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Discovery and Physical Characterization of a Large Scattered Disk Object at 92au
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Abstract

We report the observation and physical characterization of the possible dwarf planet 2014UZ224 (“DeeDee”), a
dynamically detached trans-Neptunian object discovered at 92 au. This object is currently the second-most distant
known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris.
The object was discovered with an r-band magnitude of 23.0 in data collected by the Dark Energy Survey between
2014 and 2016. Its 1140 year orbit has a e i, , 109 au, 0.65, 26 .8= ( ) ( ). It will reach its perihelion distance of
38 au in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak
interactions with Neptune. We have performed follow-up observations with ALMA, using 3 hr of on-source
integration time to measure the object’s thermal emission in the Rayleigh–Jeans tail. The signal is detected at 7σ
significance, from which we determine a V-band albedo of 13.1 stat sys2.4

3.3
1.4
2.0

-
+

-
+( ) ( ) percent and a diameter of

635 stat sys km61
57

39
32

-
+

-
+( ) ( ) , assuming a spherical body with uniform surface properties.
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1. Introduction

The scattered disk and inner Oort cloud populations of trans-
Neptunian objects (TNOs) extend well beyond the classical
Kuiper Belt, to distances of hundreds of au. These dynamically
disturbed populations must have arisen from very different
mechanisms than those that produced the classical Kuiper Belt,
as evidenced by marked differences in their sizes (Fraser
et al. 2014), colors (Tegler & Romanishin 2000), albedos
(Brucker et al. 2009), and fraction of binaries (Noll et al. 2008).
The scattered disk population has been further divided by
Gladman et al. (2008) into objects which are actively scattering
off Neptune (as indicated by a significant variation in their
semimajor axis on 10Myr timescales), and detached objects
(non-scattering, non-resonant objects with e 0.24> ). The half-
dozen longest-period members of these populations display a
statistically improbable clustering in argument of perihelion
and longitude of ascending node. This finding has motivated
the hypothesis of a distant super-Earth (Trujillo & Sheppard
2014; Batygin & Brown 2016), sometimes called Planet 9.
Deep, wide-area surveys capable of probing the distant
scattered disk to high ecliptic latitudes have considerable
potential to contribute to our knowledge of this region (Abbott
et al. 2016). In this Letter, we report the discovery of a large
scattered disk object at 92 au using data from the Dark Energy
Survey (DES; Flaugher 2005), with follow-up radiometric
measurements by ALMA. Of known solar system objects with
reported orbital elements, only the Pluto-sized dwarf planet
Eris is currently more distant.

The DES is an optical survey of 5000 square degrees of the
southern sky being carried out with the Dark Energy Camera
(DECam; Flaugher et al. 2015) on the 4-meter Blanco telescope
at Cerro Tololo Inter-American Observatory in Chile. DECam
is a prime-focus camera with a 3 square degree field of view
and a focal plane consisting of 62 2 k×4 k fully depleted, red-
sensitive CCDs. To achieve its primary scientific goal of
constraining the dark energy equation of state, the DES has
been awarded 525 nights over 5 years to carry out two
interleaved surveys. The DES Supernova Program (DES-SN;
Bernstein et al. 2012) images 10 distinct DECam fields (a total
of 30 square degrees) in the griz bands at approximately
weekly intervals throughout the DES observing season, which
runs from mid-August through mid-February. The Wide
Survey covers the full survey footprint in the grizY bands to
a limiting single-exposure depth of m 23.8r ~ , with the goal of
achieving 10 tilings per filter over the duration of the survey.
The same combination of survey area and depth that makes
DES a powerful tool for precision cosmology also makes it
well suited to identify faint, distant objects in our own Solar
System. With broad off-ecliptic coverage, it is especially well-
suited to identifying members of the scattered disk and other
high-inclination TNO populations such as detached and inner
Oort cloud objects. We have previously reported on searches
for TNOs in the DES-SN fields from the first two DES seasons,
where discoveries have included two Neptune Trojans (Gerdes
et al. 2016) and the “extreme TNO” 2013RF98 (Abbott
et al. 2016), whose orbital alignment with other members of its
class helped motivate the Planet 9 hypothesis. This Letter
presents our first result from the extension of the TNO search to

the full DES Wide Survey, using data collected during the first
three DES observing campaigns between 2013 August and
2016 February.

2. Optical Data and Analysis

This analysis uses data from 14,857 exposures collected in
the griz bands during the first three DES observing campaigns
(Diehl et al. 2016). These exposures cover a 2500 square
degree region north of decl.=−40, about half the full survey
area. They contain over 1.1 billion individual object detections.
We identify transient objects using a variant of the DES

supernova difference-imaging pipeline, DiffImg (Kessler
et al. 2015). Each exposure (search image) is subtracted from
every other DES exposure (template image) of that region
taken in the same band. We do not use template images from
the same night to avoid subtracting out the most distant and
slowest moving objects, which may appear stationary over a
period of several hours.
The difference images created from each search-template

pair are then averaged, and statistically significant sources are
identified in the combined image. Subtraction artifacts are
rejected using a machine-learning technique described in
Goldstein et al. (2015). This typically yields ∼10 good-quality
transient detections on each 9 18¢ ´ ¢ area covered by a
single CCD.
After removal of stationary objects and artifacts with

DiffImg, our search sample contains about 5 million
single-epoch transients. While our selection efficiently retains
true astrophysical transients—asteroids, variable stars, super-
novae, etc.—the fraction of TNOs in this sample is on the order
of only 0.1%.
The apparent motion of a distant solar system object over

periods of several weeks is primarily due not to its own orbital
motion but to parallax arising from the motion of the Earth. Our
TNO search procedure begins by identifying pairs of detections
within 30 nights of each other whose separation is consistent
with the seasonally appropriate parallax expected for a distant
object ( 4 /hr). We then attempt to link these pairs into
chains of three or more observations, testing each chain for
goodness of fit to an orbit using code built on the fit_radec
algorithm of Bernstein & Khushalani (2000, hereafter B&K)
and requiring N 2.2c <
2014UZ224 was originally detected at a heliocentric distance

of 92.5au in seven linked observations on four nights between
2014 September 27 and 2014 October 28, with an r-band
magnitude of 23.0 and an ecliptic latitude of 10 .3-  . The object
was detected in six more DES survey images between 2014
August 19 and 2015 January 8, and was recovered in a targeted
DECam observation on 2016 July 18. The motion of the object
over the period of these observations is shown in Figure 1. The
orbital elements are obtained using the B&K fitter. These and
other data from these observations are shown in Table 1. We
refer informally to this object as “DeeDee,” for “distant dwarf.”
Apparent and absolute magnitudes of solar system objects are

often standardized to Johnson–Cousins V-band magnitudes. We
first derived transformation equations for stellar psf magnitudes
to relate DES and SDSS magnitudes, then applied the
transformations of Smith et al. (2002) to convert from the SDSS

2
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to Johnson–Cousins systems, obtaining m 23.38 0.05V =  .
The transformation equations depend on the g−r color of the
object in question, which is uncertain at the level of 0.11mag. As
a cross-check, the measured spectra of five TNOs with similar
colors were flux-corrected and found to have a reasonable match
to the observed DES magnitudes. From the flux-calibrated
spectra of each of these TNOs, we applied a synthetic
determination of the V-band magnitude. The central value and
spread of these values are consistent with our measurement.

3. Orbital Dynamics

We next investigated the dynamical behavior of 2014UZ224

on Gyr timescales. We generated 100,000 clones of
2014UZ224 with respect to the best-fit orbit and its covariance
matrix as described in Gladman et al. (2008). Taking the clone
with the smallest rms residual to be the new best fit, we
repeated the clone-generating procedure and identified the

clones that yield residuals consistent with observations. Out of
these objects, we chose the clones with minimum and
maximum semimajor axes, as well as five additional clones
interspersed between those two, and numerically integrated the
solar system using all eight clones as test particles. We ran the
integration for 1 Gyr using the hybrid symplectic and Bulirsch-
Stoer integrator built into Mercury6 (Chambers 1999) and
conserved energy to 1 part in 109. We did not include the
terrestrial planets in our integrations, and we replaced Jupiter,
Saturn, and Uranus with a solar J2 (as done in Batygin &
Brown 2016). We included Neptune as an active body because
2014UZ224’s perihelion distance of 38au brings it into
proximity with Neptune.
As shown in Figure 2, over 1 Gyr timescales each clone

remains confined to a region closely surrounding its measured
orbit, with a ad being less than 1% for all clones. This result
indicates that despite the potentially destabilizing interactions
with Neptune, this object remains dynamically stable and
satisfies the formal criteria of Gladman et al. (2008) as a
detached TNO. Although the uncertainty on the object’s
semimajor axis overlaps with the 7:1 mean-motion resonance
with Neptune, none of the clones we examined undergoes
libration. We also performed several 4.5 Gyr integrations of the
best-fit orbit. The object demonstrated stability over the full
solar system lifetime as well.

4. Measurement of Thermal Emission, Size, and Albedo

We observed 2014UZ224 with director’s discretionary time
on the Atacama Large Millimeter/submillimeter Array
(ALMA) on 2016 August 19 and 20. The observations were
carried out with 41 antennae and baselines between 15 and
1462 m. The source was tracked using a user-provided
ephemeris. The correlator was configured to observe four
continuum spectral windows centered on 224, 226, 240, and
242 GHz, respectively, resulting in a total bandwidth of
7.5 GHz. The nearby quasars J0522–3627 and J0238+1636
were used as bandpass calibrators for the first night and the
second observations, respectively. The amplitude and phase of
observations were calibrated by J0257–1212, and J0423-0120
was used for absolute flux calibration. The total on-source
integration time was 176 minutes.

Figure 1. Path of 2014UZ224 over the course of its observed 699 day arc. Dots indicate locations at which the object was observed by the DES. The data used to
create this figure are available.

Table 1

Orbital Elements and Other Properties of 2014UZ224

Parameter Value

a(au) 108.90±7.36
e 0.651±0.030

i (deg) 26.78509±0.00012

ω (deg) 29.55±1.46

Ω (deg) 131.142±0.053

Perihelion (au) 37.97±0.69

Perihelion date 2142/01/02±1654d

Aphelion (au) 179.8±12.1

Period (years) 1136±115

Epoch JD 2457600.5

Heliocentric distance at discovery (au) 92.5

Arc length (days) 699

Apparent mag (r) 22.98±0.04

Apparent mag (V ) 23.38±0.05

Absolute mag HV 3.5

g−r (mag.) 0.77±0.11

r−i (mag.) 0.39±0.07

i−z (mag.) 0.22±0.16

Albedo (%) 13.1 stat sys2.4
3.3

1.4
2.0

-
+

-
+( ) ( )

Diameter (km) 635 stat sys61
57

39
32

-
+

-
+( ) ( )
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The raw data were calibrated by NRAO staff manually using

the CASA package version 4.6. The calibrated visibilities of

five data sets were then stacked to align the position using the

fixplanet command. We generated a synthesized continuum

image with the CLEAN algorithm and a natural weighting in

CASA. The resulting synthesized beam is 0. 30 0. 25 ´  , with a

position angle of 84- . A bright point-like source is detected at

the center of the image, with a peak flux of 47 Jy beamm and a

signal-to-noise ratio of ∼7. We used the imfit task in CASA to

fit the central source with a 2D Gaussian and found the source

had a major-axis FWHM of 0.33 0. 05  and a minor-axis

FWHM of 0.25 0. 03  , with a position angle of 39◦. The

apparent source size is thus consistent with the result of a point

source convolved with the synthesized beam. The total flux

measured from a 2D Gaussian fit is 53 10 Jym . The final

calibrated image is shown in Figure 3.
The source appears to be slightly elongated in the north–

south direction compared to the synthesized beam. To test

whether this apparent elongation was a result of a binary

system, we fit the source with two models: a single-point-

source model and a binary model. The residuals after

subtracting either model are very similar, and both were within
1σ of the distribution of noise measured in the background
regions of the synthesized image. We conclude that the
observations are consistent with a single point source.
The combination of optical and thermal measurements

allows for constraints on the object’s physical properties,
under the assumption of a thermal model with temperature
distribution T ,q f( ), where θ and f are the planetographic
coordinates on the object. The physical properties of primary
interest are the object’s size and albedo, which can be uniquely
determined by simultaneously solving the following equations:

F F
p D r

4 1 au
, 1V V

V
,

2 2

=
D

-

 ⎜ ⎟⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
( )

F B T d, , 2ò q f= Wl l l ( ( )) ( )

where FV, F V, , and Fl are the visible, solar visible, and thermal

flux densities; D is the diameter; pV is the geometric visible

albedo; r and Δ are the heliocentric and geocentric distances,

respectively; l is the spectral emissivity; Bl is the Planck

Figure 2. Time evolution of semimajor axis over 1 Gyr for each of the eight clones of 2014UZ224 considered in this work, from the minimum (bottom line) to
maximum (top) initial semimajor axis. For all clones, a ad is less than 1% in amplitude, demonstrating the long-term dynamical stability of this object in the presence
of Neptune.
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function; and dW is the solid angle subtended by the elements

dq and df as seen from Earth. The form of T T ,q f= ( )

depends on the surface geography, spin rate, bolometric

emissivity (ò), thermal inertia, and shape of the object; none

of which is generally known. Therefore, it is common practice

to assume a simplified thermal model.
The Standard Thermal Model (STM; Lebofsky & Spencer 1989

and references therein) describes a spherical, non-rotating body
observed at zero phase angle and represents the hottest possible
temperature distribution. In this model, the temperature depends
only on the angular distance θ from the subsolar point where
T T cosSS

1 4q q=( ) with T A S r1SS
2 1 4hs= - [( ) ( )] and

T=0 on the nightside. Here, A qpV= is the Bond albedo and q
is the phase integral. Se is the solar constant and η is the “beaming
factor.” η was originally introduced to account for surface
roughness and variations in thermal inertia but also serves to
interpolate between the STM and its “cold” counterpart, the Fast
Rotator Model (FRM), by scaling the subsolar temperature. In
particular, 1h < results in a higher temperature than predicted by
the model while 1h > results in a lower predicted temperature.

Obtaining several measurements spanning both sides of the
peak of the blackbody emission spectrum would allow us to
leave η as a free parameter to fit in our model, significantly
constraining the temperature distribution on the surface.
However, this is not possible with a single-wavelength
measurement, and we must allow η to explore its full range
of 0.6 to 2.6 (Mommert et al. 2012). For the remainder of this
work we use the STM as our base thermal model, but we allow
η to take any value within its allowed range. Equation (2) then
becomes

F
D

B T d
2

sin cos . 3
2

2
0

2
ò q q q q=

D
l

l
p

l ( ( )) ( )

Adopting the STM requires some assumptions regarding the

nature of the object’s thermal emissions. First, we assume a

bolometric emissivity 0.9 0.1 =  , a typical assumption for

TNO thermal models. While the thermal emissivity can be

treated as constant at wavelengths 350 μm, Fornasier et al.

(2013) showed that the thermal emissivity is suppressed at

longer wavelengths, such as the 1.3 mm wavelength corresp-

onding to ALMA’s 233 GHz band used in our measurement.

We adopt a value of 0.68 =l at 1.3 mm, the average value

measured by Brown & Butler (2017) with ALMA at 233 GHz

for four TNOs with sizes comparable to 2014UZ224. We keep

0.9 0.1 =  as our bolometric emissivity in the surface

temperature distribution. Second, we assume that the phase

integral q=0.8 as derived in Stansberry et al. (2008) for large,

bright TNOs. Varying q from 0.4 to 0.8 results in 1%<
variation in albedo for low-albedo TNOs. The phase angle for

an object at ∼92 au never exceeds 1◦; thus, we may neglect any

effects arising from a changing phase angle and set the phase

angle equal to zero.
Estimation of the uncertainties in the calculated diameter

and albedo were performed following the procedure outlined

in Mommert et al. (2012). We employed a Monte Carlo

simulation using 1000 clones, where each clone was

generated by varying the observed flux densities at both the

thermal and optical wavelengths, the heliocentric and

geocentric distances associated with the optical measure-

ments, the bolometric emissivity ò, and the beaming factor η.
Our uncertainties are dominated by the statistical uncertainty

in our flux measurements. Each parameter, with the exception

of η, was varied randomly according to a normal distribution

defined by its nominal value and 1σ uncertainty. η was varied

according to a uniform distribution from 0.6 to 2.6. The

uncertainties in the diameter and albedo were then defined by

the lower and upper values that included 68.2% of the clones,

centered on the peaks of the resulting distributions of the two

parameters.

Figure 3. Calibrated, stacked image of 2014UZ224 from 3 hr of on-source integration with ALMA. The black ellipse represents the size of the synthesized beam.
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Under these assumptions, we measure the geometric albedo
and diameter of 2014UZ224 to be

p

D

13.1 stat sys %

635 stat sys km.

V 2.4
3.3

1.4
2.0

61
57

39
32

=

=
-
+

-
+

-
+

-
+

( ) ( )

( ) ( )

Here, the quoted statistical uncertainty is due to the uncertainties

in both the visual and thermal flux measurements, as well as

uncertainties in the helio- and geocentric distance measurements.

The quoted systematic uncertainty is due to variation of the

model parameters η and ò.
As shown in Figure 4, the measured albedo is higher than

that of rocky bodies such as asteroids, and of typical classical
KBOs, yet notably smaller than ice-rich dwarf planets Eris
(96%; Sicardy et al. 2011), Haumea (80%; Fornasier et al.
2013), Pluto (72%; Buratti et al. 2017), and Sedna (32%; Pál
et al. 2012), suggesting that 2014UZ224 has a mixed ice-rock
composition. An object of this composition and size is likely to
have enough self-gravity to reach an approximately spherical
shape in hydrostatic equilibrium (Tancredi & Favre 2008),
making 2014UZ224 a candidate dwarf planet.

5. Conclusions

We have reported the discovery of 2014UZ224 (“DeeDee”)
a trans-Neptunian object discovered at 92 au from the Sun. This
object has an estimated size D 635 70 km=  and albedo
p 13 4%V =  , and is most likely a dwarf planet with a mixed
ice-rock composition. This discovery adds to the growing
inventory of dwarf planets in the outer solar system and
indicates that the TNO population displays a nearly continuous
distribution of size and albedo.

Neither the orbital nor the physical properties of 2014UZ224

are surprising, as they are in the range of other well-

characterized detached TNOs discovered closer to the Sun.
The population of detected TNOs is of course strongly biased
toward those that are large, near perihelion, and/or have high
albedo. Current surveys such as the DES now have the depth
and area coverage to discover the counterparts of known
objects that are well beyond perihelion. It is also noteworthy
that the ALMA facility is easily capable of radiometric
detection of a 600 km body at 90 au> distance. Hence, it will
be possible to establish sizes and albedos for nearly every body
detectable in the visible by DES and similar surveys. As these
surveys progress, we will be able, for example, to determine
whether the very high albedo of Eris is characteristic of
large bodies at this distance, or whether flux selection has led to
the first discovery being atypical.

D.W.G. and F.C.A. are partially supported by NSF grant
AST-1515015. G.M.B. and M.S. are partially supported by
NSF grant AST-1515804. S.J.H. and J.C.B. are supported by
NSF-GRFP grant DGE-1256260. This work used the Extreme
Science and Engineering Discovery Environment (NSF grant
number ACI-1053575).
Funding for the DES Projects has been provided by the DOE

and NSF(USA), MEC/MICINN/ MINECO (Spain), STFC
(UK), HEFCE (UK), NCSA (UIUC), KICP (U. Chicago),
CCAPP (Ohio State), MIFPA (Texas A&M), CNPQ, FAPERJ,
FINEP (Brazil), DFG (Germany) and the Collaborating
Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne Lab, UC Santa

Cruz, University of Cambridge, CIEMAT-Madrid, University
of Chicago, University College London, DES-Brazil Consor-
tium, University of Edinburgh, ETH Zürich, Fermilab,
University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona,
Lawrence Berkeley Lab, LMU München and the associated
Excellence Cluster Universe, University of Michigan, NOAO,

Figure 4. Size–albedo relations for selected TNO populations including detached and scattered disk objects (Li et al. 2006; Santos-Sanz et al. 2012), Plutinos
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