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Abstract 

Using an unsupervised learning procedure, a network is trained on an en

semble of images of the same two-dimensional object at different positions, 
orientations and sizes. Each half of the network "sees" one fragment of 
the object, and tries to produce as output a set of 4 parameters that have 
high mutual information with the 4 parameters output by the other half of 
the network. Given the ensemble of training patterns, the 4 parameters on 
which the two halves of the network can agree are the position, orientation, 
and size of the whole object, or some recoding of them. After training, 
the network can reject instances of other shapes by using the fact that the 
predictions made by its two halves disagree. If two competing networks 

are trained on an unlabelled mixture of images of two objects, they cluster 

the training cases on the basis of the objects' shapes, independently of the 
position, orientation, and size. 

1 INTRODUCTION 

A difficult problem for neural networks is to recognize objects independently of 
their position, orientation, or size. Models addressing this problem have generally 
achieved viewpoint-invariance either through a separate normalization procedure 
or by building translation- or rotation-in variance into the structure of the network. 
This problem becomes even more difficult if the network must learn to perform 
viewpoint-invariant recognition without any supervision signal that indicates the 
correct viewpoint, or which object is which during training. 

In this paper, we describe a model that is trained on an ensemble of instances of the 
same object, in a variety of positions, orientations and sizes, and can then recognize 

299 



300 Zemel and Hinton 

new instances of that object. We also describe an extension to the model that allows 
it to learn to recognize two different objects through unsupervised training on an 

unlabelled mixture of images of the objects. 

2 THE VIEWPOINT CONSISTENCY CONSTRAINT 

An important invariant in object recognition is the fixed spatial relationship between 
a rigid object and each of its component features. We assume that each feature has 
an intrinsic reference frame, which can be specified by its instantiation parameters, 

i.e., its position, orientation and size with respect to the image. For a rigid object 
and a particular feature of that object, there is a fixed viewpoint-independent trans
formation from the feature's reference frame to the object's. Given the instantiation 
parameters of the feature in an image, we can use the transformation to predict 
the object's instantiation parameters. The viewpoint consistency constraint (Lowe, 
1987) states that all of the features belonging to the same rigid object should make 
consistent predictions of the object's instantiation parameters. This constraint has 
been played an important role in many shape recognition systems (Roberts, 1965; 
Ballard, 1981; Hinton, 1981; Lowe, 1985). 

2.1 LEARNING THE CONSTRAINT: SUPERVISED 

A recognition system that learns this constraint is TRAFFIC (Zemel, Mozer and 
Hinton, 1989). In TRAFFIC, the constraints on the spatial relations between fea
tures of an object are directly expressed in a connectionist network. For two
dimensional shapes, an object instantiation contains 4 degrees of freedom: (x ,y)
position, orientation, and size. These parameter values, or some recoding of them, 
can be represented in a set of 4 real-valued instantiation units. The network has 
a modular structure, with units devoted to each object or object fragment to be 
recognized. In a recognition module, one layer of instantiation units represents the 
instantiation parameters of each of an object's features; these units connect to a set 
of units that represent the object's instantiation parameters as predicted by this 
feature; and these predictions are combined into a single object instantiation in an
other set of instantiation units. The set of weights connecting the instantiation units 
of the feature and its predicted instantiation for the object are meant to capture 
the fixed, linear reference frame transformation between the feature and the object. 
These weights are trained by showing various instantiations of the object, and the 
object's instantiation parameters act as the training signal for each of the features' 
predictions. Through this supervised procedure, the features of an object learn to 
predict the instantiation parameters for the object. Thus, when the features of the 
object are present in the image in the appropriate relationship, the predictions are 
consistent and this consistency can be used to decide that the object is present. Our 

simulations showed that TRAFFIC was able to learn to recognize constellations in 
realistic star-plot images. 

2.2 LEARNING THE CONSTRAINT: UNSUPERVISED 

The goal of the current work is to use an unsupervised procedure to discover and 
use the consistency constraint. 
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Figure 1: A module with two halves that try to agree on their predictions. The 
input to each half is 100 intensity values (indicated by the areas of the black circles). 
Each half has 200 Gaussian radial basis units (constrained to be the same for the 
two halves) connected to 4 output units. 

We explore this idea using a framework similar to that of TRAFFIC, in which 

different features of an object are represented in different parts of the recognition 
module, and each part generates a prediction for the object's instantiation param
eters. Figure 1 presents an example of the kind of task we would like to solve. The 
module has two halves. The rigid object in the image is very simple - it has two 
ends, each of which is composed of two Gaussian blobs of intensity. Each image 
in the training set contains one instance of the object. For now, we constrain the 
instantiation parameters of the object so that the left half of the image always con
tains one end of the object, and the right half the other end. This way, just based 
on the end of the object in the input image that it sees, each half of the module 
can always specify the position, orientation and size of the whole object. The goal 
is that, after training, for any image containing this object, the output vectors of 
both halves of the module, a and h, should both represent the same instantiation 
parameters for the object. 

In TRAFFIC, we could use the object's instantiation parameters as a training signal 
for both module halves, and the features would learn their relation to the object. 
Now, without providing a training signal, we would like the module to learn that 
what is consistent across the ensemble of images is the relation between the position, 
orientation, and size of each end of that object. The two halves of a module trained 
on a particular shape should produce consistent instantiation parameters for any 
instance of this object. If the features are related in a different way, then these 
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predictions should disagree. If the module learns to do this through an unsupervised 
procedure, it has found a viewpoint-invariant spatial relationship that characterizes 

the object, and can be used to recognize it. 

3 THE IMAX LEARNING PROCEDURE 

We describe a version of the IMAX learning procedure (Hinton and Becker, 1990) 
that allows a module to discover the 4 parameters that are consistent between 
the two halves of each image when it is presented with many different images of 
the same, rigid object in different positions, orientations and sizes. Because the 
training cases are all positive examples of the object, each half of the module tries 
to extract a vector of 4 parameters that significantly agrees with the 4 parameters 
extracted by the other half. Note that the two halves can agree on each instance 
by outputting zero on each case, but this agreement would not be significant. To 
agree significantly, each output vector must vary from image to image, but the 
two output vectors must nevertheless be the same for each image. Under suitable 
Gaussian assumptions, the significance of the agreement between the two output 

vectors can be computed by comparing the variances across training cases of the 
parameters produced by the individual halves of the module with the variances of 

the differences of these parameters. 

We assume that the two output vectors, a and h, are both noisy versions of the same 
underlying signal, the correct object instantiation parameters. If we assume that 
the noise is independent, additive, and Gaussian, the mutual information between 
the presumed underlying signal and the average of the noisy versions of that signal 
represented by a and his: 

1 I L(a+ h)1 
l(a; h) = - log -......:....--~ 

2 IL(a-h)1 
(1) 

where I I:(a+h) I is the determinant of the covariance matrix of the sum of a and 

h (see (Becker and Hinton, 1989) for details). We train a recognition module by 
setting its weights so as to maximize this objective function. By maximizing the 

determinant, we are discouraging the components of the vector a + h from being 
linearly dependent on one another, and thus assure that the network does not 
discover the same parameter four times. 

4 EXPERIMENTAL RESULTS 

Using this objective function, we have experimented with different training sets, 
input representations and network architectures. We discuss two examples here. 

In all of the experiments described, we fix the number of output units in each mod
ule to be 4, matching the underlying degrees of freedom in the object instantiation 
parameters. We are in effect telling the recognition module that there are 4 pa
rameters worth extracting from the training ensemble. For some tasks there may 
be less than 4 parameters. For example, the same learning procedure should be 
able to capture the lower-dimensional constraints between the parts of objects that 
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contain internal degrees of freedom in their shape (e.g., scissors), but we have not 
yet tested this. 

The first set of experiments uses training images like Figure 1. The task requires 
an intermediate layer between the intensity values and the instantiation parameters 

vector. Each half of the module has 200 non-adaptive, radial basis units. The 
means of the RBFs are formed by randomly sampling the space of possible images 
of an end of the object; the variances are fixed. The output units are linear. We 
maximize the objective function I by adjusting the weights from the radial basis 
units to the output units, after each full sweep through the training set. 

The optimization requires 20 sweeps of a conjugate gradient technique through 1000 
training cases. Unfortunately, it is difficult to interpret the outputs of the module, 
since it finds a nonlinear transform of the object instantiation parameters. But the 
mutual information is quite high - about 7 bits. After training, the predictions 
made by the two halves are consistent on new images We measure the consistency 
in the predictions for an image using a kind of generalized Z-score, which relates 
the difference between the predictions on a particular case (di) to the distribution 
of this difference across the training set: 

Z(di) = (di - d)t L~l (di - d) (2) 

A low Z-score indicates a consistent match. After training, the module produces 
high Z-scores on images where the same two ends are present, but are in a different 
relationship than the object on which it was trained. In general, the Z-scores 
increase smoothly with the degree of perturbation in the relationship between the 
two ends, indicating that the module has learned the constraint. 

In the second set of experiments, we remove an unrealistic constraint on our images 
- that one end of the object must always fall in one half of the image. Instead 
we assume that there is a feature-extraction process that finds instances of simple 
features in the image and passes on to the module a set of parameters describing 
the position, orientation and spatial extent of each feature. This is a reasonable 
assumption, since low-level vision is generally good at providing accurate descrip
tions of simple features that are present in an image (such as edges and corners), 
and can also specify their locations. 

In these experiments, the feature-extraction program finds instances of two features 
of the letter y - the upper u-shaped curve and the long vertical stroke with a curved 
tail. The recognition module then tries to extract consistent object instantiation 
parameters from these feature instantiation parameters by maximizing the same 
mutual information objective as before. 

There are several advantages of this second scheme. The first set of training in
stances were artificially restricted by the requirement that one end must appear in 
the left half of the image, and the other in the right half. Now since a separate 
process is analyzing the entire image to find a feature of a given type, we can use 
the entire space of possible instantiation parameters in the training set. With the 
simpler architecture, we can efficiently handle more complex images. In addition, no 
hidden layer is necessary - the mapping from the features' instantiation parameters 
to the object's instantiation parameters is linear. 

Using this scheme, only twelve sweeps through 1000 training cases are necessary 
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to optimize the objective function. The speed-up is likely due to the fact that the 
input is already parameterized in an appropriate form for the extraction of the 
instantiation parameters. This method also produces robust recognition modules, 
which reject instances where the relationships between the two input vectors does 
not match the relationship in the training set. We test this robustness by adding 
noise of varying magnitudes separately to each component of the input vectors, and 
measuring the Z-scores of the output vectors. As expected, the agreement between 
the two outputs of a module degrades smoothly with added noise. 

5 COMPETITIVE IMAX 

We are currently working on extending this idea to handle multiple shapes. The 
obvious way to do this using modules of the type described above is to force the 
modules to specialize by training each module separately on images of a particu
lar shape, and then to recognize shapes by giving the image to each module and 
seeing which module achieves the lowest Z-score. However, this requires supervised 
training in which the images are labelled by the type of object they contain. We 
are exploring an entirely unsupervised method in which images are unlabelled, and 
every image is processed by many competing modules. 

Each competing module has a responsibility for each image that depends on the 
consistency between the two output vectors of the module. The responsibilities are 
normalized so that, for each image, they sum to one. In computing the covariances 
for a particular module in Equation 1, we weight each training case by the module's 
responsibility for that case. We also compute an overall mixing proportion, 7rm , 

for each module which is just the avera.ge of its responsibilities. We extend the 
objective function I to multiple modules as follows: 

(3) 
m 

We could compute the relative responsibilities of modules by comparing their Z
scores, but this would lead to a recurrent relationship between the responsibilities 
and the weights within a module. To avoid this recurrence, we simply store the 
responsibility of each module for each training case. We optimize r by interleaving 
updates of the weights within each module, with updates of the stored responsibil
ities. This learning is a sophisticated form of competitive learning. Rather than 
clustering together input vectors that are close to one another in the input space, 
the modules cluster together input vectors that share a common spatial relationship 
between their two halves. 

In our experiments, we are using just two modules and an ensemble of images of two 
different shapes (either a g or a y in each image). We have found that the system can 
cluster the images with a little bootstrapping. We initially split the training set into 
g-images and y-images, and train up one module for several iterations on one set of 
images, and the other module on the other set. When we then use a new training set 
containing 500 images of each shape, and train both modules competitively on the 
full set, the system successfully learns to separate the images so that the modules 
each specialize in a particular shape. After the bootstrapping, one module wins on 
297 cases of one shape and 206 cases of the other shape. After further learning on 
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the unlabelled mixture of shapes, it wins on 498 cases of one shape and 0 cases of 
the other. 

By making another assumption, that the input images in the training set are tem

porally coherent, we should be able to eliminate the need for the bootstrapping 
procedure. If we assume that the training images come in runs of one class, and 
then another, as would be the case if they were a sequence of images of various 
moving objects, then for each module, we can attempt to maximize the mutual 
information between the responsibilities it assigns to consecutive training images. 
We can augment the objective function r by adding this temporal coherence term 
onto the spatial coherence term, and our network should cluster the input set into 
different shapes while simultaneously learning how to recognize them. 

Finally, we plan to extend our model to become a more general recognition system. 
Since the learning relatively is fast, we should also be able to build a hierarchy of 
modules that could learn to recognize more complex objects. 
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