interaction
meta-graph G = (I, E, c) and k ∈ N. Find a set of k vertex-disjoint trees T =
{T1, . . . Tk}, with each event tree T = (Ve, Ee) ∈ T to be a subgraph of G
rooted in some ri ∈ I, such that the total number of spanned interactions
| ∪T=(Ve,Ee)∈T Ve| is maximized.

It is easy to observe that this problem is equivalent to maximum k-coverage
problem and thus is NP-hard. To solve k-MaxTrees efficiently, we consider the
question of sampling as few root vertices as possible so that the major events
can still be captured. Real-world networks consist of millions of interactions so
it is impractical to calculate candidate event trees rooted at each vertex.

5 Algorithms

5.1 Approximating MaxTree

For finding the best tree, as defined by MaxTree, we consider three algorithms.
Recall that for MaxTree we are working with the interaction meta-graph G,
and that a root vertex is fixed.

Greedy tree growing: The greedy algorithm starts from the root and builds
the event tree by adding one vertex (interaction) at a time. At each step the
algorithm selects the edge with the minimum cost (topic dissimilarity) from the
cutset of the current tree. This choice aims to maximize the topical coherent of
the event discovered. The running time is O(|I|2).

Directed Steiner tree algorithm (DST): Recall that MaxTree corresponds
to the budget PCST problem. Our second algorithm is inspired by an approach
proposed by Johnson et al. [12], where the the budget PCST problem can be
solved by the quota PCST problem using binary search. In our case, the prizes
of all vertices are uniform, thus the quota PCST problem is equivalent to k-
minimum spanning tree. The latter problem can be solved by an algorithm for
finding directed Steiner trees (DST), such as the algorithm proposed by Charikar
et al. [7]. Thus, our second algorithm uses the DST algorithm, within a binary
search to find an event that satisfies the budget constraint. The DST algorithm
takes four arguments, G, r, X, and `, where X is a set of terminal nodes and `
is a parameter that provides a quality-of-approximation vs. efficiency trade-off.
The running time of the algorithm is O(|I|`|X|2`). In our case, X = I, thus

the running time is O(|I|3`). We use ` = 1 but still the algorithm is mainly of
theoretical interest and not practical for large datasets.

Dynamic programming algorithm (DP): The third algorithm we present
is inspired by the idea that when the input DAG is a tree, the problem can be

solved optimally using a simple dynamic programming approach. We investigate
two approaches to adapt this algorithm for general (non-tree) DAGs.

In the first approach, we slightly modify the dynamic programming algorithm
to make sure the result is a tree. Specifically, when attempting to connect the
current node with the subtrees of its children, we enforce the condition that the
subtrees cannot have any common nodes. In the second approach, we transform
the input DAG into a tree and then apply the original dynamic programming
algorithm. Specifically, we first calculate single-source shortest paths from r to
all vertices of G using Dijkstra’s algorithm and then apply the dynamic pro-
gramming algorithm. For integer edge weights and a tree input, the running
time is O(|I|B2). In our case, edge weights are real numbers, so we discretize
the weights to some decimal digits.

5.2 Approximating k-MaxTrees

Once we have computed a set of candidate event trees using any algorithm for
MaxTree, we need to select k event trees from the candidate set so that vertex
coverage is maximized. This is essentially the maximum coverage problem. A
standard greedy algorithm gives approximation ratio (1− 1

e) in time O(|I|2) [17].

5.3 Root sampling strategy

One issue with the greedy max-cover algorithm discussed above, is that all can-
didate root vertices need to be tested before selecting the one that greedily
optimizes the coverage. This is an expensive computational task. To speed up
the algorithm for finding top-k trees, we propose a simple root-sampling strategy
that ranks roots according to their potential of maximizing MaxTree.

For every sampled root r we construct a candidate tree D and evaluate event
size upper bound U(D,B) of DAG D with budget B, defined as:

U(D,B) = max
F ′∈F (D)

{
|F ′.I| such that

∑
e∈F ′.E

c(e) ≤ B

}

where F (D) is a set of all forests containing D.r (the root of DAG D).
It is easy to see the optimal tree T (D, r,B) cannot have size greater than

U(D,B), thus U(D,B) is indeed an upper bound.
Define the minimum in-edge of a vertex u as

e∗(G, u) = arg min
e′∈δ+(G,u)

c(e′),

where δ+(G, u) = {e ∈ G.E | e.i = u}. U can be computed efficiently as follows.
Consider only nodes, which belong to [tr, tr + I] time interval, where tr is the
root timestamp. Start constructing an event D by adding root r and its child
with the lightest edge. Now sort all other nodes by cost of their minimum in-edge
cost in increasing order; greedily add nodes with their minimum in-edge to the

Table 1: Network statistics on real datasets. Singleton interactions in the inter-
action meta-graph are removed.

Datasets Interaction networks Interaction meta-graphs
#nodes #edges #nodes #edges Period

Enron 1144 2106 812 21297 1998-10-30 - 2002-02-13
#beefban 11895 33584 26317 75870 2015-03-03 - 2015-03-05
#ukraine 16218 59096 46540 142746 2015-02-27 - 2015-03-03
#baltimore 38541 102139 61501 132012 2015-04-26 - 2015-04-28

event D and stop when budget constraint B is reached. U is a number of nodes
in the event D. Note that D is a forest, as we do not care about connectivity
during construction.

Our root sampling strategy first ranks all the vertices by U . Then it sequen-
tially selects vertices from the ranked list.

6 Experimental evaluation

As no datasets with ground-truth events are available to us, we validate our
approach by using synthetic datasets and by case studies. For the experiments
with synthetic datasets: (1) we plant events (considered as ground truth) within
random interaction networks; (2) we then apply our algorithm to find events in
those synthetic data; (3) we measure the precision and recall of the discovered
events with respect to ground-truth. For the case studies we apply our algorithm
on Enron and on Twitter data, then examine the events we discover, and map
them on real known historical events based on textual content and time period.
As means of exploratory data analysis, we also visualize the event trees in order
to show the information flow within the event.

6.1 Datasets and preprocessing

Synthetic data. We generate synthetic datasets in two steps: (1) we generate
ground-truth event trees; (2) we inject noise interactions. Each event is generated
independently using the model by Kumar et al. [13], which constructs a tree by
iteratively adding random edges. We sample a sender, recipients, timestamp and
a topic vector randomly for each node.

Real-world data. We use two real-world datasets: email (Enron) and Twitter.
Dataset statistics are given in Table 1. Enron: we use a preprocessed version
of the original Enron dataset [8]. Twitter: we use Twitter datasets extracted
for three hashtags, each one containing a specific hashtag. The hashtags are
#beefban, #baltimore and #ukraine. There is a interaction from a user u to a
user v, if the tweet of user v contains username of u. The Twitter datasets are
provided by Garimella et al. [9].

Preprocessing. We observe the phenomenon that the same person sends the
same (or very similar) messages multiple times, especially on Twitter. Our meth-
ods are easily misled by the sheer amount of redundant messages. To avoid this
problem, we merge similar messages from the same sender into one. We consider
two messages similar if (1) they are sent by the same user, (2) their Levenshtein
edit distance ratio is below 10%, (3) their time distance is relatively small (e.g.,
one day). In the newly-merged message, the text content, timestamps are copied
from the earliest message. Recipients are the union of all recipients.

We take different approaches for representing interaction content in Enron
and Twitter. For Enron, we train a topic model using gensim 3. We assign each
interaction a topic vector and use cosine distance to compute edge weight.

Measuring tweet similarity is an open challenge due to its short length and
conciseness. We took an ensemble approach where vector representation comes
from several models. Besides topic vectors, we use also (i) bag-of-word (BoW)
with tf-idf re-weighting and (ii) hashtags included in each tweet. For BoW and
hashtag representations, we use cosine and Jarccard distance for weight assign-
ment, respectively. Last, we sum up the three distances. For topic modeling, for
both Enron and Twitter datasets, we use 10 topics, batch size 100 and run it
for 10 iterations.

6.2 Results on synthetic datasets

We evaluate five different algorithms for finding the best event: (1) greedy
tree growing (greedy), (2) binary search using Charikar’s DSP algorithm (bi-
nary search), (3) dynamic programming without preprocessing (DP), (4) dy-
namic programming with Dijkstra preprocessing (DP+dij), and (5) random tree
growing (random) as a baseline. The random algorithm mimics the greedy , but
it selects a random edge to grow at each step. We compare quality of solutions
obtained on datasets with various noise level. We define noise level as a number
of noise interactions divided by the total number of interactions of all events. For
the DSP algorithm we set level parameter ` = 1, as we have insufficient memory
for experiments with larger values.

Different noise levels. To compare the capability of the algorithms to find one
best event, we generate a sequence of datasets with increasing noise levels and
only one event of size 20 (containing 20 nodes). We set ground-truth values of
I,B, r for parameters in MaxTree. We consider three types of measurements:
(1) precision, recall, and F1, (2) the value of objective function, and (3) the
running time. Log scale is applied in the case of running time as difference
between algorithms is of magnitudes order.

In Fig. 2 (a), we see that all our algorithms outperform the trivial random
baseline. Although greedy is a simple heuristic, its performance is among the
top. Dijkstra preprocessing for DP improves both F1 and computational time.
In the contrary, binary search consumes much time, even though it is among the
best in other measurements. Notice that random achieves high precision because

3 https://radimrehurek.com/gensim/models/ldamodel.html

(a)

(b)

Fig. 2: (a) Performance of the algorithms under noise levels from 0 to 100 with
step size 0.5. Results are averaged over 50 repetitions. (b) Performance of the
algorithms on synthetic dataset with noise level 20 and varying event size from
10 to 100 at step size 10. Measurement values are averaged from 50 rounds.

it can select a wrong edge that violates the budget constraint at the first few
steps and terminate.

Different event sizes. We also study how the algorithms perform in extract-
ing events of different sizes. The experiment setting is similar to the above,
but the noise level is fixed to 20, while the event size varies. In Fig. 2 (b),
greedy , binary search are among the best in terms of precision, recall, F1 and
set cover objective, whereas DP+dij is slightly worse due to needed edge weight
discretization. Again, preprocessing for DP improves performance. Running time
comparison is consistent with the previous case.

6.3 Parameter effects on real datasets

Effect of B. We evaluate the effect of topic dissimilarity budget B on the tree
size objective in MaxTree. We randomly sample 100 roots for each dataset. B

Fig. 3: Effect of B on the median of tree sizes for different datasets. Note that
for #ukraine and B > 25, the DP algorithm fails to complete the experiments
as it consumes excessive amount of memory.

Fig. 4: Performance of Different sampling schemes on real datasets: k = 10. For
Twitter, B = 15.0, I = 1 day. For Enron, B = 10.0, I = 4 weeks. 100 unique
roots are selected based on the sampling scheme.

varies from 0 to 100 at a step size of 5.0. For Twitter and Enron dataset, I is
set to 1 day and 4 weeks respectively. We take the median of all trees returned
by each algorithm (Fig. 3).

In Enron, we observe a converging effect on both objectives as the dataset
is relatively small, while this is not the case in all Twitter datasets. In practice,
greedy is the best performing algorithm, as it is both competitive in maximizing
the objective function and it is computationally efficient.

Sampling scheme comparison. We compare two sampling schemes in real
data setting: (1) random root sampling (random) as the baseline, (2) ranking
roots by event size upperbound (upperbound) 5. For each scheme, the set cover
objective is recorded whenever a new candidate is added. As we can see in Fig. 4,
the event size upper-bound heuristic helps to discover better solutions, especially
for #baltimore and Enron.

Event trees by different algorithms. We compare the behaviours of the
algorithms for MaxTree in real-world datasets. In Fig. 5, the trees are produced
by greedy , and DP+dij are given the same root and budget. The greedy algorithm
avoids to select heavy edges with weights larger than 0.8 due to its local search
strategy whereas DP+dij achieves larger tree by selecting a few heavy edges.
Therefore we expect greedy to produce more topically-coherent events as the
pairwise dissimilarity between nodes tend to be smaller.

(a) (b)

Fig. 5: Tree computed from #beefban given fixed root by greedy (a) and DP+dij
(b), which achieves tree size 46 and 57 respectively. Root, B = 30 and I = 1 day
are the same for both algorithms. Edges with weight ≥ 0.8 are wider. In the tree
by greedy , no edges with weight ≥ 0.8 are selected. Nodes are colored by senders
and edges are colored by its type (broadcast: blue, relay: green, reply: orange)

6.4 Case study in Enron dataset

We sample 50 nodes using upperbound scheme and applied greedy algorithm with
B = 10, I = 28 days. First, we observed that the events can be grouped into two
types: (1) California Energy Crisis,4 (2) investigation into Enron’s scandal.5 In
Fig. 6 (a), we annotated the real world events about the crisis happening during
the timespan of the dataset. We found shortly after each major blackout, there
is at least one extracted events about it. And before Enron filed bankruptcy,
Federal Energy Regulatory Commission (FERC) investigated Enron. Second, in
Fig. 7 (a), extracted events tend to occur at the peak of the volume plot.

6.5 Case study in Twitter datasets

We use the same parameters for all three datasets as they have similar size and
timespan. Events are extracted by selecting 100 roots using upperbound and
using greedy algorithm with B = 50 and I = 1 day.

#ukraine. Ukraine crisis arouses media war on Ukraine and Russia.6 We ob-
serve some of the detected events align well topically and temporally with the
actual events in Fig. 6 (b). However, topics are mixed inside some other events.
For example, topics on both #nemstsov and #freesavchenko are detected in
event 2. This is expected due to the local similarity measurement in MaxTree.

#beefban. For the controversial “beef ban” 7 law in India, results demonstrate
clear separation of opinions among events. In Fig. 8, the 1st and 2nd event

4 https://en.wikipedia.org/wiki/California electricity crisis
5 https://en.wikipedia.org/wiki/Enron scandal
6 https://en.wikipedia.org/wiki/Ukrainian crisis.
7 http://indianexpress.com/article/explained/explained-no-beef-nation/

Jun-00 Jul-00 Aug-00 Sep-00 Jan-01 Feb-01 Mar-01 Apr-01May-01 Jun-01 Jul-01 Aug-01 Sep-01 Oct-01 Nov-01 Dec-01

Blackout in Bay area
SDGE files a complaint

Blackout Blackouts affect 1.5 million customers.
Enron filed for bankruptcy

3, ees ect power market state california iso energy ferc
2, power state california energy davis electricity utilities gas billion

1, ees ect confidential power state california information energy
10, confidential information ferc enronxgate market california

(a)

Feb-25 Feb-26 Feb-27 Feb-28 Mar-1 Mar-2 Mar-3 Mar-4 Mar-5

3, #russia #crimea #mariupol
1, #antifa #naf #rada

2, #freesavchenko #nemtsov #russia

4, #russia #nemtsov #putin

Continued detention of Savchenko
Savchenko awarded of Hero of Ukraine

Savchenko ends hunger strike

Thousands march in Moscow for Boris Nemtsov murder

Murder of Boris Nemtsov

(b)

Fig. 6: Timeline with extracted events (larger red circle) and publicly recognised
events (smaller black circle and italic text) for Enron (a) and #ukraine (b). (a)
highlights events on Enron’s energy scandal and bankruptcy. Event 3, 2, 1 and 10
are displayed. The larger the circle, the larger the event size is. For each event,
top topic terms are displayed. In (b), top-4 events are displayed with the top
hashtags. Event 2 and 4 maps to the murder of Boris Nemstsov (#nemstsov),
while event 4 also contains tweets on freeing Savchenko (#freesavchenko). Event
1, 3 is about other related issues.

represents opinions opposing and supporting the law. However, we are not able
to interpret any temporal pattern in the events due to the short timespan (3
days). We also observe the following. First, certain event (Fig. 8 (a)) display
evidence of information propagation. For example, opposing opinions spreads
along the user network and affected users also express their objection. Second,
for some event (Fig. 8 (b)), dominant user exists who sent more than half of
the tweets. Third, we observe events with mixed opinions (Fig. 8 (b)). Last, our
method tends to discover events at the “peak” as the set cover objective is better
than the “bottom” (Fig. 7 (b)).

#baltimore. We discovered two types of events: (1) “emotional” events showing
anger towards the riot, (2) “descriptive” events reporting current situation.

7 Conclusions

We defined the problem of summarizing top-k events in an interaction network.
Our approach consists by first transforming the input data into an interaction

(a)

(b)

Fig. 7: Stacked area graph of interaction frequency against time. Enron (a) con-
tains top-10 events. #beefban (b) contains top-5 events.

meta-graph and then defining two optimization problems: budgeted version of
PCST and maximum set cover. We offer three algorithms for the former problem.
Our experiments show that the greedy approach is more lightweight and performs
as good as or even better than other more sophisticated counterparts.

Our work opens many interesting directions for future research. For exam-
ple, it would be interesting to formulate the problem differently, for example,
imposing edge weight constraint for each edge, instead of their weight sum. An-
other direction is to explore semi-structured interactions such as forums posts,
where nesting structures exist between post and comment. We leave scalability
experiment and better summarization techniques for future work.

Acknowledgements. This work is partially supported by the Academy of Fin-
land project “Nestor” (286211) and the EC H2020 RIA project “SoBigData”
(654024).

References

1. H. Becker, M. Naaman, and L. Gravano. Beyond trending topics: Real-world event
identification on twitter. In ICWSM, 2011.

2. D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

3. B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl. Mining coherent subgraphs
in multi-layer graphs with edge labels. In KDD, 2012.

4. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: identifying density-based
local outliers. SIGMOD record, 29(2), 2000.

5. M. Cataldi, L. Di Caro, and C. Schifanella. Emerging topic detection on twitter
based on temporal and social terms evaluation. In IWMDM, 2010.

6. A. Celikyilmaz and D. Hakkani-Tür. Discovery of topically coherent sentences for
extractive summarization. In ACL, 2011.

government is against all kinds of roasts.
why stop at beef? u should ban milk too.
those for #beefban should stop wearing leather

this is why bjp will never win in kerala

(a)

why beef and not rice? both are living organisms.
sir thanks 4 #beefban! u hv proven u can take tough step

good news: beef banned in maharashtra, 5 yrs jail

(b)

Fig. 8: Extracted events for #beefban. (a) 1st event demonstrates sign of opinion
propagation. (b) 2nd event containing mixed opinions. Nodes are colored by the
senders. The largest node is the root.

7. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Ap-
proximation algorithms for directed steiner problems. J. of Algorithms, 1999.

8. A. Fiore and J. Heer. UC Berkeley Enron email analysis, 2004.
9. K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis. Quanti-

fying controversy in social media. In WSDM, 2016.
10. V. Guralnik and J. Srivastava. Event detection from time series data. In KDD,

1999.
11. D. Inouye and J. K. Kalita. Comparing twitter summarization algorithms for

multiple post summaries. In PASSAT and SocialCom, 2011.
12. D. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem:

theory and practice. In SODA, 2000.
13. R. Kumar, M. Mahdian, and M. McGlohon. Dynamics of conversations. In KDD,

2010.
14. J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of

the news cycle. In KDD, 2009.
15. M. Mathioudakis and N. Koudas. Twittermonitor: trend detection over the twitter

stream. In SIGMOD, 2010.
16. P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and M. Vazirgiannis.

Degeneracy-based real-time sub-event detection in twitter stream. In ICWSM,
2015.

17. V. Vazirani. Approximation algorithms. Springer, 2013.
18. J. Weng. Event detection in twitter. In ICWSM, 2011.
19. J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. In

ICDM, 2010.
20. J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM,

2011.

