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ABSTRACT

Although 5S rRNA is a highly conserved and universal component of eubacterial, archaeal, chloroplast, and eukaryotic cyto-
plasmic ribosomes, a mitochondrial DNA-encoded 5S rRNA has so far been identified only in land plants and certain protists.
This raises the question of whether 5S rRNA is actually required for and used in mitochondrial translation. In the protist
Acanthamoeba castellanii, BLAST searches fail to reveal a 5S rRNA gene in the complete mitochondrial genome sequence, nor
is a 5S-sized RNA species detectable in ethidium bromide-stained gels of highly purified mitochondrial RNA preparations. Here
we show that an alternative visualization technique, UV shadowing, readily detects a novel, mitochondrion-specific small RNA
in A. castellanii mitochondrial RNA preparations, and that this RNA species is, in fact, a 5S rRNA encoded by the A. castellanii
mitochondrial genome. These results emphasize the need for caution when interpreting negative results that suggest the absence
of 5S rRNA and/or a mitochondrial DNA-encoded 5S rRNA sequence in other (particularly protist) mitochondrial systems.
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INTRODUCTION

5S rRNA is a highly conserved and universal component of

eubacterial, archaeal, plastid, and eukaryotic cytoplasmic

ribosomes. This small (∼120 nt) structured RNA interacts

with ribosomal proteins (L5 in eukaryotes; L5, L18, and L25

in bacteria and organelles), and the resulting RNA–protein

complex is found in the large ribosomal subunit (Moore

1996). Despite the fact that 5S rRNA was discovered some

40 years ago (Rosset and Monier 1963), its function is still

not precisely defined; what is known is that the 5S ribonu-

cleoprotein complex contributes importantly, albeit indi-

rectly, to many of the functions of large ribosomal subunits

that contain it (Moore 1996).

Surprisingly, in view of its otherwise ubiquitous distri-

bution, 5S rRNA appears not to be universally present in

mitochondrial systems. Plant mitochondrial ribosomes do

contain a distinctive 5S rRNA species (Cunningham et al.

1976; Leaver and Harmey 1976; Spencer et al. 1981), en-

coded by the mitochondrial genome (Bonen and Gray 1980;

Oda et al. 1992; Unseld et al. 1997; Kubo et al. 2000). A

recognizable 5S rRNA gene is also present in some protist

mitochondrial genomes, notably those of certain green, red,

and brown algae (Wolff et al. 1994; Ohta et al. 1998; Burger

et al. 1999; Turmel et al. 1999, 2002a, 2000b; Oudot-Le Secq

et al. 2001, 2002) and jakobid flagellates (Lang et al. 1996,

1999). However, an obvious 5S rRNA gene has not been

identified in other protist mtDNAs (Gray et al. 1998), or in

any of the more than 100 animal mitochondrial genomes

completely sequenced to date. Nor has a 5S rRNA species

been detected in isolated animal mitochondrial ribosomes

(O’Brien and Denslow 1996). By the same token, fungal

mitochondrial systems evidently lack a 5S rRNA compo-

nent (Lizardi and Luck 1971), although the possibility of

preparative loss of 5S rRNA during isolation of fungal mi-

tochondrial ribosomes has been debated (Datema et al.

1974; Michel et al. 1977).

A number of explanations could account for the absence

of 5S rRNA in any given mitochondrial translation system.

For example, the functional role of 5S rRNA may simply be

dispensable in some cases. Other possibilities are that the

functional role of 5S rRNA has been assumed by other

ribosomal components (ribosomal proteins?) or that a 5S-

equivalent sequence is covalently imbedded in the sequence

of the large subunit rRNA (Nierlich 1982; Thurlow et al.

1984). There is no evidence to support the former sugges-

tion, whereas the latter can be discounted by comparative

analysis of rRNA secondary structure (Lang et al. 1987;
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Gutell et al. 1993). A fourth possibility is that the function

of 5S rRNA has been assumed in mitochondria by an ex-

tramitochondrial 5S rRNA species imported into mitochon-

dria. In this regard, intriguing recent evidence suggests that

nucleus-encoded (cytoplasmic) 5S rRNA is a bona fide in-

tramitochondrial component in animals (Yoshionari et al.

1994; Magalhães et al. 1998), and that human mitochondria

are able to import 5S rRNA (Entelis et al. 2001).

On the other hand, a mitochondrial 5S rRNA species may

be present but be too divergent in sequence and higher-

order structure to be readily recognized as such. We present

here one such case—in the amoeboid protist, Acantham-

oeba castellanii—where previous approaches, both compu-

tational and experimental, were unable to detect either a 5S

rRNA gene in the completely sequenced mitochondrial

DNA or a mitochondrion-specific 5S rRNA.

RESULTS AND DISCUSSION

When A. castellanii RNA fractions were resolved by poly-

acrylamide gel electrophoresis, UV shadowing (Hassur and

Whitlock 1974) revealed the presence of a novel, highly

abundant, small RNA species (X) in purified mitochondrial

(but not cytoplasmic) RNA (Fig. 1A). Species X was, how-

ever, invisible when gels were stained with ethidium bro-

mide (Fig. 1B), an intercalating agent whose interaction

with nucleic acids is strongly affected by the degree and

stability of base pairing. Detection and isolation of species X

was simplified by the unusually slow migration (relative to

other 5S rRNAs) of A. castellanii cytoplasmic 5S rRNA

(length 119 nt) under the gel electrophoresis conditions

used.

The size and abundance of species X suggested that it

could be a mitochondrial 5S rRNA. To test this hypothesis,

we investigated the mitochondrial localization of this RNA

by subjecting a clarified Triton X-100 lysate of purified A.

castellanii mitochondria to centrifugation at 100,000g for

1.5 h. We expected that if species X is a bona fide 5S rRNA,

it should remain associated with ribosomes and appear in

the 100,000g pellet under the conditions used in this study.

RNA was prepared from both the supernatant (S100) and

pellet (P100) fractions, and, as expected, a significant por-

tion of species X was found in the P100 (Fig. 2). The species

X present in the S100 might be due to incomplete sedimen-

tation of mitochondrial ribosomes; alternatively, a low-mo-

lecular-weight ribonucleoprotein complex containing spe-

cies X (a putative 5S rRNA) may have dissociated from a

fraction of the ribosomes (see Moore 1996). Localization of

tRNAs exclusively in the S100 confirms that the high-speed

centrifugation did not pellet small RNA species that are not

associated with large complexes. Together, these observa-

tions support the hypothesis that species X is associated

with mitochondrial ribosomes.

To further characterize this novel ribosomal component,

RNA sequence data were obtained. Both 3�-end-labeling
(Fig. 3A) and 5�-end-labeling (Fig. 3C) of isolated species X

resulted in four labeled RNA species (X1–X4), differing in

length by 1 nt. By chemical sequencing of the 3�-end-la-
beled RNAs (Fig. 3B), the four RNAs were shown to have

exactly the same 3� termini, indicating that they must be

FIGURE 1. Visualization by (A) UV shadowing and (B) ethidium
bromide staining of A. castellanii cytoplasmic (cyto) and mitochon-
drial (mito) RNAs separated on a 10% polyacrylamide gel. Note: The
low-abundance RNA in the mitochondrial RNA preparation that
comigrates with cytoplasmic 5.8S rRNA has a 3�-terminal sequence
identical to that of cytoplasmic 5.8S rRNA (not shown). Our data
indicate that this RNA has a single 3�-terminal U residue, whereas the
number of U residues is ambiguous in the published sequence
(MacKay and Doolittle 1981).

FIGURE 2. Visualization by UV shadowing of RNAs isolated from
the supernatant (S100) and pellet (P100) of a 100,000g ultracentrifu-
gation of a clarified Triton X-100 lysate of purified A. castellanii mi-
tochondria. RNAs were separated on a 10% polyacrylamide gel. The
positions of A. castellanii cytoplasmic (cyto) 5.8S and 5S rRNA mark-
ers are indicated.

Bullerwell et al.

288 RNA, Vol. 9, No. 3



heterogeneous at their 5�ends. Terminal analysis of 5�-end-
labeled RNAs (Fig. 3D) revealed that the three shortest

length variants (X2–X4, 116–118 nt) contained a U residue

at their 5� termini, whereas the longest variant (X1, 119 nt)

had a 5�-terminal A. Because chemical sequencing gels of

the 3�-end-labeled RNAs could be read to within a stretch of

U residues near their 5� ends, these combined analyses

yielded RNA sequence data for every position in the mol-

ecule, demonstrating that species X is distinctly different in

sequence from the nucleus-encoded cytoplasmic 5S rRNA

of A. castellanii (MacKay and Doolittle 1981).

Alignment of the experimentally determined RNA se-

quence of species X with mitochondrial and eubacterial 5S

rRNA sequences (Fig. 4A) revealed nucleotide similarity

within a region highly conserved in other 5S rRNAs (out-

side of this stretch, very little primary structure conserva-

tion is evident among mitochondrial 5S rRNAs in general).

In addition to displaying a diagnostic primary sequence

motif, the RNA sequence of species X can be folded into a

secondary structure (Fig. 4B) consistent with the consensus

5S rRNA secondary structure (Moore 1996). These data

strongly suggest that species X is indeed a mitochondrial 5S

rRNA. The high A + U content of this 5S rRNA (78%) with

concomitant relatively weak base pairing in stem regions

presumably accounts for the failure of ethidium bromide to

bind efficiently to this RNA species in gels.

A search of the complete mtDNA sequence of A. castel-

lanii (Burger et al. 1995; GenBank accession number

NC_001637) located the mitochondrial 5S rRNA gene

(rrn5) within a previously unassigned

240-nt spacer between the cox1/2 and

rps4 genes. The 5� ends of this molecule

map 109–112 nt downstream from the

3� end of the cox1/2 reading frame,

whereas the 3� end maps 22 nt upstream

of the 5� end of the rps4 coding region.

The rrn5 gene is in the same transcrip-

tional orientation as all other genes in

this mitochondrial genome. When the

A. castellaniimitochondrial 5S rRNA se-

quence was used as a query in BLAST

searches of public domain databases, no

other 5S rRNA sequences (including any

of the known mitochondrial ones) were

detected.

CONCLUSIONS

Even though the A. castellanii mito-

chondrial 5S rRNA displays a degree of

primary and secondary structure con-

servation clearly sufficient to mark it as

a homolog of other 5S rRNAs, extensive

analysis of the complete mtDNA se-

quence (Burger et al. 1995) had previ-

ously failed to identify the corresponding gene. The 5S RNA

species itself had also escaped detection over a number of

years in experiments where ethidium bromide was routinely

used to visualize gel-purified A. castellanii mitochondrial

RNA species. The results reported here suggest that a 5S

rRNA species may be encoded in more mitochondrial ge-

nomes than is currently appreciated. Clearly, direct charac-

terization of mitochondrial RNAs by several methods re-

mains the most reliable approach to identifying mitochon-

drial 5S rRNAs and their genes.

In this regard, it is noteworthy that even with the A.

castellanii mitochondrial 5S rRNA sequence in hand, we are

not able to identify a homologous sequence in the mito-

chondrial genome of Dictyostelium discoideum (Ogawa et al.

2000), a member of the same protist phylum (Amoebozoa)

to which A. castellanii belongs (Cavalier-Smith 1998). The

A. castellanii and D. discoideum mitochondrial genomes

share a number of features in common, including an almost

identical gene content, a single open reading frame (cox1/

cox2) encoding subunits 1 and 2 of cytochrome oxidase, and

a similar set of tRNA genes whose transcripts require the

same type of 5� editing (Burger et al. 1995; Ogawa et al.

2000). D. discoideum mtDNA does encode a 129-nt RNA

species (Pi et al. 1998) that, however, lacks the diagnostic

primary and secondary structural features of a conventional

5S rRNA, and which displays no convincing sequence simi-

larity to the A. castellanii mitochondrial 5S rRNA sequence

described here. The fact that this novel RNA component

does not appear to be associated with D. discoideum mito-

FIGURE 3. (A) Electrophoretic separation of 3�-end-labeled species X and (B) chemical se-
quencing of these labeled RNAs. A representative 20% polyacrylamide gel for RNA band X4 is
displayed, with a portion of the deduced RNA sequence shown on the right. (C) Electropho-
retic separation of 5�-end-labeled species X and (D) one-dimensional thin-layer chromatog-
raphy of the products of P1 nuclease digestion of the four largest 5�-end-labeled RNAs (X1–
X4). The positions of nucleoside 5�-monophosphate markers are indicated. Autoradiograms
are shown in all cases.
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chondrial ribosomes (Pi et al. 1998) argues against the pos-

sibility that it is a nonhomologous but functional equivalent

of a conventional 5S rRNA. If D. discoideum mitochondrial

ribosomes do in fact lack the equivalent of a 5S rRNA

component (mtDNA-encoded or otherwise), this disparity

between two otherwise very similar amoebozoan mitochon-

drial systems would strengthen the view that the mitochon-

drial translation system is unusually flexible in its require-

ment for a 5S rRNA component.

MATERIALS AND METHODS

Isolation of mitochondrial and cytoplasmic RNA

A. castellanii strain Neff (ATCC 30010) was grown at 30°C with

moderate shaking to an O.D.550 of ∼1.0. Mitochondria were pu-

rified (Price and Gray 1999) and cytoplasmic and mitochondrial

RNAs were isolated as described (Spencer et al. 1992). RNAs were

separated on a 1.5-mm-thick 10% polyacrylamide gel (all poly-

acrylamide gels used in this study contained 7 M urea; Spencer et

al. 1992) and eluted from a homogenized gel slice by shaking

overnight at 4°C in a 1:1 mixture of phenol-cresol:buffer [0.5 M

NH4OAc, 10 mM Mg(OAc)2, 1.0 mM EDTA]. RNAs were pre-

cipitated twice with ethanol, redissolved in water, and stored at

−20°C in 50% ethanol.

Fractionation of mitochondria

Purified mitochondria were gently lysed in a solution containing

2% Triton X-100, 10 mM Tris-HCl (pH 8.5), 50 mM KCl, and 10

mM MgCl2 (Spencer et al. 1992) and centrifuged at 9,000g in a

fixed-angle rotor for 10 min. The clarified supernatant was further

fractionated by ultracentrifugation at 100,000g for 1.5 h in a fixed-

angle rotor. RNAs were separated on a 1.5-mm-thick 10% poly-

acrylamide gel and visualized by UV shadowing (Hassur and

Whitlock 1974).

Chemical sequencing of RNA

RNAs were 3�-end-labeled with [5�-32P]pCp and RNA ligase (Pe-

attie 1979) and purified on a 6% polyacrylamide sequencing gel.

Chemical sequencing reactions were performed as described (Pe-

attie 1979), and products were resolved in 6% and 20% polyacryl-

amide gels.

5�-End analysis of RNA

RNAs were 5�-end labeled with [�-32P]ATP and polynucleotide

kinase (Schnare et al. 1985) and purified as for the products of

3�-end-labeling. Labeled products were excised and extracted from

the gel and treated with P1 nuclease, which generates nucleoside 5�
monophosphates (pN). The products of P1 digestion were sepa-

rated by one-dimensional thin-layer chromatography using cellu-

lose plates (predipped in a 10% dilution of a saturated solution of

NH4SO4) and a 4:1 mixture of 95% ethanol:water as the solvent

(Lane 1963).
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