
Discovering XSD Keys from XML Data

Marcelo Arenas
PUC Chile &

University of Oxford

marenas@ing.puc.cl

Jonny Daenen
Hasselt University &

Transnational University of Limburg

jonny.daenen@uhasselt.be

Frank Neven
Hasselt University &

Transnational University of Limburg

frank.neven@uhasselt.be

Martin Ugarte
PUC Chile

mgugarte@uc.cl

Jan Van den Bussche
Hasselt University &

Transnational University of Limburg

jan.vandenbussche@uhasselt.be

Stijn Vansummeren
Université Libre de Bruxelles (ULB)

stijn.vansummeren@ulb.ac.be

ABSTRACT

A great deal of research into the learning of schemas from XML
data has been conducted in recent years to enable the automatic dis-
covery of XML Schemas from XML documents when no schema,
or only a low-quality one is available. Unfortunately, and in strong
contrast to, for instance, the relational model, the automatic discov-
ery of even the simplest of XML constraints, namely XML keys,
has been left largely unexplored in this context. A major obstacle
here is the unavailability of a theory on reasoning about XML keys
in the presence of XML schemas, which is needed to validate the
quality of candidate keys. The present paper embarks on a fun-
damental study of such a theory and classifies the complexity of
several crucial properties concerning XML keys in the presence of
an XSD, like, for instance, testing for consistency, boundedness,
satisfiability, universality, and equivalence. Of independent inter-
est, novel results are obtained related to cardinality estimation of
XPath result sets. A mining algorithm is then developed within
the framework of levelwise search. The algorithm leverages known
discovery algorithms for functional dependencies in the relational
model, but incorporates the above mentioned properties to assess
and refine the quality of derived keys. An experimental study on an
extensive body of real world XML data evaluating the effectiveness
of the proposed algorithm is provided.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Management—Database

Applications, Data Mining

Keywords

XML key mining

1. INTRODUCTION
The automatic discovery of constraints from data is a fundamen-

tal problem in the scientific database literature, especially in the
context of the relational model in the form of key, foreign key, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

functional dependency discovery (e.g., [22]). Although the absence
of DTDs and XML Schema Definitions (XSDs) for XML data oc-
curring in the wild has driven a multitude of research on learning
of XML schemas [6, 7, 8, 9, 10, 18], the automatic inference of
constraints has been left largely unexplored (we refer to Section 2
for a discussion on related work). In this paper, we address the
problem of XML key mining whose core formulation asks to find
all XML keys valid in a given XML document. We use a formal-
ization of XSD keys (defined in Section 3) consistent with the def-
inition of XML keys by W3C [31]. We develop a key mining al-
gorithm within the framework of levelwise search that additionally
leverages discovery algorithms for functional dependencies in the
relational model. Our algorithm iteratively refines keys based on a
number of quality requirements; a significant portion of the paper is
devoted to a study of the complexity of testing these requirements.

EXAMPLE 1.1. Consider the key,

φ := ((order, qorder)
︸ ︷︷ ︸

context c

, .//book
︸ ︷︷ ︸

target path τ

, (.//title, .//year
︸ ︷︷ ︸

key paths p1, p2, . . .

)).

Here, the pair (order, qorder) is a context consisting of the label

‘order’ and the state or type qorder
1, which identifies the context-

nodes for which φ is to be evaluated. Further, .//book is an

XPath-expression, called target path, selecting within every context

node a set of target nodes. The key constraint now states that every

target node must be uniquely identified by the record determined

by the key paths .//title and .//year, which are XPath-

expressions as well. In other words, no two target nodes should

have both the same title and the same year. A schematic represen-

tation of the semantics of a key is given in Figure 2. So, over the

XML document t displayed in Figure 1, the key φ gives rise to the

table Rφ,t:

(order, qorder) .//book .//title .//year
(o1, b1, ‘Movie analysis’, 2012)
(o1, b2, ‘Programming intro’, 2012)
(o2, b3, ‘Programming intro’, 2012)

In Figure 1, the names of the order and book nodes from left to right

are o1, o2, and b1, b2, b3, respectively, and every order node has

type qorder. Then, φ holds in t if the functional dependency

(order, qorder),.//title,.//year → .//book

holds in Rφ,t. That is, within the same context node, ‘title’ and

’year’ uniquely determine the ‘book’ element.

1Types are defined in the accompanying schema which is not given
here but discussed in Section 3.

As a necessary condition for a key to be valid on a tree t, the
XML key specification ([31, Section 3.11.4]) requires every key
path to always select precisely one node carrying a data-value.2

The key is then said to qualify on t. As an example,

φ′ := ((bookshop, qbookshop), .//order, (.//address)),

qualifies for the particular tree given in Figure 1 (assuming every
node labeled ‘bookshop’ has type qbookshop) since every target node
o1 and o2 has precisely one address node. But, the accompanying
XSD might allow XML documents without or with multiple ad-
dresses, for which φ′ would not qualify. So, qualifying for the given
document does not necessarily entail qualifying for every document
in the schema. We say that a key is consistent w.r.t. an XSD if the
key qualifies on every document satisfying the XSD. As a quality
criterion for keys, we want our mining algorithm to only consider
consistent keys. We, therefore, start by studying the complexity
of deciding consistency and obtain the pleasantly surprising result
that consistency can be tested in polynomial time for keys disal-
lowing disjunction on the topmost level. We show that consistency
for general keys is CONP-hard and even PSPACE-hard for keys with
regular expressions (which are not allowed in W3C keys).

In addition to consistency, we want to enforce a number of ad-
ditional quality requirements on keys. In particular, we want to
disregard keys that can only select an a priori bounded number of
target nodes independent of the size of the input document. Since
the main purpose of a key is to ensure uniqueness within a collec-
tions of nodes, it does not make sense to consider bounded keys
for which the size of this collection is fixed in advance and can not
grow with the size of the document. Similarly, we want to ignore
so-called universal keys that hold in every document. We obtain
that testing for bounded and universal keys is tractable.

A final theoretical theme of this paper is that of reasoning about
keys. On the negative side, and in strong contrast to reasoning
about relational keys [3, 29] or XML keys without an accompany-
ing schema [14, 15], we show that testing satisfiability, equivalence,
and implication between keys is EXPTIME-hard. As an aside, we
show that a milder form of equivalence, namely, that of target path
equivalence, i.e., determining that two target paths always select
the same set of target nodes over documents satisfying the schema,
is tractable. The latter can be used as an instrument to reduce the
number of candidate target paths.

After laying the above theoretical groundwork, we turn to the
theme of mining. Example 1.1 indicates how XML key mining can
leverage algorithms for the discovery of functional dependencies
(FDs) over a relational database. Indeed, once a context c and a
target path τ are determined, any FD of the form c, p1, . . . , pn →
τ that holds in the relational encoding R(c,τ,P),t entails the key

(c, τ, (p1, . . . , pn)) in t where P is a sequence consisting of all
possible consistent key paths. Of course, it remains to investi-
gate how to efficiently explore the search space of candidate con-
texts c, target paths τ , and consistent key paths p. To this end,
we embrace the framework of levelwise search (as, e.g., described
by Manilla and Toivonen [24]) to enumerate target and key paths.
The components of this framework consist of a search space U , a
Boolean search predicate q, and a specialization relation � that is
a partial order on U and monotone w.r.t. q. In particular, the par-
tial order arranges objects from most general to most specific and
when q holds for an object then q should also hold for all gener-

2Actually, the specification is a bit more general in allowing the use
of attributes. For ease of presentation, we disregard attributes and
let leaf nodes carry data values. We note that all the results in the
paper can be easily extended to include attributes.

alizations of that object. The solution then consists of all objects
u ∈ U for which q(u) holds, enumerated according to the special-
ization relation while avoiding testing objects for which q can not
hold anymore given already obtained information.

We define a target path miner within the above framework as fol-
lows: the search predicate holds for a target path when the number
of selected target nodes exceeds a predetermined threshold value;
and, the partial order � is determined by containment among target
paths. To streamline computation, we utilize a syntactic one-step
specialization relation ≺1 that we prove to be optimal w.r.t. the
considered partial order. Furthermore, the search predicate can be
solely evaluated on a much smaller prefix tree representation of the
input document and, therefore, does not need access to the origi-
nal document. In addition, we define a one-key path miner which
searches for all consistent single key paths p (w.r.t the already de-
termined context and target path). Specifically, the search predicate
holds for a key path p when p selects at most one key node (w.r.t.
the given context and target path). Even though consistency re-
quires the selection of exactly one key node, this mismatch can be
solved by confining the search space to all key paths that appear as
paths from target nodes in the prefix tree. Even though the search
predicate can not always be computed on the much smaller prefix
tree without access to the original document, we provide sufficient
conditions for when this is the case. The partial order is defined as
the set inclusion relation defined on key paths for which the one-
step specialization relation is the inverse of ≺1. Once all consistent
one-key paths are determined, as explained above, a functional de-
pendency miner can be used to determine the corresponding XML
key (e.g., [11, 21, 23])).

Contributions. We make the following contributions:
(i) We characterize the complexity of the consistency problem for
XML keys w.r.t. an XSD for different classes of target and key
paths (Theorem 4.4). As a basic building block, and of indepen-
dent interest, we study the complexity of cardinality estimation of
those XPath-fragments in the presence of a schema (an overview is
given in Table 1). In addition, we characterize the complexity of
boundedness, satisfiability, universality, and implication of XML
keys (Theorem 4.5) as well as equivalence of target paths (Theo-
rem 4.6).

(ii) We develop a novel key mining algorithm leveraging on al-
gorithms for the discovery of relational functional dependencies
and on the framework of levelwise search by employing an opti-
mal one-step specialization relation for which the search relation
can be computed, if not completely, then at least partly on a prefix
tree representation of the document. (Section 5)

(iii) We experimentally assess the effectiveness of the proposed al-
gorithm on an extensive body of real world XML data.

Outline. In Section 2, we discuss related work. In Section 3, we
introduce the necessary definitions. In Section 4, we investigate the
complexity of decision problems concerning keys in the presence of
XSDs. In Section 5, we discuss the XML key mining algorithm. In
Section 6, we experimentally validate our algorithm. We conclude
in Section 7.

2. RELATED WORK
XML Keys. One of the first definitions of keys for XML was in-
troduced by Buneman et al. [14, 15]. These keys are of the form
(Q, (Q′, P)) where Q is the context-path, Q′ is the target path and
P is a set of key paths. Although the W3C definition of keys was
largely inspired by this work, there are some important differences.
First, Buneman et al.’s keys allow more expressive target and key

bookshop

order

items

book

quantity

150

price

5.63

year

2012

title

Programming intro

address

Sin City

person

Mr. White

id

0004

order

items

book

quantity

74

price

6.72

year

2012

title

Programming intro

book

quantity

63

price

5.63

year

2012

title

Movie analysis

address

Sun City

person

Mr. Black

id

0001

Figure 1: An example XML tree (order and book nodes are named o1, o2 and b1, b2, b3 from left to right).

paths by allowing several occurrences of the descendant operator.
Context paths, however are less expressive since W3C keys allow
the context to be defined by an arbitrary DFA, while Buneman et
al.’s keys limit themselves to path expressions. Furthermore, Bune-
man et al.’s key paths are allowed to select several nodes whereas
W3C keys paths are restricted to select precisely one node. We
stress that in this paper we follow the W3C-specification for the
definition of keys. As is the case for the relational model, much is
known about the complexity of key inference for Buneman et al.’s
keys [14, 15, 20]. Unfortunately, these results do not carry over to
W3C keys as the latter are defined w.r.t. an XML Schema but the
former are not.

Decision problems in the presence of a schema. A number of
consistency problems of XML keys w.r.t. a DTD have been consid-
ered by Fan and Libkin [17]. They have shown, for instance, that
key implication in the presence of a DTD is decidable in polyno-
mial time. The keys that they consider, however, are much simpler
than the W3C keys considered in the present paper. Basically, a key
in their setting is determined by an element name and a number of
attributes. Their model is subsumed by ours since each such key
can be defined by an XML key and every DTD can be represented
by an XSD. We point out that [17] contains many more results on
the interplay between keys, foreign keys, inclusion dependencies
and DTDs. Arenas et al. [4] discuss satisfiability3 of XML keys
w.r.t. a DTD. The result most relevant to the present paper is NP-
hardness of satisfiability w.r.t. a non-recursive DTD and for keys
with only one key path. We show that the problem becomes hard
for EXPTIME in the presence of XSDs.

XML constraint mining. The automatic discovery of Buneman
et al.’s keys from XML data has previously been considered by a
number of researchers. Grahne and Zhu [19] considered mining of
approximate keys and proposed an Apriori style algorithm which
uses the inference rules of [15] for optimization. Necaský and
Mlýnková [28] ignore the XML data but present an approach to
infer keys and foreign keys from element/element joins in XQuery
logs. Fajt et al [16] consider the inference of keys and foreign keys
building further on algorithms for the relational model. The above
algorithms can not be used for W3C keys since they do not take
the presence of XSDs into account and keys are not required to be
consistent. Yu and Jagadish [32] consider discovery of functional
dependencies (FDs) for XML. Similar to Buneman et al.’s keys, the
considered FDs have paths that can select multiple data elements,
and contexts are defined w.r.t. a selector expression as opposed to
w.r.t. a DFA. For these reasons, W3C keys can not be encoded as
a special case of FDs. Barbosa and Mendelzon [5] proposed algo-
rithms to find ID and IDREFs attributes in XML documents. They
show that the natural decision problem associated to this discovery

3We note that satisfiability is called consistency in [4].

problem is NP-complete, and present a heuristic algorithm. Abite-
boul et al. [2] consider probabilistic generators for XML collections
in the presence of integrity constraints but do not consider mining
of such constraints.

root

context node

target node

key node

︸ ︷︷ ︸

unique key tuple

Figure 2: Schematic representation of a key.

3. DEFINITIONS
In this section we introduce the required definitions concerning

trees, XSDs, and XML keys, and formally define the XML key
mining problem. The correspondence between our definition of
XML keys and the W3C definition is discussed in Section 3.3.

For a finite set R, we denote by |R| the cardinality of R.

3.1 Trees and XML
As is standard, we represent XML documents by means of la-

beled trees. Formally, for a set S, an S-tree is a pair (t, labt) where
t is a finite tree and labt maps each node of t to an element in S.
To reduce notation, we identify each tree simply by t and leave
labt implied. We assume the reader to be familiar with standard
common terminology on trees like child, parent, root, leaf, and so
on. For a node v, we denote by anc-stringt(v) the string formed
by the labels on the unique path from t’s root to (and including) v,
called the ancestor string of v. By child-stringt(v), we denote the
string obtained by concatenating the labels of the children of v. If
v is a leaf then child-stringt(v) is the empty string, denoted by ε.
Here, we assume that trees are sibling-ordered. We fix a finite set
of element names Σ and an infinite set Data of data elements. An
XML-tree is a (Σ ∪ Data)-tree where non-leaf nodes are labeled
with Σ and leaf nodes are labeled with elements from (Σ∪Data).
As the XSD specification does not allow mixed content models for
fields in keys [31], we ignore ‘mixed’ content models altogether
to simplify presentation, and assume that when a node is labeled
with a Data-element it is the only child of its parent. We then

q0 qbookshop

qorder

qaddressqid qperson

qitems

qbook

qtitle qprice qquantity qyear

qdata

bookshop

order

id
address

person

items

book

title price quantity

year

data
data

data

data

data
data

data

Figure 3: The type automaton of Xbookshop.

denote by valuet(v) the Data-label of v’s unique child when it
exists; otherwise we define valuet(v) = ⊥ with ⊥ a special sym-
bol not in Data. When valuet(v) ∈ Data, we also say that v is
a Data-node.

EXAMPLE 3.1. Figure 1 displays an XML-tree t. In this tree,

anc-stringt(b1) = bookshop order items book, and also

child-stringt(b1) = title year price quantity. Fur-

thermore, every node labeled id, person, address, title.

year, price, or quantity is aData-node, while, for instance,

b1 is not.

3.2 XSDs
XML keys are defined within the scope of an XSD. We make use

of the DFA-based characterization of XSDs introduced by Martens
et al. [25]. An XSD is a pair X = (A, λ) where A = (Types,Σ ∪
{data}, δ, q0) is a Deterministic Finite Automaton (or DFA for
short) without final states (called the type-automaton) and λ is a
mapping from Types to deterministic4 regular expressions over the
alphabet Σ ∪ {data}. Here, Types is the set of states; data is
a special symbol, not in Σ, which will serve as a placeholder for
Data-elements; δ : Types×Σ∪{data} → Types is the (partial)
transition function; and q0 ∈ Types is the initial state. Additionally,
the labels of transitions leaving q should be precisely the symbols in
λ(q). That is, for every q ∈ Types, Out(q) = Symb(λ(q)), where
Out(q) = {σ ∈ Σ | δ(q, σ) is defined} and Symb(r) consists of all
Σ-symbols in regular expression r.

A context c = (σ, q) is a pair in Σ×Types. By CNodest(c), we
denote all nodes v of t for which labt(v) = σ and A halts in state
q when started in q0 on the string anc-stringt(v). Let L(r) denote
the language defined by the regular expression r. We say that the
tree t adheres to X , if for every context c = (σ, q) and every v in
CNodest(c) one of the following holds.

• valuet(v) ∈ Data and data ∈ L(λ(q)); or

• valuet(v) = ⊥ and child-stringt(v) ∈ L(λ(q)).

Intuitively, A determines the vertical context of a node v by the
state q it reaches in processing anc-stringt(v). When v is a Data-
node, the content model specified by q, that is λ(q), should con-
tain the placeholder data. Otherwise, when v is not a Data-
node, child-stringt(v) should satisfy the content-model λ(q). We
stress that this DFA-based characterization of XSDs corresponds
precisely to the more traditional abstraction in terms of single-type
grammars [26, 27]. We let L(X) denote the set of all trees adhering
to XSD X .

4Also referred to as 1-unambiguous regular expressions [13].

EXAMPLE 3.2. Let Xbookshop = (A,λ) be the XSD where A is

given in Figure 3 and λ is defined as follows.

q0 7→ bookshop

qbookshop 7→ order
+

qorder 7→ id person address items
+

qitems 7→ book
+

qbook 7→ title year? price quantity

For all other types q, λ(q) = data.

Then tree t in Figure 1 adheres to Xbookshop. Moreover, b1 ∈
CNodest(book, qbook) and child-stringt(b1) ∈ L(λ(qbook)).

3.3 XML keys
A selector expression is a restricted XPath-expression of one of

the three forms ‘.’ (the dot symbol) or ./l1/l2/ . . . /lk (starting
with the child axis) or .//l1/l2/ . . . /lk (starting with the descen-
dant axis), where k ≥ 1, and l1, . . . , lk are element names or the
wildcard symbol ‘*’. A string w = w1 · · ·wk , where each wi is
an element name, is said to match ./l1/l2/ . . . /lk when wi = li or
li = * for each i. For selector expressions starting with the descen-
dant axis, we say that w matches .//l1/l2/ . . . /lk if a suffix of w
matches ./l1/l2/ . . . /lk. For a tree t, a node v of t, and a selector
expression τ , the set τ (t, v) is defined as follows. If τ = ‘.’, then
τ (t, v) = {v}. Otherwise τ is of the form either ./l1/l2/ . . . /lk
or .//l1/l2/ . . . /lk , and τ (t, v) contains all nodes v′ such that v′

is a descendant of v and the path of labels from v (but excluding
the label of v) to (and including) v′ matches τ . A disjunction of

selector expressions is of the form τ = τ1 | · · · | τm where each τi
is a selector expression. In this case, τ (t, v) is defined as the union
of all τi(t, v). When v is the root of the document, we simply write
τ (t) for τ (t, v). We denote by SE and DSE the class of selector
expressions and disjunctions of selector expressions, respectively.

DEFINITION 3.3. An XML key, defined w.r.t. an XSD X , is a

tuple φ = (c, τ, P), where (i) c is a context in X; (ii) τ ∈ DSE
is called the target path, and (iii), P is an ordered sequence of

expressions in DSE called key paths.

To emphasize that φ is defined w.r.t. X , we sometimes write a key
simply as a pair (φ,X).

We stress that the definition of XML keys given above, corre-
sponds to the definition of keys in XML Schema [31]. In particular,
the context is given implicitly by declaring a key inside an element
and an element has a label and a certain type. Target paths are called
selector paths [31, Section 3.11.6.2] and key paths are called fields.
They obey the same grammar as used here with the difference that
we do not make use of attributes but require key paths to select data
nodes.

The semantics of an XML key is as follows. The context c de-
fines a set of context nodes which divides the document into sepa-
rate (but not necessarily disjoint) parts. Specifically, each node in
CNodest(c) = {v1, . . . , vn} can be considered as the root of a
separate tree. For each of those trees, i.e., for each i ∈ {1, . . . , n},
every node in τ (t, vi) should uniquely define a record. Such a
record is determined by the key paths in P = (p1, . . . , pk). That is,
each v in τ (t, vi) defines the record [valuet(u1), . . . , valuet(uk)],
denoted by recordP (t, v), where pj(t, v) = {uj} for all j ∈
{1, . . . , k}. We graphically illustrate the above in Figure 2.

Note that pj(t, v) might select more than one node or might se-
lect a node u for which valuet(u) is undefined; both are disallowed
by the XML Schema specification:

DEFINITION 3.4. A key φ = (c, τ, P) qualifies in a document t
if for every v ∈ CNodest(c), every u ∈ τ (t, v) and every p ∈ P ,

p(t, u) is a singleton containing a Data-node.

Finally, following the W3C specification, we define satisfaction
of an XML key w.r.t. a document:

DEFINITION 3.5. An XML tree t satisfies a key φ = (c, τ, P)
or a key is valid w.r.t. t, denoted by t |= φ, iff (i) φ qualifies in

t; and, (ii) for every node v in CNodest(c), recordP (t, u) 6=
recordP (t, u

′), for every two different nodes u and u′ in τ (t, v).

Notice that, there can be two causes for a key to be invalid: (i)
the key does not qualify in the document and actually is ill-defined
w.r.t. the document; or (ii) the data values in the document invali-
date the key. The first cause can be seen as structural invalidation,
while the second cause is semantical and more informative.

In this paper, we are interested in inferring keys that always qual-
ify to a document satisfying the schema. We call such keys consis-
tent. In Section 4, we show that consistency can be decided effi-
ciently for target and key paths in SE , and is intractable otherwise.

DEFINITION 3.6. A key is consistent w.r.t. a schema if the key

qualifies in every document adhering to the schema.

EXAMPLE 3.7. Consider the key φ from Example 1.1. Then φ is

valid w.r.t. the tree in Figure 1 but φ is not consistent w.r.t.Xbookshop.

Indeed, Xbookshop defines the ‘year’-element of a ‘book’-element to

be optional.

3.4 XML key mining
Given an XML document t adhering to a given XSD, we want to

derive all supported XML keys φ that are valid w.r.t. t.5 We define
the support of a key as the quantity measuring the number of nodes
captured by the key. Define TNodest(φ) as the set of target nodes
selected by φ = (c, τ, P) on t. That is,

TNodest(φ) =
⋃

v∈CNodest(c)

τ (t, v).

Then, following Grahne and Zhu [19], we define the support of φ
on t to be the total number of selected target nodes: supp(φ, t) =
|TNodest(φ)|. Since this support only depends on the context c
and the target path τ of φ, we also write supp(c, τ, t) for supp(φ, t).

We are now ready to define the problem central to this paper.

DEFINITION 3.8. (XML key mining problem) Given an XSD

X; an XML document t adhering to X; and a minimum support

threshold N , the XML key mining problem consists of finding all

keys φ consistent with X such that t |= φ and supp(φ, t) > N .

The above is only the core definition of the XML key mining
problem. We will discuss some quality requirements in the next
section.

4. BASIC DECISION PROBLEMS
A basic problem in data mining is the abundance of found pat-

terns. In this section, we address a number of fundamental decision
problems relevant to identifying low quality keys which can then
be removed from the output of the key mining algorithm. Specifi-
cally, we consider testing for consistency and show that the problem
becomes tractable when top-level disjunction is disallowed. We

5W.l.o.g. and to simplify presentation, we restrict attention to a
single document as multiple XML-documents can always be com-
bined into one by introducing a common root.

P ∀>k,Ptree ∀<k,Ptree ∀=k,P
tree

RE EXPTIME-complete in PTIME
in EXPTIME

PSPACE-hard (k ≥ 1)

DSE EXPTIME-complete in PTIME
in EXPTIME

CONP-hard (k ≥ 1)

SE EXPTIME-complete in PTIME in PTIME

SE∗ in EXPTIME in PTIME in PTIME

SE// in PTIME in PTIME in PTIME

Table 1: Complexity of ∀•k,P
tree .

also study universality and boundedness, and show that they are
tractable. Finally, we show that testing for satisfiability and impli-
cation of keys is EXPTIME-hard, even when disallowing disjunc-
tion, which complicates the inference of minimal keys.

4.1 Consistency
As detailed in Section 3.3, the W3C specification requires keys

to be consistent. We therefore define CONSISTENCY as the prob-
lem to decide whether φ is consistent w.r.t. X , given a key φ and
an XSD X . In this section, we show that CONSISTENCY is in fact
solvable in PTIME when patterns in keys are restricted to SE . The
proof of this result is the most technical result of the paper. Actu-
ally, the PTIME result is also surprising since a minor variation of
consistency is known to be EXPTIME-hard, as we explain next.

Consistency requires that on every document adhering to X , ev-
ery key path should select precisely one data node for every target
node. This is related to deciding whether an XPath selector expres-
sion selects at least and at most a given number of nodes, on every
document satisfying a given XSD. Indeed, define ∀•k

tree with k ∈ N

and • ∈ {<,=, >} to be the problem of deciding, given an XSD
X and a selector expression p, whether it holds that |p(t)| • k,
for every t ∈ L(X). We show in Lemma 4.3 that CONSISTENCY

can be easily reduced to ∀=1
tree . Although Bjorklund, Martens, and

Schwentick [12] showed that ∀>ktree is EXPTIME-complete, we obtain
below that ∀=1

tree can in fact be solved in polynomial time through an
intricate translation to the equivalence test for unambiguous tree
automata [30].

4.1.1 Cardinality of XPath result sets

Because of its relevance to cardinality estimation of XPath result
sets, we investigate in more detail the complexity of ∀•k,P

tree and
it restriction to strings, denoted by ∀•k,P

string , relative to the XPath-
fragment P .

To obtain a more complete picture, we also consider the class of
all regular expressions, denoted by RE . For a regular expression
r and a tree t, r(t) then selects all nodes whose ancestor string6

matches r. Furthermore, denote by SE the set of all selector ex-
pressions and by SE// and SE∗, the set of all selector expressions
without descendant and wildcard, respectively. For a class of pat-
terns P ∈ {RE ,DSE ,SE,SE//, SE∗}, we denote by ∀•k,P

tree the
problem ∀•k

tree where expressions are restricted to the class P .

THEOREM 4.1. The complexity of the problem ∀•k,P
tree is as stated

in Table 1.

Notice that the problem ∀=k,RE
tree is PSPACE-hard for every value

k ≥ 1, while ∀=k,DSE
tree is CONP-hard for every value k ≥ 1. On

6Defined in Section 3.2 as the string formed by the labels on the
path from the root to the considered node.

the other hand, ∀=0,RE
tree = ∀<1,RE

tree and ∀=0,DSE
tree = ∀<1,DSE

tree and,
thus, these two problems can be solved in polynomial time given
the results in the second column of Table 1. Below we provide a
sketch of the proof that ∀=1,SE

tree can be solved in polynomial time,
which is a key problem in our study of consistency.

PROOF SKETCH OF ∀=1,SE
tree ∈ PTIME. In this proof, we need

an encoding of XML trees as binary trees. More precisely, for an
XML tree t, denote by fcns(t) a binary tree such that for every node
v of t: (1) v is a node in fcns(t); (2) the left child of v in fcns(t)
is the first child of v in t (if v is a leaf in t, then a node with label
is placed as the left child of v in fcns(t)); and (3) the right child
of v in fcns(t) is the next sibling of v in t (if such a sibling does
not exist in t, then a node with label # is placed as the right child
of v in fcns(t)). Moreover, in this proof we also make use of tree
automata which operate in a top-down fashion over binary trees,
which are called binary tree automata (BTA). Given a BTA A, we
denote by L(A) the set of trees accepted by A, and we say that A
is unambiguous if for every t ∈ L(A), there is only one accepting
run of A on t, but there could many non-accepting ones.

In order to show that ∀=1,SE
tree ∈ PTIME, we first need the follow-

ing results: (1) given an XSD X , one can construct in polynomial
time a deterministic BTA AX such that for every tree t: fcns(t) ∈
L(AX) if and only if t ∈ L(X); (2) given a selector expression
p, one can construct in polynomial time a non-deterministic BTA
Bp such that for every XML tree t: fcns(t) ∈ L(Bp) if and only
if |p(t)| > 0; and (3) there is a deterministic BTA A# such that
t′ ∈ L(A#) if and only if t′ = fcns(t) for some XML tree t. With

these ingredients, the polynomial time algorithm for ∀=1,SE
tree works

as follows.
Let X be an XSD and p a selector expression. In order to test

whether (X, p) ∈ ∀=1,SE
tree , we first verify whether (X, p) ∈ ∀<2,SE

tree ,
which can be done in polynomial time (see Table 1). If this is not
the case, then we know that (X, p) 6∈ ∀=1,SE

tree , so the algorithm
returns false. Otherwise, the algorithm continues by computing de-
terministic BTAs AX , A# and non-deterministic BTA Bp. Then

to check whether (X, p) ∈ ∀=1,SE
tree , the algorithm needs to verify

whether L(AX × A#) ⊆ L(Bp), where AX × A# is the usual
product of BTAs that accepts L(AX) ∩ L(A#) and can be com-
puted in polynomial time. The key observations to make here are:
(1) testing whether L(AX × A#) ⊆ L(Bp) is equivalent to veri-
fying whether L(AX ×A#) ⊆ L(AX ×Bp); (2) containment for
BTAs is an intractable problem, but it becomes tractable for unam-
biguous BTAs [30]; (3) AX × A# is an unambiguous BTA as it
is deterministic; and (4) although AX × Bp is non-deterministic,
by using the fact that (X, p) ∈ ∀<2,SE

tree , it is possible to prove that
AX ×Bp is an unambiguous BTA. Therefore, we can test in poly-
nomial time whether L(AX ×A#) ⊆ L(AX ×Bp) and, thus, we

can test in polynomial time whether (X, p) ∈ ∀=1,SE
tree .

Finally, we consider the corresponding problem for strings as
well. We denote by ∀•k,P

string the problem to decide whether, given a
DFA A and a pattern p ∈ P , |p(s)| • k for every s ∈ L(A). Here,
as every string can be viewed as a unary tree, p(s) simply denotes
the nodes selected by p when evaluated from the root.

THEOREM 4.2. The complexity of the problem ∀•k,P
string is as for

∀•k,P
tree with the exception that:

1. ∀>k,RE
string , ∀>k,DSE

string , ∀>k,SE
string are PSPACE-complete and ∀>k,SE∗

string

is in PTIME;

2. ∀=k,RE
string is PSPACE-complete for every k ≥ 1; and

3. ∀=k,DSE
string is CONP-complete for every k ≥ 1.

The results in Theorem 4.2 are important for our investigation not
only because they can be used to obtain lower bounds for the com-
plexity of the problems ∀•k,P

tree , but also because the extension of
some of the techniques developed to prove them played a key role
in pinpointing the complexity of some of the problems ∀•k,P

tree , most
notably in the case of ∀=k,SE

tree .

4.1.2 Main result on consistency

For a class of patterns P , we denote by CONSISTENCY(P) the
problem CONSISTENCY restricted to keys using expressions in P .
We introduce the following definition. Let k ∈ N, • ∈ {<,=, >},

and R,S be two pattern languages. We denote by ∀•k,R,S
key the

problem to decide whether for a given XSD X and a key φ =
(c, τ, (p)) with τ ∈ R and p ∈ S , it holds that |p(t, u)| • k for
every t ∈ L(X), every node v in CNodest(c), and for every node
u in τ (t, v).

Let root stand for the class containing only the selector expres-
sions ‘.’, that is, the expression which selects the root. The follow-
ing lemma now allows to transfer upper and lower bounds from the
previous section:

LEMMA 4.3. Let k ∈ N, let • ∈ {<,>,=}, and let P ∈

{RE ,DSE , SE,SE//,SE∗}. Then

1. ∀•k,RE,P
key is polynomial time reducible to ∀•k,P

tree ; and,

2. ∀•k,P
tree is polynomial time reducible to ∀•k,root,P

key .

The main result of this section immediately follows from Theo-
rem 4.1 and Lemma 4.3:

THEOREM 4.4. 1. CONSISTENCY(SE) is in PTIME;

2. CONSISTENCY(DSE) is CONP-hard and in EXPTIME;

3. CONSISTENCY(RE) is PSPACE-hard and in EXPTIME;

4.2 Determining the quality of keys
We investigate a number of additional criteria to determine the

quality of keys. Since the number of keys mined from a given doc-
ument can be quite large, we are interested in identifying irrelevant
keys that can be disregarded from the output of any key mining al-
gorithm. Examples are keys that hold in any document, that only
address a bounded number of target nodes, and keys that are im-
plied by keys that have already been found.

Thereto, let X be an XSD, φ a key and Ψ be a set of keys such
that every key in Ψ ∪ {φ} is consistent w.r.t. X . Then,

• UNIVERSALITY is the problem to decide whether t |= φ for
every tree in t ∈ L(X);

• BOUNDEDNESS is the problem to decide whether there is an
N ∈ N, such that for every tree t ∈ L(X),

|TNodest(φ)| ≤ N.

• KEY IMPLICATION, denoted by Ψ ⊑ φ, is the problem to
decide whether for all trees t ∈ L(X) such that

∧

ψ∈Ψ t |=

ψ it holds that t |= φ.

• SATISFIABILITY is the problem to decide whether there is a
tree t ∈ L(X) with t |= φ;

Intuitively, a bounded key can only select a bounded number of
target nodes independent of the size of the input document. Since
the main purpose of a key is to ensure uniqueness of nodes within
a collection of nodes, bounded keys are not very interesting.

We next show that identifying universal and bounded keys is
algorithmically feasible, while determining implication (and even

satisfiability) of keys is intractable. Therefore, determining a small-
est set of keys (aka, a cover) is practically infeasible. Note that,
while the EXPTIME-completeness of SATISFIABILITY is discour-
aging, it does not pose a problem for key mining algorithms in
practice. Indeed, by Definition 3.8 a key mining algorithm will,
on input (X, t) with t ∈ L(X) only return keys φ with t |= φ
(which can efficiently be checked). As such, the keys φ it returns
are necessarily satisfiable.

Similar to the previous section, we parametrize the problems
above by a class P of expressions, to restrict attention to input keys
that only use expressions in P .

THEOREM 4.5. 1. UNIVERSALITY(DSE) is in PTIME.

2. BOUNDEDNESS(DSE) is in PTIME.

3. KEY IMPLICATION(SE) is EXPTIME-hard.

4. SATISFIABILITY(SE) is EXPTIME-complete.

Next, we consider target path containment and equivalence. Given
an XSD X , a context c, and two selector expressions τ and τ ′,
TARGET PATH CONTAINMENT is the problem to decide whether
for every tree t ∈ L(X) and every node v ∈ CNodest(c), τ (t, v) ⊆
τ ′(t, v). We denote the latter condition by τ ⊆X,c τ

′. By TAR-
GET PATH EQUIVALENCE we denote the corresponding equiva-
lence problem.

THEOREM 4.6. TARGET PATH CONTAINMENT and TARGET

PATH EQUIVALENCE are in PTIME.

TARGET PATH EQUIVALENCE is a particularly relevant prob-
lem for key mining since it allows to identify, within the mined set
of keys, the semantically equivalent but distinct keys (c, τ, P) and
(c, τ ′, P) with τ target path equivalent to τ ′. In this sense, target
path equivalence is a sufficient condition for key implication, but
which can be solved efficiently.

5. XML KEY MINING ALGORITHM
In this section, we provide an algorithm for solving the XML

key mining problem. Recall from Definition 3.8 that the input to
this algorithm is an XSD X , an XML tree t and a minimum sup-
port threshold N , and that it should output keys that are consis-
tent with X , are satisfied by t, and whose support exceeds N 7.
For the remainder, let X = (AX , λX) with the type-automaton
AX = (Types,Σ ∪ {data}, δ, q0).

The overall structure of the XML key mining algorithm is out-
lined in Algorithm 1.

Algorithm 1 XML Key Mining Algorithm

for all c ∈ ContextMinert,X do

for all τ ∈ TargetPathMinert,X(c) do

S = OneKeyPathMinert,X(c, τ)
P = MinimalKeyPathSetMinert,X(c, τ, S)
for each P ∈ P return (c, τ, P)

Basically the algorithm consists of four components:

• ContextMinert,X returns a list of possible contexts based on
t and X;

• TargetPathMinert,X(c) returns a list of unique target paths
with minimal support in t given a context c;

7If no XSD is available, one can be derived, e.g., using algorithms
from [9].

bookshop
(qbookshop, 1)

order
(qorder, 2)

address
(qaddress, 2)

person
(qperson, 2)

id
(qid, 2)

items
(qitems, 2)

book
(qbook, 3)

quantity
(qquantity, 3)

title
(qtitle, 3)

price
(qprice, 3)

year
(qyear, 3)

Figure 4: Prefix tree for the XML tree in Figure 1.

• OneKeyPathMinert,X(c, τ) returns a maximal set S of unique
key paths for which (c, τ, {p}) is consistent for every p ∈ S;
and,

• MinimalKeyPathSetMinert,X(c, τ, S) returns a set P of min-
imal subsets P of S for which t |= (c, τ, P).

TargetPathMinert,X(c) and OneKeyPathMinert,X(c, τ) are dif-
ferent instantiations of levelwise search [24], while the function
MinimalKeyPathSetMinert,X(c, τ, S) leverages on discovery algo-
rithms for functional dependencies in the relational model. In the
remainder, we explain each function in detail. We will only con-
sider target and key paths up to a given length kmax which can be
at most the maximum depth of the document. Since the presence of
top-level disjunction renders testing for consistency intractable (cf.
Theorem 4.4), we focus on a key mining algorithm that disregards
the union operator.

5.1 Prefix Tree and Context Miner
We first define a basic data structure that is used to speed-up

various parts of the mining algorithm. Denote by PT(t) the prefix
tree obtained from t by collapsing all nodes with the same ancestor
string. Recall that the ancestor string of a node is the string obtained
by concatenating all labels on the unique path from the root to (and
including) that node. Let h be the function mapping each node in t
to its corresponding node inPT(t). Then, we label every nodem in
PT(t) with the number of nodes in t mapped to m, i.e., |h−1(m)|
together with the state assigned to m by the type-automaton AX .
For example, the prefix tree for the XML tree in Figure 1 is shown
in Figure 4. Note that PT(t) does not contain data nodes. The
prefix tree can be computed in time linear in the size of t (see,
e.g., [19]).

We next discuss the context miner. Clearly, the set of all contexts
c = (σ, q) with σ ∈ Σ and q ∈ Types, can be directly inferred from
the given XSD. But, since only contexts that are actually realized
in t can give rise to a non-zero support, the context miner enumer-
ates all unique contexts c occurring in PT(t) through a depth-first
traversal.

5.2 Target Path Miner
Next, we describe the target path miner which finds all target

paths exceeding the support threshold for a given context c. The
algorithm follows the framework of levelwise search described by
Mannila and Toivonen [24]. In brief, the algorithm is of a generate-
and-test style that starts from the most general target path, .//*

Algorithm 2 Basic algorithm for levelwise search [24]

C0 := set of most general elements of U ;
i := 0;
while Ci 6= ∅ do

Fi := {τ ∈ Ci | q(τ)};
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃

j≤i Fj}

\
⋃

j≤i Cj ;
i := i+ 1;

Return(Fi);

in our case, and generates increasingly more specific paths while
avoiding paths that cannot be interesting given the information ob-
tained in earlier iterations.

The components of any levelwise search algorithm consist of a
set U called the search space; a predicate q on U called the search

predicate; and a partial order � on U called the specialization re-

lation. The goal is to find all elements of U that satisfy the search
predicate. Obviously, U in our case is the set of selector expres-
sions up to length kmax. A standard approach is to use a sup-
port threshold for the search predicate. Accordingly, we define the
search predicate as q(τ) := supp(c, τ, t) > N , for the given in-
put threshold N . That is, τ is deemed interesting when its support
exceeds N .

For levelwise search to work correctly, q should be monotone

(actually, monotonically decreasing) with respect to �, meaning
that if τ ′ � τ and q(τ) holds, then q(τ ′) holds as well. The intu-
ition of τ ′ � τ is that τ is more specific than τ ′, or in other words,
that τ ′ is more general than τ . For our purposes, it would be ideal
to use the semantic containment relation τ ⊆X,c τ

′ in context c
(as defined in Section 4.2). Although this containment relation is
shown to be tractable (Theorem 4.6), through a translation to the
inclusion test of unambiguous string automata, it is not well-suited
to be used within the framework of levelwise search which requires
fast testing of specialization due to the large number of such tests.
In strong contrast, as we show below, the containment of selector
expressions that disregards the presence of a schema, has a syntac-
tic counterpart which can be implemented efficiently. Therefore,
we define τ ′ � τ if and only if for every XML tree t, the set τ (t)
is a subset of τ ′(t). With respect to this definition it is obvious that
q is monotone. Notice also that τ ⊆ τ ′ implies τ ⊆X,c τ

′.
Now, levelwise search computes sets Fi iteratively as shown in

Algorithm 2. Here, ≺ is the strict version of �, so τ ′ ≺ τ if
τ ′ � τ and τ ′ 6= τ . Each step computing Ci+1 is called candi-

date generation; those candidates that satisfy q then end up in the
corresponding set Fi+1 (the letter F is a shorthand for “frequent”,
referring to the support threshold). It can formally be shown that
the union of all sets Fi indeed equals the set of all elements of U
satisfying q [24]. Moreover, the algorithm is terminated as soon Ci
is empty, because then all later sets Fj and Cj with j ≥ i will be
empty as well.

The above abstract framework, however, leaves a number of ques-
tions to be answered: (i) How can we efficiently evaluate the search

predicate q(τ)?; and, (ii) How can we efficiently generate candi-

date sets Ci+1?. We will next answer these questions in detail.

Search predicate. The search predicate supp(c, τ, t) can be en-
tirely evaluated on the prefix tree PT(t) and does not need access
to the original document t. A single XPath-expression can be used
to aggregate the counts of all nodes matching τ below nodes in con-

Algorithm 3 TargetPathMinert,X(c)

C0 := set of minimal elements of U ;
i := 0;
while Ci 6= ∅ do

Fi := {x ∈ Ci | q(x)};
Gi+1 := {x ∈ U | ∃y ∈ Fi : y ≺1 x};
Ci+1 := {x ∈ Gi+1 | ∀y : y ≺1 x⇒ y ∈

⋃

j≤i Fj};
i := i+ 1;

Return(Fi);

text c.8 Indeed, for c = (σ, q), the support can be obtained from
PT(t) using the following XPath expression:

sum(//σ[@state = idq]/τ/@matches),

where idq is the internally used id of the state q. The attributes
@state and @matches contain respectively the state id assigned
to the node in the prefix tree and the number of nodes with the same
ancestor path in t.

Specialization relation and candidate generation. Since our cho-
sen specialization relation is purely semantic, we need an equiva-
lent algorithmic definition to show that containment can be effec-
tively decided. Thereto, we define a “one-step specialization rela-
tion” as follows: τ ′ ≺1 τ if τ is obtained from τ ′ by one of the
following operations: (a) if τ ′ starts with the descendant axis, re-
place it by the child axis; (b) if τ ′ starts with the descendant axis,
insert a wildcard step right after it; or, (c) replacing a wildcard with
an element name.

We establish that τ ′ � τ if and only if τ ′ can be transformed
into τ by a sequence of ≺1-steps, or, more formally:

PROPOSITION 5.1. The relation � equals the reflexive and tran-

sitive closure of the relation ≺1.

Note that the definition of ≺1 makes it impossible that τ ′ ≺1

τ ′′ ≺1 τ while at the same time τ ′ ≺1 τ . Hence, Proposition 5.1
implies that ≺1 as defined above really is the “successor” relation
of �. More formally, τ ′ ≺1 τ holds precisely if and only τ ′ ≺ τ
and there exists no intermediate τ ′′ such that τ ′ ≺ τ ′′ ≺ τ . More-
over, ≺1 is very efficient to compute. Thus armed, we can perform
candidate generation in a effective manner as given in Algorithm 3.
Here, candidate generation is split up in two steps, which in prac-
tice can be interleaved. The set Gi+1 takes all successors of the
current set Fi; the set Ci+1 then prunes away those elements that
have a predecessor that does not satisfy q. It can be shown formally
that the sets Fi computed in this concrete manner are exactly the
same as those prescribed by the levelwise algorithm:

THEOREM 5.2. Algorithms 2 and 3 are equivalent.

Duplicate elimination. Often, a nuisance in mining logical formu-
las such as selector expressions is duplicate elimination: different
expressions may be logically equivalent. Fortunately, in our setting,
it follows from Proposition 5.1 that only identical selector expres-
sions can be equivalent.

Regardless, it can happen that two derived, and therefore, in-
equivalent, target paths τ and τ ′ select precisely the same set of
target nodes on the given document t. As these paths are equiv-
alent from the perspective of t, it holds that t |= (c, τ, P) iff

8Recall that in the prefix tree every node contains its corresponding
context and count.

t |= (c, τ ′, P) for all sets P . Therefore, w.r.t generation of key
paths P , it does not makes sense to consider all of these equivalent
path separately. Rather we should choose among them one canon-
ical path. One possibility, e.g., is to opt for the most specific path
according to ≺1 minimizing the length and number of wildcards.
Notice that equivalence of target paths on t can be tested on the
prefix tree PT(t) without access to the original document.

Boundedness elimination. The quality of the mining result can
be improved using the results of Section 4.2. Indeed, target paths
that are bounded but that have still passed the support threshold N ,
which may happen with low values ofN , may be eliminated at this
stage.

5.3 One-Key Path Miner
Our task here is to find all key paths p for which (c, τ, (p)) is con-

sistent on the given document: that is, for every v ∈ CNodest(c)
and every u ∈ τ (t, v), it holds that p(t, u) is a singleton containing
a Data-node. Afterwards, only those key paths p are retained for
which (c, τ, (p)) is consistent w.r.t.X . The reason for this two-step
approach is to reduce the number of costly consistency tests. Al-
though testing for consistency w.r.t. a schema is in polynomial time
(cf., Theorem 4.4), it can be slow for large schemas and is ill-suited
to be used directly as a search predicate. Therefore, we test for
document consistency in a first step and make use of the fact that
inconsistency on t implies inconsistency on X . That is, key paths
which are not consistent on t and which are therefore pruned in the
first step, can never be consistent w.r.t. X .

It turns out that again a levelwise search may be used, utilizing
the converse of the specialization relation � for target-path mining.
So, define p′ �key p iff p � p′. That is, p′ �key p iff p′ ⊆ p. The
search predicate qkey

τ (p) is now defined to hold if p selects at most

one node in t for each of the target nodes selected by τ in context c.
This qkey

τ is indeed monotonically decreasing w.r.t. the converse of
containment among selector expressions: p′ �key p ≡ p′ ⊆ p and
qkey
τ (p) together imply qkey

τ (p′). We note that consistency requires
the selection of exactly one, rather than at most one, node. How-
ever, this mismatch can be solved by confining the search space
Ukey to all selector expressions up to length kmax that from a target
node select a leaf node in the prefix tree: these expressions select
at least one node by virtue of their being present in the prefix tree.
The “most general” elements from which the levelwise search is
started are then the paths in the prefix tree from target nodes to
leafs. Obviously, Ukey can be computed directly from PT(t).

It remains to discuss how to compute qkey
τ efficiently. Unfortu-

nately, qkey
τ can not always be computed solely on PT(t). Indeed,

consider the documents t1 = a(b(d), b(d)) and t2 = a(b(d, d), b),
where each d-node is a Data-node. Then, PT(t1) = PT(t2) yet
φ is consistent on t1 but inconsistent on t2 for φ = (croot,./a/b,
(./d)) with croot the root context.

We next present a sufficient condition for inconsistency which
can be tested on the prefix tree. Thereto, consider φ = (c, τ, (p))
and let t′ = PT(t). For a node m in t′, we denote by #t′(m)
the number assigned to m in t′, that is, |h−1(m)| for h as defined
in Section 5.1. Define the following conditions: (C1) There ex-
ists a v ∈ CNodest′(c) and a u ∈ τ (t′, v) such that #t′(u) <∑

w∈p(t′,u) #t′(w); and, (C2) There exists a v ∈ CNodest′(c), a

u ∈ τ (t′, v), a w ∈ p(t′, u), and a node m on the path from u to w
such that #t′(m) < #t′(w).

Here, (C1) says that the number of target nodes u is strictly
smaller than the number of nodes selected by p, and (C2) says that
there is a leaf node selected by p and an ancestor with a smaller
number of corresponding nodes in t. Both conditions imply that

there are at least two nodes selected by p which belong to the same
target node in t and which contradict consistency.

Formally, we have that:

PROPOSITION 5.3. Given φ = (c, τ, (p)) and a document t. If

condition C1 or C2 holds on PT(t), then φ is inconsistent on t.

So, only when the tests for the above two conditions fail, we
evaluate p on t to determine the value of qkey

τ (p).

Finally, define ≺key
1 as the inverse of ≺1, that is, p′ ≺key

1 p
iff p ≺1 p′. Then, the first step of OneKeyPathMinert,X(c, τ)
is the same algorithm as depicted in Algorithm 3 with U , q, and
≺1, replaced by Ukey, qkey

τ , and ≺key
1 , respectively. The second step

in OneKeyPathMinert,X(c, τ) retains from all of the returned key
paths p, those for which (c, τ, (p)) is consistent w.r.t.X employing
the algorithm of Theorem 4.4. A duplicate elimination step similar
to the one of the previous section is performed as well.

5.4 Minimal Key Path Set Miner
At this point, we have computed the maximal set S for which

every p ∈ S, (c, τ, {p}) is consistent w.r.t. X . Next, we are looking
for minimal and meaningful sets P ⊆ S such that t |= (c, τ, P),
that is, such that (c, τ, P) is a key for t.

We capitalize on existing relational techniques for mining func-
tional dependencies (e.g., [11, 21, 23]). To this end, we define a
relation RS,t with the following schema

(CID, T ID, p1, p2, . . . , p|S|),

where CID and TID are columns for the selected context nodes
and target nodes, respectively, and every pi corresponds to the unique
Data-value selected by the corresponding key path pi. Then,
(v, u, ō) ∈ RS,t if and only if v ∈ CNodest(c), u ∈ τ (t, v)
and recordS(t, u) = ō. Now, it follows that t |= (c, τ, P) iff

CID, p1, p2, . . . , pn → TID.

is a functional dependency in RS,t for P = (p1, . . . , pn). We can
now plug in any existing functional dependency discovery algo-
rithm.

6. EXPERIMENTS
For our experiments, we use a corpus of 90 high quality XML

documents and associated XSDs obtained from [1]. The input can
therefore be seen as 90 pairs consisting each of a unique XML-
document and a unique XSD. The maximal and average number
of elements occurring in documents is 91K and 5K, respectively,
while the maximal and average number of elements occurring in
XSDs is 532 and 52, respectively. All experiments are w.r.t. to this
corpus and were run on a 3GHz Mac Pro with 2GB of RAM. In
all experiments, we set kmax to 4 for target paths and to 2 for key
paths, unless explicitly mentioned otherwise.

Prefix tree. As different parts of the algorithm can avoid access to
the input document t by operating directly on PT(t), it is instru-
mental to investigate the compression rate of PT(t) over t. Fig-
ure 5 plots the number of nodes in documents versus the number
of nodes in the corresponding prefix trees. Note that the scale is
logarithmic. In essence, every document is compressed to a prefix
tree with at most 200 nodes even for large documents containing
ten or even hundred thousand of nodes.

Contexts. A key φ = (c, τ, P) consists of three interdependent
components: target paths need only to be considered w.r.t. a con-
text, and key paths need only to be considered w.r.t. a context and
a target path. To avoid an explosion of the size of the search space

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

nu
m

be
r

of
 p

re
fix

 tr
ee

 n
od

es

number of document nodes

Figure 5: Number of documents versus number of nodes in

prefix trees.

it is paramount to reduce the number of considered contexts, tar-
get paths and key paths. We next assess the effectiveness of the
algorithm in this respect.

We start with the number of contexts considered by the algo-
rithm. An analysis comparing the number of contexts allowed by
XSDs with the number of contexts actually used in the XML docu-
ments, shows that for 40% of the documents all allowable contexts
materialize in the corresponding XML documents, i.e., there is no
improvement as no allowable context can be omitted. Neverthe-
less, it appears that this mostly happens for smaller XSDs. Indeed,
the total sum of allowable contexts over all 90 documents is 4639
while the total sum of contexts found in actual documents is 2217
which indicates that over the complete data set 52% of all possible
contexts do not have to be considered. Keeping in mind that every
context that can be removed in this step, eliminates a call to the tar-
get path and key path miner underlines the effectiveness of context
search driven by the XML data at hand.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

nu
m

be
r

of
 ta

rg
et

 p
at

hs

documents (ordered on XSD filesize)

candidate
supported
non-equivalent supported

Figure 6: Behavior of the target path miner.

Target paths. Next, we discuss the behavior of the target path
miner when the support threshold N equals 10. The results are il-
lustrated in Figure 6 (cases with kmax = 5 and/or lower support
threshold were also tested but are similar and therefore not shown).
For presentation purposes, the X-axis enumerates all document-
XSD pairs increasingly ordered by the size of the XSD. The figure
then shows per pair, the number of candidate, supported, and non-
equivalent derived target paths. Its purpose is to provide a visual
inspection on the considered quantities on a per document basis.

 1

 10

 100

 1000

 10000

nu
m

be
r

of
 k

ey
 p

at
hs

documents (ordered on keypaths considered)

candidate
not inconsistent on prefix tree
consistent on document
consistent on XSD

Figure 7: Behavior of one-key path miner.

By candidate target paths we mean those that occurred in a candi-
date set Ci during the execution of Algorithm 3. Non-equivalent
target paths are those which remain after duplicate elimination (as
explained in Section 5.2). The number of possible target paths to
consider (that is, the cardinality of the search space U times the
number of allowable contexts) is not shown as the target path miner
only considers a small fraction of those, to be precise, only 3% on
average. Furthermore, on average, only 7% of all candidate tar-
get paths turn out to be supported and of all supported paths only
27% remain after duplicate elimination. To get a feeling for the
magnitude of the reduction in target paths (TPs) provided by the
algorithm, we give the following table of absolute numbers which
are summed up over the whole data set of document-XSD pairs:

possible TPs 2.4× 1011

candidate TPs 6.7× 106

supported TPs 8.4× 104

unique TPs 1.3× 104

One-key paths. Figure 7 provides a visual interpretation of the
reduction in number of key paths by the consecutive steps of the
one-key path miner as described in Section 5.3. Again, for presen-
tation purposes, the X-axis enumerates all document-XSD pairs in-
creasingly ordered by the number of resulting candidate key paths.
Specifically, the figure plots on a per document basis the follow-
ing numbers: candidate key paths, paths for which the inconsis-
tency test fails on the prefix tree, paths which are consistent on the
document, and paths which are consistent w.r.t. the XSD. We first
discuss the average improvement on a per document basis. Specif-
ically, on average 29% of candidate paths are inconsistent over the
prefix tree. This means that for 61% of the remaining key paths
consistency needs to be tested on the document. On average, only
6% of key paths are consistent w.r.t. the document and of these 68%
turn out to be consistent w.r.t. the XSD. Absolute numbers summed
up over the whole data set of document-XSD pairs, give the follow-
ing picture for key paths (KPs):

candidate KPs 48144
inconsistent KPs on prefix tree 29190
consistent KPs on document 484
consistent KPs on XSD 288

It is interesting to observe that on the considered sample of real-
world documents, consistency on the document does not always
imply consistency w.r.t. the associated XSD. Specifically, the above

table shows that overall only roughly 60% of KP which are consis-
tent on documents are consistent on the XSD as well.

Keys. Next, we discuss the keys returned by our algorithm. We use
the hypergraph transversal algorithm to mine relational functional
dependencies as, for instance, described in [22], but any such algo-
rithm can be readily plugged in. We consider keys with target path
length at most 4 and key path length at most 2. In the following, we
refer to testing consistency of a key w.r.t. its XSD, that is, by apply-
ing the algorithm of Theorem 4.4, as the schema consistency test.
Table 2 and Table 3 then gather some statistics of discovered keys
without and with the schema consistency test. First of all, it can be
observed that not every document contains a key with the required
support: only 30% and 16% of all documents using support 10 and
100, respectively (Table 2). The latter might seem strange at first
sight, but note that not all XML documents are in fact databases
and that the requirement for a key to qualify (cf., Definition 3.4) is
a severe one. Indeed, even lowering the support threshold to a value
of two (experiment not shown here) only provides a key for 60%
of the documents, but of course a key with support two is not very
relevant. We note that the average supports for discovered keys in
this section is 404 and 612 for support thresholds equal to 10 and
100, respectively, while the maximum support encountered is 2011,
indicating that the discovered keys indeed cover a large number of
elements.

The figures in the two tables nicely illustrate the effectiveness of
schema consistency as a quality measure. Indeed, without schema
consistency Table 2 shows that 107 and 54 keys are derived for
support threshold 10 and 100, respectively. Interestingly, in both
cases, there is a document with a rather large number of keys: 23
to be specific. But, after the schema consistency test each of these
keys is removed as they all contain a key path which select elements
of which the schema says they are optional. Of course, one could
debate about whether the schema is actually always correct or may
be too liberal. One could always opt to offer keys which do not
pass schema consistency to the user. However, after an inspection
of the derived keys from our corpus, it becomes apparent that in
many cases keys rejected by the schema are probably not keys at
all. As an illustrative example, consider the three derived keys (all
with support 340, and where root refers to the root context):

(root,/Products,{/ID})
(root,/Products,{/Other_Information,

/Catalogue-Name})
(root,/Products,{/Type, /Other_Information})

where after the schema consistency test only the first key remains.
In this case, it should be clear that the second and third keys are
not accurate but a glitch in the data. Therefore, one could say that
the reduction from 107 to 43 and from 54 to 16 keys in Tables 2
and 3 actually improves the quality at the expense of lowering the
quantity which in our opinion can be seen as a good thing as most
data mining problem suffer from an explosion in derived patterns.

Quality. It remains to discuss the quality of the keys. When the
provided schema is accurate, the schema consistency test, as dis-
cussed above, provides a quality criterion in its own. A second
quality criterion can be the high support of derived keys: as men-
tioned above the found support of derived keys is on average 404
and 612 for support thresholds equal to 10 and 100, respectively,
while the maximum support encountered is 2011. Furthermore,
when inspecting found keys it appeared that in many cases keys
select elements whose name contains ‘ID’.

We finish with a discussion on implication of keys. Usually, in
key discovery, the goal is to find a minimal set of keys, called cover,

sup = 10 sup = 100

derived keys 107 54

docs with keys 27 15

average nr. of keys per doc 4 3.6

max nr. of keys per doc 23 23

average nr. of key paths 1.3 1.3

max key nr. of key paths 2 2

Table 2: Statistics of mined keys without the requirement to be

consistent w.r.t. the associated XSD.

sup = 10 sup = 100

derived keys 43 16

docs with keys 19 10

average nr. of keys per doc 2.2 1.6

max nr. of keys per doc 9 4

average nr. of key paths 1.3 1.2

max key nr. of key paths 2 2

Table 3: Statistics of mined keys with the requirement to be

consistent w.r.t. the associated XSD.

from which all other keys can be derived. For instance, to this
end Grahne and Zhu [19] make use of the inference algorithms for
XML keys investigated and shown to be polynomially computable
by Buneman et al. [15]. Unfortunately, Theorem 4.5 shows that
key implication in the presence of a schema is EXPTIME-hard. Still,
there is opportunity to detect duplicate keys. For instance, the next
pair of discovered keys turn out to be equivalent (both with support
90):

((State: 188,Symbol: ConstraintID),/*,{/*})
((State: 167,Symbol: PureOrMixtureData),

/Constraint/ConstraintID/*,{/*})

as ConstraintID can only occur under a Constraint-element.
We can therefore consider the keys to be equivalent as they select
precisely the same set of target nodes.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

tim
e

(s
)

documents (ordered on total time)

overall time
time for schema consistency test

Figure 8: Proportion of the running time consumed by the

schema consistency check.

Running time. We next discuss the runing time of the algorithm.
Of course, the previous sections have already illustrated how the
different mining steps succeed in reducing the number of consid-
ered contexts, target paths and key paths and every such reduction

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

schema consistency mining overall no schema consistency

tim
e

(s
)

Figure 9: Boxplots indicating average run times.

induces a gain in speed. Figure 9 gives insight in the overall running
time. Here, a large fraction of the time is taken up by the schema
consistency test. Furthermore, Figure 8 gives an indication of the
proportion of time taken by the schema consistency test w.r.t. the
overall running time. For presentation purposes, the X-axis enu-
merates all document-XSD pairs increasingly ordered by the time
required for the schema consistency test. Note that the figure does
not imply an exponential growth of the running time. In fact, as
the X-axis does not corresponds to a quantity, no inference can be
made about the asymptotic growth of the running time.

We want to stress that key discovery is not a time critical task and
that the algorithm only has to be run once for an XML-document
and XSD. Nevertheless, the above figures also show that the most
room for improvement lies within a speed up of the schema consis-
tency test and less in other components of the algorithm.

7. DISCUSSION
In this paper, we initiated a fundamental study of properties of

W3C XML keys in the presence of a schema and introduced an ef-
fective novel key mining algorithm leveraging on the formalism of
levelwise search and on algorithms for the discovery of functional
dependencies in the relational model.

A number of interesting issues remain open and require further
investigation. The most direct one is to close the gaps between
some of the obtained lower and upper bounds. It would be interest-
ing to investigate tractable subcases especially w.r.t. key implica-
tion. An observed bottleneck of the proposed approach is to check
consistency of a derived key w.r.t. the associated schema, even
though the number of keys which have to be tested is greatly re-
duced by testing for inconsistency on the XML document, it should
be investigated how schema consistency can be accelerated. This
would require advances in string and tree automata theory. Another
approach would be to try to find fast heuristic algorithms or to study
the problem for subclasses of XSDs.

8. ACKNOWLEDGEMENTS
We used the infrastructure of the VSC - Flemish Supercomputer Cen-

ter, funded by the Hercules foundation and the Flemish Government. We

acknowledge financial support of the Fondecyt Grant #1131049, FP7-ICT-

233599 and ERC grant agreement DIADEM, no. 246858.

9. REFERENCES
[1] University of Amsterdam XML web collection. http:

//data.politicalmashup.nl/sgrijzen/xmlweb/.

[2] S. Abiteboul, Y. Amsterdamer, D. Deutch, T. Milo, and P. Senellart.
Finding optimal probabilistic generators for XML collections. In
ICDT, pages 127–139, 2012.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[4] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML schema
constraints? In DEXA, pages 269–278, 2002.

[5] D. Barbosa and A. O. Mendelzon. Finding id attributes in XML
documents. In XSym, pages 180–194, 2003.

[6] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML
schema: effortless handling of nondeterministic regular expressions.
In SIGMOD, pages 731–744, 2009.

[7] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning
deterministic regular expressions for the inference of schemas from
XML data. TWEB, 4(4), 2010.

[8] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference
of concise regular expressions and DTDs. ACM TODS, 35(2), 2010.

[9] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML schema
definitions from XML data. In VLDB, pages 998–1009, 2007.

[10] G. J. Bex, F. Neven, and S. Vansummeren. Schemascope: a system
for inferring and cleaning XML schemas. In SIGMOD, pages
1259–1262, 2008.

[11] D. Bitton, J. Millman, and S. Torgersen. A feasibility and
performance study of dependency inference. In ICDE, pages
635–641, 1989.

[12] H. Björklund, W. Martens, and T. Schwentick. Validity of tree pattern
queries with respect to schema information. 2012.

[13] A. Brüggemann-Klein and D. Wood. One-unambiguous regular
languages. Inf. Comput., 140(2):229–253, 1998.

[14] P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. C. Tan.
Keys for XML. Computer Networks, 39(5):473–487, 2002.

[15] P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. C. Tan.
Reasoning about keys for XML. Inf. Syst., 28(8):1037–1063, 2003.

[16] S. Fajt, I. Mlynkova, and M. Necasky. On mining XML integrity
constraints. In ICDIM, pages 23–29, 2011.

[17] W. Fan and L. Libkin. On XML integrity constraints in the presence
of DTDs. J. ACM, 49(3):368–406, 2002.

[18] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim.
XTRACT: Learning document type descriptors from XML document
collections. Data Min. Knowl. Discov., 7(1):23–56, 2003.

[19] G. Grahne and J. Zhu. Discovering approximate keys in XML data.
CIKM, page 453-460, 2002.

[20] S. Hartmann and S. Link. Efficient reasoning about a robust XML
key fragment. ACM TODS, 34(2), 2009.

[21] H. Mannila and K.-J. Raiha. Practical algorithms for finding prime
attributes and testing normal forms. In PODS, 1989.

[22] H. Mannila and K.-J. Räihä. The design of relational databases.
Addison- Wesley, 1991.

[23] H. Mannila and K.-J. Räihä. Algorithms for inferring functional
dependencies from relations. Data Knowl. Eng., 12(1):83–99, 1994.

[24] H. Mannila and H. Toivonen. Levelwise search and borders of
theories in knowledge discovery. Data Min. Knowl. Discov.,
1(3):241–258, 1997.

[25] W. Martens, F. Neven, and T. Schwentick. Simple off the shelf
abstractions for XML schema. SIGMOD Record, 36(3):15–22, 2007.

[26] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness
and complexity of XML schema. ACM TODS, 31(3):770–813, 2006.

[27] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML
schema languages using formal language theory. ACM Trans.

Internet Techn., 5(4):660–704, 2005.

[28] M. Necaský and I. Mlýnková. Discovering XML keys and foreign
keys in queries. In SAC, pages 632–638. ACM, 2009.

[29] R. Ramakrishnan and J. Gehrke. Database management systems (3.

ed.). McGraw-Hill, 2003.

[30] H. Seidl. Deciding equivalence of finite tree automata. SIAM J.

Comput., 19(3):424–437, 1990.

[31] W3C. XML schema part 1: Structures, 2nd edition.

[32] C. Yu and H. V. Jagadish. XML schema refinement through
redundancy detection and normalization. VLDB J., 17(2):203–223,
2008.

