
P. Havinga et al. (Eds.): EUROSSC 2006, LNCS 4272, pp. 67 – 81, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovery and Composition of Services for
Context-Aware Systems

Cristian Hesselman1, Andrew Tokmakoff1, Pravin Pawar2, and Sorin Iacob1

1 Telematica Instituut, The Netherlands
2 University of Twente, The Netherlands

{cristian.hesselman, andrew.tokmakoff, sorin.iacob}@telin.nl,
p.pawar@utwente.nl

Abstract. We consider the challenge of dynamically adapting services to
context changes that occur in ubiquitous computing environments (e.g., changes
in a user’s activity) and propose the Context-Aware Service Enabling (CASE)
platform for that purpose. The CASE platform combines context-aware service
discovery with service composition, acting as an enabler for the development of
adaptive context-aware applications. In this paper, we illustrate the need for
context-aware service discovery and composition in pervasive 4G environments
and present the architecture of the CASE platform. The CASE platform enables
applications to easily adapt to changes in service availability, which may result
from changes in client and/or service context. We also provide an overview of
the platform’s technical realization.

Keywords: Service Discovery, Context-awareness, Service Composition.

1 Introduction

The vision of 4G mobile networks is one of new high-speed radio access network
technologies, an all-IP network, and a ubiquitous service platform [3]. Such a service
platform has a pivotal role in the 4G vision [8] as it provides a common underlying
set of functions that are enablers for the realisation of innovative new services. These
services are expected to make use of advanced mobile terminals that have various
radio technologies at their disposal and will be made available by providers that build
upon the core services offered by the underlying service platform.

Two essential aspects of ubiquitous computing, as seen in the 4G vision, are those
of service discovery and of context-awareness. The first is a service that allows
applications and/or services to discover and bind to services that appear and disappear
in highly dynamic mobile environments. The discovery of appropriate services can
benefit from knowledge of both client and service context. Furthermore, it may be the
case that no direct match for the requested client service can be obtained. In this case,
service composition can be utilised to dynamically “construct” a composite service
that matches the request of the client. This may also be subject to changing context
since a composed service may need to be re-composed over time or may become
“inappropriate” for a client as its context or that of the composed service changes.

68 C. Hesselman et al.

In the following sections, we will further discuss some of these essential concepts
and present them in relation to the Context-Aware Service Enabling (CASE)
platform, which provides a suite of core functionalities for context-aware service
discovery and composition that are needed as part of a broader ‘4G services
platform’. We first introduce our main concepts (Section 2) and then present the
architecture of the CASE platform (Section 3). Next, we provide an overview of the
platform’s technical realization (Section 4), which is currently under development. We
conclude with a discussion of related work (Section 5) and a summary (Section 6).

2 Context-Driven Service Adaptation

One of the most critical issues in pervasive computing environments is that of ever-
changing context. This applies equally well to mobile devices as to the (fixed)
services these devices use: mobile devices are regularly subject to location, network,
and power context changes, whilst services can for instance be subject to changes in
the types of devices they have to serve. In pervasive computing environments, such
changes should result in a service being dynamically adapted to the new context of a
mobile device or of the service itself.

2.1 Motivating Example

In Fig. 1, we present an example of an adaptive service that streams the latest news
(audio and video) to mobile users over the Internet. The service can dynamically add
and/or remove the video stream from a multimedia news transmission in reaction to
changes in the context of a user.

In Fig. 1, the service responds to changes in the activity of user Bob. Bob’s initial
activity is ‘driving on highway 35’ (Fig. 1a), which results in the service delivering
the news transmission in audio-only mode (for safety reasons). Bob then stops at his
destination and alights from his car. This has the effect of changing his activity to
‘walking in downtown Amsterdam’ (Fig. 1b). As a result, the service adjusts to also
deliver the video part of the transmission to Bob.

This change in service configuration could also result from other context changes,
such as a change in available networks. Similarly, it is also possible that the service’s
context may change (e.g., due to network outages or overloading) which would also
result in an adapted service being delivered to Bob. In the remainder of this section,
we provide a more detailed discussion of some important underlying concepts,
including services, context sources, context agents, and service adaptation.

2.2 Services

We consider a service to be a unit of well-defined functional behaviour (in syntax and
semantics) that is offered by a software entity for use by other software entities. The
adaptive broadcasting service of Fig. 1 is an example of such a service.

A service can be a composite service in that it can consist of one or more
constituent services. A constituent service provides part of the composite service or
helps other constituent services to do so. In general, a constituent service can itself be

 Discovery and Composition of Services for Context-Aware Systems 69

DD

Bob’s car

CC

Bob’s phone

Bluetooth Bob is driving

RR PPRR PP

CC

Bob’s phone

Bob is walking

RR PPRR PP

get out of carget out of car

(a)

(b)

LL

operator.nl

news.com

MM

UMTS

Tav
Tav

UMTS

Ta
Ta

BSBS

LL

operator.nl

news.com

MM

Tav
Tav

UMTS

Ta
Ta

BSBS
UMTS

audio streams

audio/video streams

context information

service-specific interactions

CACA

bob@domain.nl

CACA

bob@domain.nl

CACA

bob@domain.nl

CACA

bob@domain.nl

service

context source

client

context agentCACA

service

context source

client

context agentCACA
reference to a context source

Fig. 1. An example of adaptive multimedia broadcasting

a composite service, which means that it can also be further decomposed into yet
another set of constituent services. In the example of Fig. 1a, the broadcasting service
(BS) is a composite service. Its constituent services are a multimedia streaming
service (M) operated by a newscaster (news.com) and an audio transcoding service
(Ta) operated by an UMTS operator (operator.nl). The streaming service transmits an
audio stream, which the transcoding service receives and adjusts to match the
capabilities of Bob’s UMTS phone (e.g., by scaling the stream to a lower bit-rate).

Constituent services are arranged into a service graph, where the graph’s edges
indicate how the services relate to each other. Different constituent services of the
same composite service could potentially operate in different execution domains. In
Fig. 1a, the constituent services run in both the news.com domain (M) and also in the
domain of the UMTS operator (Ta).

70 C. Hesselman et al.

Clients are applications that interact with (potentially composite) services. These
interactions are service-specific. The client shown in Fig. 1 (C) runs on Bob’s mobile
phone and is responsible for rendering the audio and video streams that it receives
from the composite broadcasting service.

2.3 Context Sources and Agents

A context source is a service that provides access to context information, such as the
location of a user or the activity a user is currently engaged in [1]. A context source
provides an interface that enables clients to directly access context information via a
request-response interaction or by subscribing to events that signal a change in
context information (e.g., when a user moves from one room to another).

As with all services, a context source can be a composite context source that can
aggregate context information and also determine higher-level context information
from more elementary context information (cf. the interpreters of [16]). Fig. 1 depicts
an example in which a composite context source (R) enables a client to determine
Bob’s current activity (e.g., ‘Bob is driving on highway 35’ or ‘Bob is walking in
downtown Amsterdam’). To be able to supply this sort of information, the composite
context source consists of three different constituent context sources. They can
provide:

• the location of a particular user in the operator’s UMTS network (L),
• information regarding Bob’s car (D) (e.g., who is driving it, its direction of

travel and its velocity), and
• acceleration and orientation information about Bob’s phone (P)

(e.g., using a gyroscope and an accelerometer).

Using the context information provided by these constituent context sources, the
composite context source can determine what activity Bob is currently engaged in.

Fig. 1 illustrates that composite and constituent context sources may operate in
different execution domains. Context sources P and R reside on Bob’s mobile phone,
whereas L and D are located in the UMTS infrastructure and in Bob’s car,
respectively.

A context agent is a service that stores references to context sources. A context
agent represents an entity whose context needs to become discoverable. These entities
can be classified into people, places (e.g., a meeting room), and things (e.g., mobile
devices or software components) [16]. The references that a context agent stores point
to context sources that can currently provide context information about the entity
represented by the context agent. For example, the context agent associated with the
person ‘Bob’ could contain a reference to the composite context source that provides
access to Bob’s current activity (R) and a reference to the context source that provides
lower-level information about Bob’s current location (context source L).

A context agent acts as a single, persistent point of access for context information
about a particular entity and should therefore be ‘always on’. Each context agent has a
unique identifier, for instance based on the type of URLs defined by the Session
Initiation Protocol (SIP) [18]. In this case, the context agent of Bob (Fig. 1) would be
identified by a SIP URL like sip:bob@domain.

 Discovery and Composition of Services for Context-Aware Systems 71

After a client has resolved the identifier of a context agent to a network address
(e.g., using SIP and DNS), it can access the context agent. A context agent provides a
request-response interface, which enables clients to retrieve a subset of the references
stored by the context agent. A request indicates the types of context sources the client
is interested in (e.g., context sources that can provide information about the
temperature at Bob’s current location). The context agent’s response consists of
references to context sources that can provide this information. A context agent also
provides a publish-subscribe interface, which enables clients to asynchronously
receive updates in the context agent’s list of context sources. After a client has
obtained a set of references to context sources, it can use their interfaces to get the
actual context information.

A context agent can be realized in various ways, for instance as a web server [17].
A context agent can furthermore be combined with a context source, in which case the
context agent also implements a context source interface. This means that the context
agent can also return actual context information instead of just references to context
sources. In this case, a context agent is similar to the context aggregators discussed in
[16].

Observe that a context agent does not need to be physically co-located with the
entity it represents. For example, the context agent of a mobile device could be
located somewhere in the network infrastructure rather than on the device itself.

2.4 Service Adaptation

In pervasive computing environments, a service may need to be adapted in response
to a context change. These adaptations may need to occur while the service is being
used. In the example of Fig. 1, the broadcasting service (BS) is adapted in response to
a change in Bob’s activity (from ‘driving’ to ‘walking’) while Bob is listening
to/watching a news transmission. This dynamic adaptation is realized by a re-
composition of the service’s graph: the audio transcoding service (Ta) is removed and
is replaced with a transcoder that can handle both audio and video streams (Tav).

Context sources provide the means to detect context changes, but may themselves
need to be re-composed as a result of such a change. For example, when Bob gets out
of his car (Fig. 1), the composite context source (R) changes since the car’s context
source (D) becomes unavailable. In the example, context source R can still function
without D, but D may also need to be replaced with an equivalent context source.

3 Service Discovery and Composition

The main function of the CASE platform is to dynamically adapt services (including
context sources) by changing their composition in response to context changes,
possibly while these services are being used (cf. the example of Fig. 1). To
accomplish this, the platform consists of a composition service and two types of
discovery services: a context-aware discovery service and a basic discovery service.
Fig. 2 illustrates this. The arrows in Fig. 2 represent interactions.

72 C. Hesselman et al.

(3b)

(3b)

(3a)

(3a)

context-aware
service discovery

service

context-aware
service discovery

service

basic
service discovery

service

CACA

CSCS

CSCS

CACA

CC

SS

SS

context-aware
composition service

context-aware
composition service

(4b) (4b
)

(1)(1)

(6)

(4a)

(2)

(5)

(1) = context agent access
(2) = context source access
(3) = registration
(4) = service discovery
(5) = service access
(6) = composition

representation of
composite

services (state)

original service
request (state)

persistent
discovery

requests (state)

service
registrations

(state)

CSCS context source

context agent

client

service

CACA

CC

SS

CSCS context source

context agent

client

service

CACA

CC

SS

interactionsinteractions

(2)

Fig. 2. Architecture of the CASE platform

The CASE composition service dynamically (re)composes services based on
requests from clients and returns references to composite services to these clients
(interaction 6 in Fig. 2). Clients can subsequently access these services (interaction 5).

The composition service uses the context-aware discovery service to locate the
constituent services its needs for a particular composition (interaction 4a). Clients
may however also bypass the composition service and directly interact with the
context-aware discovery service.

The context-aware discovery service dynamically discovers services. It optimizes
the discovery process by means of context information (e.g., by only considering
near-by services [2]), which it obtains via context agents (interaction 1 in Fig. 2).
Context agents provide references to context sources (see Section 2.3), which they
find by accessing the basic service discovery service (interaction 4b in Fig. 2). This
discovery service is context-unaware and can be implemented using well-known
discovery protocols such as SLP or WS-Discovery. The context-aware discovery
service access the context sources to actually get the context information it needs
(interaction 2).

Observe that the distinction between a context-aware discovery service and a basic
discovery service is a logical one. In an implementation, the two discovery services
may partly overlap. Also note that in a pervasive computing environment the

 Discovery and Composition of Services for Context-Aware Systems 73

composition service and the two discovery services will typically be realised in a
distributed manner.

In this paper, we will concentrate on the context-aware service discovery service
(Section 3.1) and in particular, on the interactions that occur at its interfaces. We will
also briefly discuss the composition service (Section 3.2) and its interfaces and
interactions.

3.1 Context-Aware Discovery Service

The context-aware discovery service is an extension of a traditional discovery service
in that it uses context information during discovery. The discovery service obtains this
information through context agents, which we introduced in Section 2.3. Fig. 3 shows
an example in which the discovery service makes use of three context agents, one
associated with Bob, one with the service S, and one associated with Bob’s car. Each
context agent stores references to context sources that can provide context
information about the associated entity (Bob, S, and Bob’s car in this example). The
context-aware discovery service obtains context information in two steps: it first
obtains references to relevant context sources through one or more context agents
(interaction 1 in Fig. 2/Fig. 3) and then accesses those context sources to obtain the
actual context information (interaction 2 in Fig. 2/Fig. 3).

In this paper, we assume that context agents can be found through their identity
(e.g., a SIP URL) using an external discovery mechanism (e.g., SIP and DNS). We
also assume that context agents are able to deal with changes in their set of context
sources and are able to keep this set current.

As with established discovery services [7], the CASE context-aware discovery
service provides three interfaces:

• A registration interface, which enables services to become discoverable by
registering their descriptions with the discovery service;

• A discovery interface, which allows discovery clients (the composition
service or the clients of the platform) to find services by matching their
discovery requests with the descriptions of registered services. During
discovery, a client obtains information about the existence of services, their
applicable parameters, and their semantics (e.g., using ontologies [4]).; and

• A bootstrapping interface, which clients and services use to discover the
service discovery service.

In Fig. 2 and Fig. 3, the interactions that occur at the registration and discovery
interfaces are labelled 3 and 4, respectively. We will not consider the bootstrapping
interface any further in this paper.

The interfaces of the CASE discovery service extend traditional registration,
discovery, and bootstrapping interfaces. In this paper, we define these extended
interfaces in terms of a set of device-local service primitives, their parameters, and the
order in which the primitives are exchanged. To keep the discussion as general as
possible, we assume that service primitives are exchanged asynchronously.

74 C. Hesselman et al.

CACACACA

CACACC CACACC CACACC

(4a)

(1)

context-aware
discovery service

context-aware
discovery service

CACASS CACASS CACASS

(1)(3a)

(1)

CSCS CSCSCSCS CSCS

CSCS CSCSCSCS CSCS

CSCS context source

context agent

client

service

CACA

CC

SS

CSCS CSCSCSCS CSCS

(1) = context agent access
(2) = context source access
(3) = registration
(4) =service discovery
(5) = service access

discovery-related interactions

reference to context source

discovery-related interactions

reference to context source

(2)

(5)

Fig. 3. Service discovery example

The discovery interface supports active and passive discovery. In active discovery,
discovery clients actively request the discovery of certain services, whereas in passive
discovery they wait for the discovery service to push such services to them (on a
subscription basis). Passive discovery is particularly useful when a discovery client is
constantly looking for ‘better’ services. Passive discovery might for instance be useful
in the scenario of Fig. 1 if Bob’s client is continuously looking for transcoding
services that can deliver a certain new transmission at the highest possible quality in
Bob’s current context.

Active Discovery Interface. The active discovery part of the discovery interface
consists of a discovery request primitive and a discovery response primitive
(interaction 4a in Fig. 2/Fig. 3). As in traditional service discovery, clients use a
discovery request to invoke discovery and subsequently receive a response that
contains references to matching services. The request contains the usual parameters,
which are a semantic specification of the services the client is trying to find (e.g.,
transcoding services), a set of constraints (e.g., transcoders that support MP3 audio),
and a description of the scope in which the discovery service should look for matches
(e.g., in terms of a geographical area or a number of network hops) [7].

The CASE-specific parameters in a discovery request are:

• A client context specification, which describes the context information of
the discovery client. This parameter either consist of actual context
information (which the client obtained via its context agent) or of a
reference to the client’s context agent. The client context specification is
optional because some clients may not aware of having a context agent,
and

• An (optional) set of additional constraints that describe the context that
prospective services should to be in (e.g., printing services that must be
located in a certain building).

 Discovery and Composition of Services for Context-Aware Systems 75

Each of the references in a discovery response primitive comes with a description
of the corresponding service, which enables the client to intelligently select the most
appropriate service out of a number of alternative matches.

Passive Discovery Interface. The passive discovery part of the interface consists of
three primitives: a persistent discovery request, a persistent discovery response, and a
persistent discovery notification (also interaction 4a). A persistent discovery request is
essentially an active discovery request that has a specified lifetime. Discovery clients
use a persistent discovery request to instruct the CASE discovery service to generate a
discovery notification when it discovers services that are ‘better’ than the ones it
proposed in previous notifications. Before issuing such notifications, the discovery
system first confirms the receipt of the discovery request by passing a persistent
discovery response back to the discovery client.

With passive discovery, the scalability of the CASE discovery service is an
important concern because it needs to maintain state for each outstanding persistent
discovery request (see the enlargement in Fig. 2). The service discovery service
therefore uses softstate persistent requests, which means that it removes the state
associated with a persistent request unless that state is refreshed before a specified
time (leasing).

The parameters of a persistent discovery request are similar to those of an active
discovery request. The differences are that a persistent discovery request also
contains:

• A reference to the client (e.g., in the form of a URL) so that the service
discovery service can asynchronously deliver discovery callback
notifications; and

• A specification of the types of discovery notifications the client wishes to
receive (e.g., notifications that signal the appearance of a new matching
services or events that indicate the disappearance of such as service).

A persistent discovery response indicates if the discovery service successfully
handled the preceding request.

Registration Interface. The registration interface of the CASE context-aware
discovery service is almost the same as for established service discovery services. The
most important primitives are registration requests and registration responses
(interaction 3a in Fig. 2/Fig. 3). A service uses a registration request to register with
the discovery service, which then passes back a registration response.

The usual parameters of a registration request are a service description (augmented
with semantic descriptions), a specification of the scope in which the service is
available (e.g., a number of network hops or an administratively defined scope), and a
self-reference so that discovery clients can actually contact the service.

The CASE-specific parameter of a registration request is the context of the service
(optional), either in the form of the actual context information or as a reference to the
service’s context agent.

Operation. Fig. 4 describes the sequence of high-level operations used for processing
persistent discovery requests. The diagram illustrates how context information

76 C. Hesselman et al.

Fig. 4. High-level behavior of the context-aware discovery service

triggers the recalculation of a set of matching services. This may result in new
services being returned to the client in discovery notifications.

3.2 Composition Service

The composition service is responsible for dynamically constructing composite
services, based on client requests (see interaction 6 in Fig. 2/Fig. 3). The composition
service can also re-compose the service to keep it “matched” with what the client
initially requested if, for example, some of the service’s constituent services suddenly
become unavailable or when there is a context change (interaction 2, callback from a
context source). In this case, the composition service proposes one or more
recompositions of the service that the client is utilizing. The client can then decide
which (if any) of the proposed composite services it would like to bind to.

In Fig. 1, the composition service could for instance propose a recomposition of
the broadcasting service (Ta replaced by Tav) shortly after Bob gets out of his car. The
client on Bob’s mobile host can then decide if it wants to bind to the newly composed

 Discovery and Composition of Services for Context-Aware Systems 77

broadcasting service. Alternatively, the client could also delegate such binding
decisions to the composition service, but this would require the client to inform the
composition service of its ‘binding policy’.

A service request to the CASE composition service includes a semantic construct
parameter that specifies the desired functionality (i.e., the composite service). The
composition service returns a reference to the composite service that it has
constructed.

To automatically compose services, discoverable constituent services must not
only provide an explicit description of their interfaces and parameters, but also of
their functionality (see the registration interface in Section 3.1). A commonly used
approach for functionality description relies on the use of domain Ontologies [4].
Such semantic service descriptions enable the design of effective mechanisms for
automatic composition [5].

Assuming that the functionality of a (composite) service and the query for that
service (see interaction 6 in Fig. 2/Fig. 3) are expressed in a semantically consistent
way (e.g., in terms of the same ontology), it is possible to estimate the “gap” between
the functionality of the requested (composite) service and that offered by any of the
available (constituent) services [6]. Abstractly speaking, the behaviour of the CASE
composition service can then be defined as an iterative process by which new
functions (i.e., constituent services) are added at runtime to an existing aggregation
(i.e., composite service), until a certain acceptable error threshold between the desired
and available functionality is reached.

After each iteration, the composition service evaluates the newly constructed
composite service and calculates a utility measure (u) as a function of the semantic
similarity between the required and achieved functionality, and some non-functional
constraints (e.g., response time and cost). The context of the client can influence the
set of constituent services that the composite service selects for a particular
composition as well as the way in which they are arranged in the composite service’s
service graph. Once a service has been constructed, context changes such as those of
Fig. 1 might require the composition service to select new constituent services (e.g.,
transcoders) and use them to recompose the composite service (e.g., BS in Fig. 1).

4 Technical Realization

Fig. 5 shows the technical realization of the CASE platform, which we are currently
developing. We are concentrating our efforts on the implementation of the context-
aware service discovery service and will add the composition service at a later stage.
Our basic discovery service is the Jini lookup service [14], which we selected as a
technology for initial investigations. At this stage, we also have omitted context
agents from our implementation and let context sources directly register with the
context-aware discovery service.

The Jini infrastructure enables Jini services to register with Reggie [10] (the Jini
lookup service) using its discovery and join protocols. In our implementation, the
context-aware discovery service, other services in the Jini network, and context
sources are all Jini services. A reference to a context source consists of a serviceID,
which is generated by the Jini lookup service when a context source registers with it.

78 C. Hesselman et al.

Fig. 5. Technical realization of the CASE platform

Services are registered using Jini’s Service Entry functionality and provide references
to their associated context sources. These context sources supply context information
on the service according to the context ontology outlined in [19].

A context source uses the remote eventing mechanism provided by Jini to notify
clients of changes in context information. A client (in our case the context-aware
discovery service) interested in the context information implements a remote event
listener interface to receive remote events. The context-aware discovery service also
subscribes to the Jini lookup service so that it is notified when a new service registers.

As shown in Fig. 5, our implementation involves fixed context sources as well as
mobile context sources. A mobile context source participates as a service in the fixed
network using the Mobile Service Platform (MSP). The MSP design is based on the
Jini Surrogate Architecture Specification [15], which enables devices that cannot
directly participate in a Jini Network to join a Jini Network (with the aid of a third
party). The MSP consists of an HTTPInterconnect protocol to meet the specifications
of the Jini Surrogate Architecture and provides a custom set of APIs for building and
running services on a mobile device.

A context source in the fixed network exports a service proxy to the Jini lookup
service. The CASE context-aware discovery service uses this proxy to communicate
with a context source. We use ontologies to describe context sources and services,
thus facilitating a common semantics for context information and service descriptions
(OWL-S). The Context Distribution Framework (CDF) provides the necessary APIs
to implement context sources in the mobile and fixed network and to access context

 Discovery and Composition of Services for Context-Aware Systems 79

information. It also provides support to update and distribute context information
using ontological representation.

Our implementation utilises Jena [9] for service and context matchmaking. Jena is
a framework for building semantic web applications. It includes a rule-based
inference engine, support for ontologies, a querying mechanism, and persistent
storage capability using a database. We supply Jena with the context information
obtained from context sources and utilize its querying capabilities to interpret context
information for the purpose of matching registered services. When a client issues a
persistent service discovery request, Jena stores the service context information in a
MySQL database.

5 Related Work

This section provides an overview of existing approaches that use context information
to assist in the service discovery and composition processes.

The work reported in [11] combines service-oriented and context-aware computing
in order to provide composite services to users. Their service descriptions consist of
service context information like location, usage conditions, and a Context Of Interest
Function (COIF). During service discovery, the value of the COIF is calculated at
run-time to select a better service if the matching process returns more than one
service. The service composition process uses the client’s context information to
search for the closest basic services which support the user device. The set of services
selected during service discovery is further refined using context parameters that are
relevant for the composition. Our approach is similar to that described in [11].
However, the major factor which distinguishes the CASE platform is its support for
dynamic service re-composition whilst a (stateless) service is being utilized.

The architecture discussed in [13] builds context-aware applications as a
dynamically-composed sequence of calls to fine granularity Web services based on
context information. The user specifies a request for a composite service that consists
of context data and a goal. This goal is converted into sub-goals using a BPEL4WS
control flow template. A goal-oriented planning system SHOP2 transforms these sub-
goals to corresponding plans. Later, each plan is mapped to the equivalent BPEL4WS
plan describing the composite Web Service. In [13], the user provides context
information manually, however in our work, we use context sources and context
agents to automatically obtain context information as well as changes to the context of
the service user. Thus, we provide more concrete support for the acquisition of
context information.

Besides the use of context information for service composition, there has been
work reported on composing higher-level context from lower-level context elements.
[12] proposes to use compositions of basic context elements to build higher-level
contexts. A context composition mechanism, upon receipt of a request for higher-
level context, forms all equivalent context expressions from the lower-level context
elements and determines which equivalent context expressions can be instantiated.
The CASE platform is targeted to achieve composition of all the services and
therefore, can also be used to compose higher-level context using the context
information gathered from lower level context sources.

80 C. Hesselman et al.

The CASE platform dynamically re-composes services by subscribing to and
utilizing changes in context information of both clients and services. This mechanism
promises to simplify the design of clients in pervasive environments as they need not
explicitly search and compose the best services when their (or the currently composed
services) context changes. The other main aspect of our work is that the context
sources hosted on mobile devices are modelled as services which can participate in
service discovery to offer context information (and changes to such information) in a
standardized way. The use of ontologies for the representation of context information
ensures that services, context sources, and the CASE discovery and composition
services can meaningfully share context information. However, it is further possible
to improve the matchmaking behaviour of the CASE composition service by using the
COIF function of [11].

6 Summary

Future 4G service platforms will need to be able to dynamically (re)compose services
to deal with the frequent context changes inherent to 4G systems and the pervasive
computing paradigm in general. Service composition is also required since statically-
composed services will often not directly match requests for specific non-trivial
services.

Dynamic service composition relies heavily on service discovery. The use of
context information during discovery reduces the number of candidate services that
match the discovery request which is essential in pervasive environments, where there
may be many discoverable services.

The combination of context-aware service discovery and dynamic composition can
be considered to be the “next level” of intelligent service discovery/matchmaking. We
expect that in future 4G service platforms there will be an increasing need for such
additional intelligence to aid the development of genuinely adaptive end-user
applications. CASE is an example of a set of services that will be part of these
platforms and is a step in the direction of more intelligent pervasive computing
service platforms.

Acknowledgments. The authors would like to thank colleagues in the IST Amigo,
Freeband Awareness, and Freeband AMUSE projects who have contributed to the
work described in this article.

References

1. “AWARENESS Service Infrastructure D2.10 - Architectural specification of the service
infrastructure”, https://doc.telin.nl/dscgi/ds.py/ViewProps/File-47455

2. O. Ratsimor, V. Korolev, A. Joshi, and T. Finin, “Agents2Go: An Infrastructure for
Location-Dependent Service Discovery in the Mobile Electronic Commerce
Environment”, ACM Mobile Commerce Workshop, July 2001

3. M. Etoh, “Beyond 3G: From3G To Seamless Intertechnology Wireless Networks”,
http://www.docomolabs-usa.com/pdf/PS2003-062.pdf

 Discovery and Composition of Services for Context-Aware Systems 81

4. “OWL-S: Semantic Markup for Web Services”, http://www.daml.org/services/owl-
s/1.0/owl-s.html

5. K. Fujii and T. Suda, “Dynamic Service Composition Using Semantic Information”, 2nd
ACM International Conference on Service Oriented Computing (ICSOC '04), November
2004

6. V. Oleshchuk and A. Pedersen, “Ontology Based Semantic Similarity Comparison of
Documents”, 14th International Workshop on Database and Expert Systems Applications
(DEXA'03)

7. F. Zhu, M. Mutka, and L. Ni, “Service Discovery in Pervasive Computing Environments”,
IEEE Pervasive Computing, October-December 2005

8. C. Noda, et al., “Distributed Middleware for User Centric System”, 9th WWRF, Zurich,
Switzerland, July 2003

9. HP Labs, “Jena – A Semantic Web Framework for Java”, http://jena.sourceforge.net/,
October 2005

10. Sun Microsystems, “Reggie: Sun Microsystems Jini Lookup service implementation”, Jini
Technology Starter Kit v2.1, http://starterkit.jini.org/downloads/index.html, October 2005

11. S. K. Mostefaoui, A. Tafat-Bouzid, and B. Hirsbrunner. “Using Context Information for
Service Discovery and Composition.” Proceedings of the Fifth International Conference on
Information Integration and Web-based Applications and Services, iiWAS'03, Jakarta,
Indonesia, 15 - 17 September 2003. pp. 129-138.

12. G. Thomson, S. Terzis, and P. Nixon, “Towards Dynamic Context Discovery and
Composition”, 1st UK-UbiNet Workshop, Imperial College, London, England, September
2003.

13. M. Vukovic and P. Robinson, “Adaptive, planning-based, Web service composition for
context awareness”, International Conference on Pervasive Computing, Vienna, April
2004.

14. Sun Microsystems, “The JINI Architecture Specification”, http://www.sun.com/software/
JINI/ specs/ JINI1_2.pdf, December 2001.

15. Sun Microsystems, “JINI Technology Surrogate Architecture Specification”,
http://surrogate.JINI.org/sa.pdf, October 2003.

16. Dey, D. Salber, and G. Abowd, “A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications”, Special issue on context-aware
computing in the Human-Computer Interaction (HCI) Journal, Volume 16 (2-4), 2001, pp.
97-166.

17. P. Debaty and D. Caswell, “Uniform Web presence architecture for people, places, and
things”, IEEE Personal Communications, Volume 8, Issue 4, Aug 2001, pp. 46-51

18. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.
Handley, and E. Schooler, “SIP: Session Initiation Protocol”, RFC 3261, June 2002

19. J. Kalaoja, J. Kantorovitch, S. Carro, J. María Miranda, Á. Ramos and J. Parra, “The
Vocabulary Ontology Engineering”, 8th International Conference on Enterprise
Information Systems, Paphos, Cyprus, May 2006

