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ABSTRACT   150 

Rapid progress of the discovery of genetic loci associated with common, complex diseases has 151 
outpaced the elucidation of mechanisms pertinent to disease pathogenesis. To address relevant 152 
barriers for coronary artery disease (CAD), we combined genetic discovery analyses with 153 
downstream characterization of likely causal variants, genes, and biological pathways. 154 
Specifically, we conducted a genome-wide association study (GWAS) comprising 181,522 cases 155 
of CAD among 1,165,690 participants. We detected 241 associations, including 54 associations 156 
and 30 loci not previously linked to CAD. Next, we prioritized likely causal variants using 157 
functionally-informed fine-mapping, yielding 42 associations with fewer than five variants in the 158 
95% credible set. Combining eight complementary predictors, we prioritized 185 candidate causal 159 
genes, including 94 genes supported by three or more predictors. Similarity-based clustering 160 
underscored a role for early developmental processes, cell cycle signaling, and vascular 161 
proliferation in the pathogenesis of CAD. Our analysis identifies and systematically characterizes 162 
risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD. 163 

 164 

INTRODUCTION 165 

Coronary artery disease (CAD) remains the leading global cause of mortality, principally reflecting 166 
effects of risk behaviors and genetic susceptibility.[1] Previous genetic association studies have 167 
identified over 200 susceptibility loci for CAD. Consistent with other common, complex diseases, 168 
genetic discovery analyses have identified the polygenic architecture of CAD, enabled insights 169 
into disease etiology and causal risk factors, and facilitated the development of novel tools for 170 
clinical risk prediction.[2-10] However, with rapid increases in the availability of large-scale human 171 
genetic data linked to health outcomes, the identification of disease-associated genetic loci has 172 
outpaced their ensuing functional characterization.  173 

 174 

Several in silico tools have emerged to help determine the mechanisms connecting regions of the 175 
genome to disease risk.[11, 12] Nonetheless, it remains fundamentally challenging to identify the 176 
causal genes underlying genetic associations as these tools can produce spurious findings and 177 
frequently lack consensus.[13] Recent analyses have suggested the value of integrating locus-178 
specific (“locus-based”) approaches to gene prioritization with more global (“similarity-based”) 179 
assessments of shared pathways and functions to enhance the prediction of putative causal 180 
genes.[13-15] The integration of multiple orthogonal lines of evidence, and the use of disease-181 
specific resources to aid variant and gene classifications, may expedite the transition from gene 182 
maps to disease mechanisms.  183 

 184 

To extend these approaches to CAD, we first analyzed imputed genotyping array data from ten 185 
studies, comprising over 120,000 cases of CAD and 700,000 controls. We then combined these 186 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2021. ; https://doi.org/10.1101/2021.05.24.21257377doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.24.21257377
http://creativecommons.org/licenses/by/4.0/


6 
 

results with summary statistics from the CARDIoGRAMplusC4D Consortium, achieving a total 187 
sample of 181,522 CAD cases among 1,165,690 study participants.[2, 7, 10, 16] Our primary 188 
objectives were to: (1) discover novel genetic associations with CAD; (2) determine the impact of 189 
expanded genetic discovery for identifying loci of biological relevance and improving clinical risk 190 
prediction; and (3) implement a systematic and integrative approach – including well-established 191 
and newer methods – to prioritize likely causal variants and genes at genome-wide significant 192 
associations for CAD, thereby providing a catalogue of high-priority testable hypotheses for 193 
experimental follow-up. 194 

 195 

 196 

RESULTS 197 

Discovery of known and novel CAD loci 198 

Participants were largely (>95%) of European ancestry (predominantly from Europe or the US) 199 
and 46% were female (Supplementary Table 1). After quality control and filtering, 20,073,070 200 
variants were included in the discovery meta-analysis (Online Methods). To identify independent 201 
variants, we performed approximate conditional analysis using GCTA-COJO, and report 241 202 
independently associated variants that exceeded genome-wide significance (p-value≤5.0x10-8) at 203 
198 loci (Supplementary Table 2; Supplementary Figure 1). 54 sentinel variants were 204 
uncorrelated (r2<0.2) with variants reported in previous large-scale genetic analyses, including 30 205 
that lie outside genomic regions previously reported for CAD (Table 1). A phenome-wide 206 
association scan (PheWAS) in UK Biobank indicated that 130 (54%) of the 241 CAD-associated 207 
variants were not associated (p-value>3.9x10-6) with conventional CAD risk factors such as blood 208 
lipids, blood pressure, type 2 diabetes, or adiposity (Supplementary Table 3), suggesting 209 
widespread mediation of CAD risk via other mechanisms. 210 

 211 

Several of the novel associations (Table 1) were found near mechanistically plausible causal 212 
genes, including: rs35611688 near ACVR2A, which encodes a receptor for activin A, a member 213 
of the transforming growth factor (TGF)-beta superfamily of cytokines implicated in 214 
atherogenesis;[17-19] rs6883598 near FBN2, encoding fibrillin-2, which mediates the early stages 215 
of elastic fiber assembly and is associated with aortic aneurysms and Beals Syndrome, a Marfan-216 
like disorder;[20-22] and rs1892971 near MMP13, which encodes matrix metalloproteinase 217 
(MMP)-13, an interstitial collagenase that influences the structural integrity of atherosclerotic 218 
plaques through regulation and organization of intraplaque collagen.[23, 24] While the sentinel 219 
variant near FBN2 was associated with blood pressure and hypertension in the PheWAS, the lead 220 
variants near ACVR2A and MMP13 were not associated with conventional CAD risk factors, 221 
suggesting they are likely to act through alternative pathways.  222 

 223 
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Allelic architecture 224 

Of the 54 novel associations, 46 sentinel variants were common (minor allele frequency 225 
[MAF]>0.05) with relatively weak effects on CAD (odds ratio [OR] per CAD risk allele from 1.03-226 
1.07) (Figure 1). The remaining eight were low-frequency (MAF=0.009 to 0.036), of which four 227 
had comparatively strong effects (OR=1.30 to 1.44) and four had more modest effect associations 228 
(OR=1.10 to 1.14) (Supplementary Figure 2). To boost power to detect associations driven by 229 
rarer variants, we conducted gene-based tests of missense and predicted loss-of-function 230 
variants in UK Biobank (n=33,941 CAD cases, 438,394 controls; Supplementary Table 4). Apart 231 
from a strong signal for PCSK9, we did not find evidence for further association with a burden of 232 
low-frequency or rare variants (Supplementary Figure 3; Supplementary Table 5). 233 

 234 

Differential effects by sex 235 

To identify associations that differ by sex, we conducted sex-stratified GWAS in a subset of 16 236 
studies comprising 77,080 CAD cases (Supplementary Table 6). After combining results across 237 
studies using a sex-differentiated meta-analysis, which allows for between-sex heterogeneity, we 238 
found ten associations (nine previously reported) that reached genome-wide significance (p-239 
value≤5.0x10-8) and had evidence (p-value≤0.01) for between-sex heterogeneity (Supplementary 240 
Table 7). Nine of these had stronger effects in the male-only analysis - including associations at 241 
the well-known 9p21 and SORT1 loci - however rs7696877 near MYOZ2 had a stronger effect in 242 
females (per-allele OR=0.94) than males (per-allele OR=0.98; heterogeneity p-value=0.007). 243 

 244 

Sub-threshold associations 245 

At a significance level (p-value<2.52x10-5) approximating a 1% false discovery rate (FDR), we 246 
identified a further 47,622 variants associated with CAD, including 656 conditionally independent 247 
associations (Supplementary Table 8). The majority (486, 74.1%) were common variants 248 
(MAF>0.05), but almost all had relatively weak effects (per-allele OR<1.07). Among these were 249 
several associations with strong biological priors, including rs41279633 (p-value=1.24x10-6) in 250 
NPC1L1, which encodes Niemann-Pick C1-like 1, an important mediator of intestinal cholesterol 251 
absorption and the target of ezetimibe, a cholesterol lowering drug. Other examples include loci 252 
known to be associated with cardiovascular risk factors, such as PNPLA3 (rs738408; p-253 
value=1.04x10-5), the strongest locus for non-alcoholic fatty liver disease[25], and TCF7L2 254 
(rs7903146; p-value=6.39x10-8), the strongest locus for type 2 diabetes[26]. Heritability for liability 255 
to CAD was estimated to be 15.5% for the 241 conditionally independent associations reaching 256 
genome-wide significance, increasing to 36.1% for the 897 associations with p-value<2.52x10-5. 257 

  258 

Trans-ethnic comparison and meta-analysis 259 
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The recent publication of a large GWAS from Biobank Japan permitted evaluation of the genome-260 
wide associations in a well-powered set of East Asian ancestry participants.[3] Effect estimates 261 
for the 199 sentinel variants in both datasets were strongly positively correlated (r=0.59) between 262 
the predominantly European ancestry meta-analysis and the Biobank Japan GWAS 263 
(Supplementary Figure 4a), as were the effect allele frequencies (r=0.76; Supplementary Figure 264 
4b). To assess the potential for enhanced discovery by combining results from different ethnic 265 
groups, we then meta-analyzed the Biobank Japan GWAS summary statistics with those from the 266 
current analysis, yielding 38 additional novel loci at genome-wide significance (Supplementary 267 
Table 9). 36 of these were included in the 1% FDR set, including the aforementioned associations 268 
at TCF7L2 and PNPLA3. The exceptions were two variants (rs5867305 in SKP2 and rs75655731 269 
near LINC00599) that are considerably more common in East Asians and had stronger effect 270 
estimates in Biobank Japan (Supplementary Table 9). 271 

 272 

Association of polygenic risk scores with incident and recurrent CAD 273 

To assess the impact of the enhanced discovery sample size on genetic risk prediction for CAD, 274 
we constructed and evaluated 362 polygenic risk scores (PRS) using combinations of PRS 275 
derivation methods (Pruning and Thresholding[27] or LDpred algorithm[28]) and summary 276 
statistics from either the current meta-analysis or a 1000 Genomes-imputed GWAS involving 277 
around 60,000 CAD cases published in 2015.[7] We selected the optimized PRS for each 278 
combination of derivation method and GWAS summary statistics based on performance when 279 
predicting incident CAD in a training dataset from the Malmo Diet and Cancer study (n=22,872; 280 
nincident_cases=3,307) (Supplementary Table 10). The two top-performing scores were those derived 281 
with LDpred, which comprised 2,324,653 variants (“2021 PRS”) and 1,532,758 variants (“2015 282 
PRS”; Supplementary Tables 11-14). In bootstrapping analyses, the 2021 PRS outperformed the 283 
2015 PRS as evidenced by greater effect estimates (age- and sex-adjusted mean hazard ratio 284 
[HR]=1.56 versus 1.49; p-value=3.2x10-31) and higher area under the receiver operator 285 
characteristic curve (AUC; age- and sex-adjusted mean AUC=0.742 versus 0.736; p-286 
value=6.5x10-16) (Supplementary Table 15).  287 

 288 

We validated both scores in a held-out subset of the Malmo Diet and Cancer study (n=5,685; 289 
nincident_cases=815) (Supplementary Table 10). The 2021 PRS was more strongly associated with 290 
incident CAD with greater age- and sex-adjusted hazards per 1-SD higher PRS (HR 1.61; 95% 291 
CI 1.50-1.72) than the 2015 PRS (HR 1.49 per standard deviation; 95% CI 1.39-1.59), providing 292 
improved stratification of participants at higher and lower risk for incident CAD (Figure 2a). After 293 
adjustment for several established risk factors (total cholesterol, HDL cholesterol, systolic blood 294 
pressure, body mass index, type 2 diabetes, current smoking status, and family history of CAD), 295 
the 2021 PRS remained strongly associated with incident events (HR 1.54 per SD higher PRS; 296 
95% CI: 1.42-1.66). Examining the extremes of CAD risk, the 2021 PRS yielded a 5.7-fold higher 297 
risk between the top and bottom deciles of the PRS, compared to a 3.8-fold higher risk with the 298 
2015 PRS.  299 
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 300 

To assess the value of the PRS for secondary prevention, we evaluated both PRS for prediction 301 
of recurrent coronary events in the placebo arm of the Further Cardiovascular Outcomes 302 
Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER; n=7,135; 303 
nincident_cases=673) clinical trial, a cohort of patients with established atherosclerotic cardiovascular 304 
disease.[29] The 2021 PRS demonstrated improved recurrent event prediction (HR 1.20 per SD 305 
higher PRS; 95% CI: 1.11-1.29) as compared to the 2015 PRS (HR 1.13 per SD higher PRS; 306 
95% CI: 1.04-1.22), and enhanced stratification of participants at higher and lower risk for 307 
secondary events (Figure 2b). Examining the extremes of risk, the 2021 PRS yielded a 1.7-fold 308 
higher risk of recurrent coronary events between the top and bottom deciles of the PRS versus a 309 
1.4-fold higher risk with the 2015 PRS. 310 

 311 

Prioritizing causal variants, genes and intermediate pathways 312 

We employed several independent approaches to prioritize causal variants, effector genes, 313 
relevant tissues of action and related intermediate causal pathways for all 241 genome-wide 314 
significant associations. Presence of a protein-altering (i.e. missense or predicted loss-of-315 
function) variant has been shown to be a strong predictor of a causal gene, particularly if the 316 
coding variant is not common in the population[14]. At 44 of the 241 genome-wide significant 317 
associations, the sentinel variant, or a strong proxy (r2≥0.8), was a protein-altering variant 318 
(Supplementary Table 16). These included well-known low-frequency missense variants in 319 
PCSK9 (p.R46L), LPL (p.N291S), and ANGPTL4 (p.E40K)[16]. Eleven of the 44 missense 320 
variants were novel, including a missense variant in RRBP1 (rs1132274; p.R891Q) that was also 321 
the CAD sentinel variant. RRBP1 encodes ribosome binding protein 1, a widely-expressed protein 322 
responsible for protein processing in the membrane of the endoplasmic reticulum. We also 323 
identified a missense variant (rs129415; p.G398R) in SCUBE1 that is strongly correlated with the 324 
CAD sentinel variant in European ancestry participants (r2=0.99). SCUBE1 encodes signal 325 
peptide-CUB-EGF domain-containing protein 1, a glycoprotein secreted by activated platelets that 326 
protects against thrombosis in mice when inhibited.[30] 327 

 328 

Functionally-informed fine-mapping 329 

Incorporating functional annotations into fine-mapping approaches has been shown to improve 330 
identification of likely causal variants at associated loci.[31-33] Using ChromHMM-derived 331 
chromatin states from the NIH Roadmap Epigenomics Consortium to functionally annotate the 332 
genome, we found greater than 2-fold enrichment for these states in the ten CAD relevant 333 
cell/tissue types we tested, consistent with the findings in a previous GWAS meta-analysis 334 
(Supplementary Table 17).[7] Of 197 distance-based regions containing genome-wide significant 335 
associations, we found 116 (58.9%) regions with significant enrichment in at least one tissue type 336 
(Supplementary Table 18). The majority (69; 59.5%) were relatively tissue-specific, showing 337 
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enrichment in only one or two tissue types, but eight regions showed widespread enrichment in 338 
seven or more tissues (Figure 3a). Adipose (n=28), liver (n=24) and aorta (n=21) were the tissues 339 
that showed the greatest enrichment for the most regions, reflecting their importance in the 340 
etiology of CAD (Supplementary Table 18). 341 

 342 

We applied a functionally-informed fine-mapping method (FGWAS),[32] which uses the chromatin 343 
state enrichment information to reweight GWAS summary statistics and compute variant-specific 344 
posterior probabilities of association (PPA). Across the 116 enriched regions we identified 1,456 345 
potential causal variants among the 95% credible sets (Supplementary Table 19). Forty-two 346 
enriched regions contained fewer than five 95% credible variants (Figure 3b), while 49 regions 347 
contained a variant with posterior probability of association (PPA)≥0.5 (Figure 3c; Supplementary 348 
Table 20), showing that the combination of functional annotation and high statistical power can 349 
pinpoint likely causal variants. Indeed, 13 regions were fine-mapped to just a single variant 350 
credible set, including missense variants in PCSK9, ANGPTL4 and APOE, plus other well-studied 351 
non-coding variants, such as rs9349379 near PHACTR1/EDN1,[34] and rs2107595 near 352 
HDAC9/TWIST1.[35] 353 

 354 

At 10 loci, functionally-informed fine-mapping prioritized variants that did not have the strongest 355 
statistical association. For example, at the LDL-cholesterol and adiposity-associated MAFB 356 
locus,[36] the CAD sentinel variant was rs2207132 (OR=1.10, 95%CI=1.07-1.13; p-value=6.7x10-357 
10) (Supplementary Table 2; Supplementary Figure 5a). However, a strongly correlated variant 358 
(rs1883711; r2=0.92) lies in a region annotated as a likely enhancer in liver and adipose tissue, 359 
the two enriched tissues at this locus (Supplementary Figure 5b). Therefore, rs1883711 was 360 
strongly upweighted by FGWAS resulting in a PPA of 0.77 compared to 0.13 for rs2207132. We 361 
queried CAD-associated variants for cis-eQTLs in CAD-relevant tissues from the STARNET and 362 
GTEx studies (Online Methods).[37, 38] The eQTL for MAFB observed in liver samples from CAD 363 
patients in STARNET suggests that the CAD association is mediated by changes in expression 364 
of MAFB (encoding MAF bZIP transcription factor B) (Supplementary Table 20). MafB expression 365 
in macrophages is upregulated by oxidized LDL stimulation,[39] while MafB deficiency in mice 366 
has been shown to increase atherosclerosis by inhibiting foam cell apoptosis.[40] 367 

 368 

Polygenic prioritization of candidate causal genes (PoPS) 369 

Combining locus- and similarity-based approaches has been shown to enhance the prioritization 370 
of causal genes.[14, 41] However, established similarity-based methods have not leveraged the 371 
full polygenic signal to inform gene prioritization. We therefore incorporated a newly developed 372 
similarity-based method for gene prioritization, the Polygenic Priority Score (PoPS), which utilizes 373 
the full genome-wide association data while excluding a given locus of interest.[15] We applied 374 
PoPS to summary-level data from the GWAS meta-analysis using European ancestry individuals 375 
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from the 1000 Genomes Project as a reference panel.[42] An initial 57,543 features – including 376 
data on gene expression, protein-protein interaction networks, and biological pathways – were 377 
considered for analysis, of which 21,407 features (37.3%) passed a marginal feature selection 378 
step and were input into the final predictive, PoPS model (Online Methods). We computed a PoPS 379 
score for all protein-coding genes within a defined 500kb window around each of the 241 genome-380 
wide associations and prioritized the gene with the highest PoPS score in each locus, resulting in 381 
196 prioritized genes. Despite not incorporating locus-specific information, PoPS prioritized many 382 
well-established genes implicated in CAD pathogenesis including LDLR, APOB, PCSK9, SORT1, 383 
NOS3, VEGFA, and IL6R (Supplementary Tables 21 & 22). 384 

 385 

Next we evaluated groups of features from the final PoPS model to identify those features that 386 
were most informative in prioritizing CAD-relevant genes. Hierarchical clustering of the 21,407 387 
features yielded 3,149 clusters, which we ranked by their relative contribution to the PoPS scores 388 
of prioritized genes (Figure 4a). The highest-ranking cluster contained features indicating 389 
homeostatic regulation of blood lipids (Supplementary Table 23). Other top clusters included 390 
features related to: function and proliferation of endothelial and smooth muscle cells; the structure 391 
and function of the extracellular matrix; and numerous metabolic pathways including those in 392 
adipose tissue controlling thermoregulation and turnover of lipids or phospholipids, all well-393 
established pathways and mechanisms in the pathogenesis of CAD[43-45]. In addition, several 394 
high-ranking clusters highlighted early developmental processes and signaling pathways 395 
involving the cell cycle as less recognized, but important, mediators of CAD risk. 396 

  397 

We then focused on individual loci where the PoPS method informed the prioritization of putative 398 
causal genes. For example, rs1807214 was previously reported as genome-wide significant for 399 
CAD, but lies in an intergenic region of chromosome 15 at which a causal gene has not been 400 
established.[7, 8] Gene expression data from GTEx and STARNET identified cis-eQTLs for 401 
ABHD2, MFGE8, and HAPLN3 (Supplementary Tables 24 & 25). Prior algorithms combining 402 
locus-based approaches have prioritized the nearest gene, ABHD2, located 65kb downstream of 403 
the sentinel variant.[5, 41] However, PoPS prioritized MFGE8, located 108kb upstream of the 404 
sentinel, as the most likely causal gene of the ten within 500kb (Figure 4b). MFGE8 encodes 405 
lactadherin, an integrin-binding glycoprotein implicated in vascular smooth muscle cell (VSMC) 406 
proliferation and invasion, and the secretion of pro-inflammatory molecules.[46, 47] Recently, in 407 
vitro deletion of this intergenic region by CRISPR/Cas9 was found to increase MFGE8 expression 408 
– with no change to ABHD2 expression – and MFGE8 knockdown was shown to reduce coronary 409 
artery smooth muscle cell and monocyte (THP-1) proliferation, lending functional support to 410 
MFGE8 as a likely causal mediator of the CAD association in this region.[48] 411 

  412 

Systematic prioritization of putative causal genes 413 
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We applied a consensus-based prioritization framework involving eight similarity-based or locus-414 
based predictors to systematically prioritize likely causal genes for all 241 genome-wide 415 
associations (Online Methods; Figure 5a). Most likely causal genes were selected for each CAD-416 
associated region based on the highest (unweighted) number of the eight predictors. To test this 417 
framework, we generated an a priori set of 30 “positive control” genes with established causal 418 
roles in CAD and assessed the accuracy of each predictor (Supplementary Table 26). 28 of the 419 
30 positive control genes were correctly prioritized as the most likely causal gene based on the 420 
highest number of concordant predictors with a median of four concordant predictors per gene 421 
(Supplementary Table 27). All predictors demonstrated a high degree of accuracy, including 422 
nearest gene (87%), PoPS (80%), eQTL (79%) and mouse knock-outs (95%) (Supplementary 423 
Table 27). 424 

We were able to prioritize at least one likely causal gene at 206 (85.5%) of the genome-wide 425 
associations based on having at least two concordant predictors, and resulting in the prioritization 426 
of 185 distinct genes (Supplementary Table 28). We considered 94 of these genes strongly 427 
prioritized per the presence of three or more concordant predictors (Figure 5b). Overall, for 25 428 
genes, the prioritized gene was not the nearest gene to the sentinel variant, including APOC3, 429 
PLTP and LOX. Agreement, defined as the proportion of times that a predictor prioritized the 430 
same gene as the most likely causal gene, was high (but imperfect) across predictors, including 431 
nearest gene (149 out of 185; 81%), PoPS (142 out of 185; 77%) and eQTLs (75 out of 89; 84%) 432 
(Figure 5a). Concordance, defined as the proportion of times a pair of predictors both provided 433 
evidence for the consensus-based causal gene, was variable (Supplementary Figure 6). For 434 
example, nearest gene and presence of a missense variant were typically concordant (30/41, 435 
73%) whereas monogenic genes and eQTL converged on the consensus-based causal gene 436 
much less frequently (5/17, 29%). 437 

 438 

Candidate loci with converging variant- and gene-level evidence 439 

Several newly-identified CAD risk loci had strong variant- and gene-level evidence supporting 440 
their candidacy for functional interrogation. For example, we identified a CAD-associated region 441 
on chromosome 5 that was most strongly enriched in aorta (Supplementary Table 2), and had a 442 
95% credible set of just two variants, with an intronic variant (rs4074793) in ITGA1 having a PPA 443 
of 0.95 (Figure 6a,b). rs4074793 lies in a region annotated as a likely enhancer in several tissues, 444 
and is the lead variant for a strong cis-eQTL for ITGA1 in liver among CAD patients from 445 
STARNET (p-value=1.8x10-73) (Figure 6c). This eQTL was also seen in aorta, subcutaneous fat 446 
and mammary artery (Figure 6d). No other gene expression signals were seen at this locus, while 447 
PoPS also strongly prioritized ITGA1 as the likely causal gene (Supplementary Table 28). ITGA1 448 
encodes integrin subunit alpha-1, a widely-expressed protein that forms a heterodimer with 449 
integrin beta 1 and acts as a cell surface receptor for extracellular matrix components, such as 450 
collagens and laminins. The CAD risk allele (rs4074793-G), or strong proxies, were associated 451 
with elevated liver enzymes,[49] C-reactive protein and LDL-cholesterol,[50] highlighting the 452 
influence of altered ITGA1 expression in the liver on lipid pathways as a likely causal pathway to 453 
CAD.  454 
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We identified a novel CAD association near LIPC (sentinel variant rs588136, p-value=7.0x10-10; 455 
Supplementary Table 2) where the risk allele was associated with higher levels of HDL-456 
cholesterol, opposite the established observational association. LIPC encodes hepatic 457 
triacylglycerol lipase, a liver-expressed enzyme that catalyzes the hydrolysis of triglycerides and 458 
phospholipids in circulating lipoproteins. The region was most strongly enriched for epigenetic 459 
annotation in liver, and FGWAS prioritized a 95% credible set comprising 6 variants with rs588316 460 
being the most likely causal variant (PPA=0.50). Variants in the LIPC region have been previously 461 
associated with circulating HDL-cholesterol levels,[51] but Mendelian randomization studies have 462 
reported that HDL-cholesterol is unlikely to play a causal role in CAD risk.[52] Nonetheless, we 463 
prioritized LIPC as the relevant causal gene per several lines of evidence (Supplementary Table 464 
28): (1) PoPS prioritized LIPC, and nine of the 10 strongest features related to lipid and lipoprotein 465 
metabolism; (2) LIPC is the only gene in the region with a cis-eQTL – signals in the liver in both 466 
STARNET (p-value=6.0x10-27) and GTEx (p-value=1.6x10-7); (3) LIPC is the only gene in the 467 
region with a cardiovascular-relevant phenotype (altered circulating lipid levels) in knock-out mice; 468 
(4) the CAD risk allele associated with elevated apolipoprotein-B, LDL-cholesterol and 469 
triglycerides in the PheWAS (Supplementary Table 3). The confluence of evidence therefore 470 
suggests LIPC as the causal gene mediating CAD risk at this region through alterations in liver 471 
expression that influence its ability to hydrolyze pro-atherogenic lipids. 472 

Finally, we identified a novel association with CAD at a gene-dense region of chromosome 19 473 
significantly enriched for epigenetic annotations in adipose, liver, monocytes, and skeletal muscle 474 
myoblasts (Supplementary Table 2; Supplementary Table 18). FGWAS identified the CAD 475 
sentinel variant (rs7246865) as the most likely causal variant (PPA=0.71). PoPS prioritized 476 
MYO9B as the likely causal gene over 30 other genes within 500kb (Supplementary Table 21). 477 
Support was provided by data from GTEx, where the CAD sentinel variant was a cis-eQTL (p-478 
value=5.3x10-8) for MYO9B in tibial artery (Supplementary Table 28). MYO9B encodes 479 
unconventional myosin-IXb, a myosin protein with Rho-GTPase signaling activity involved in cell 480 
migration. Mechanistic in vitro and in vivo studies have implicated MYO9B/RhoA-dependent 481 
migration of macrophages in the pathogenesis of abdominal aortic aneurysm, a disease that 482 
shares common mechanistic features with CAD.[53] The prioritization of MYO9B by PoPS was 483 
strongly driven by pathway and PPI-network features pertaining to Rho signaling, proliferation, 484 
and chemotaxis (Supplementary Table 21, suggesting a putative causal role for MYO9B in CAD 485 
pathogenesis, mediated by the proliferation and migration of vascular cell types. 486 

 487 

 488 

DISCUSSION 489 

  490 

In a genetic discovery analysis involving more than 180,000 cases of CAD and nearly 1 million 491 
controls, we identified 241 genome-wide significant associations, including 54 reported here for 492 
the first time. We objectively prioritized likely causal variants and effector genes across the 241 493 
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associations using functionally-informed fine-mapping, a recently-developed genome-wide gene 494 
prioritization method (PoPS), and systematic integration of locus-based and similarity-based 495 
predictors, with several tailored specifically to cardiovascular disease. 496 

  497 

The large sample size of this study enabled detection of many novel genetic associations with 498 
CAD, predominantly weak-effect variants that are common in the population. Our findings suggest 499 
that future, larger GWAS - at least those in European ancestry populations - are unlikely to 500 
discover many more large-effect common variants (i.e. those with odds ratios greater than 1.05) 501 
associated with CAD. In fact, additional associations contributing to the long polygenic tail of CAD 502 
risk are likely to arise from the ~650 predominantly weak effect signals among associations that 503 
reached the 1% FDR threshold, which in aggregate explained ~36% of the heritability of CAD. 504 
Notably, we identified 38 additional novel loci - bringing the total number of novel CAD loci 505 
reported here to 68 - when we incorporated recently published GWAS results based on only 506 
29,000 CAD cases of East Asian ancestry from Biobank Japan. This observation demonstrates 507 
that (future) trans-ethnic genetic analyses should not only identify CAD association signals that 508 
differ across ethnicities, but also enhance the yield of overall genetic discovery for CAD.  509 

 510 

Consistent with previous studies, we demonstrated that a genome-wide PRS derived from this 511 
GWAS strongly predicts both incident and recurrent CAD.[54-57] Notably, the current PRS 512 
demonstrated improved ability to discern those at higher and lower risk of CAD as compared to a 513 
widely used PRS derived from an earlier GWAS of ~61,000 CAD cases.[56] While the current 514 
PRS provides an improved and powerful tool for genetic risk prediction of CAD in the setting of 515 
primary and secondary prevention, our findings suggest that further increases in European-516 
ancestry GWAS sample size may only modestly improve the predictive ability of the CAD PRS. 517 
More substantive improvements in polygenic risk prediction may arise from methodological 518 
developments, such as approaches that model interactions between variants or incorporate 519 
functional information.[58, 59] Moreover, further investigations are required to understand the 520 
extent to which genetic discovery analyses that include more non-European ancestry participants 521 
will improve the transethnic portability of PRS (and whether this will result in improved prediction 522 
across all ancestry groups).[60]  523 

  524 

The weak effects of most CAD-associated variants do not preclude their contribution to important 525 
etiological insights with therapeutic implications, as the effects of pharmacologically perturbing 526 
identified targets are typically much stronger than those of naturally-occurring genetic variants 527 
that are common in the population. For example, we uncovered common variant associations of 528 
weak effect at HMGCR and NPC1L1, which encode the targets of HMG-CoA reductase inhibitors 529 
(statins) and ezetimibe, respectively, two of the most effective and commonly prescribed 530 
medications for the prevention and management of CAD through lowering blood lipid levels. 531 
However, the translation of statistical associations into actionable biology and potential 532 
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therapeutic targets requires elucidation of causal variants, genes and intermediate pathways, 533 
which has lagged behind the rapid growth in genetic association discoveries.  534 

Here, we implemented strategies to enhance the identification of putative causal variants and 535 
causal genes. By incorporating epigenomic enrichment in disease-relevant tissues - an approach 536 
previously shown to improve fine-mapping over broader, disease-agnostic approaches [32] - we 537 
prioritized likely causal variants that were not always those with the strongest statistical 538 
associations. Using a recently-developed similarity-based tool (PoPS) that exploits the full 539 
genome-wide data to identify disease-enriched features, we prioritized likely causal genes for all 540 
241 genome-wide associations. Support for the validity of the genes prioritized by PoPS comes 541 
from: the high ranking of features of known relevance to atherosclerosis (e.g. lipid metabolism, 542 
extracellular matrix processes) from more than 50,000 tested features; the correct assignment of 543 
the most likely causal gene at several well-established lipid and non-lipid CAD loci; selection of 544 
the likely-correct causal gene over several other candidates in a region, including those in closer 545 
proximity to the sentinel (e.g. MFGE8); and corroborating evidence at many loci from orthogonal 546 
gene prioritization methods, such as eQTLs in disease-relevant tissues. 547 

  548 

As support from multiple, orthogonal lines of evidence increases the likelihood of prioritizing the 549 
correct causal gene, we propose an integrative, consensus-based prioritization framework that 550 
incorporates eight complementary predictors. By applying this framework to the genome-wide 551 
associations with CAD, we provide systematic evidence for the most likely causal gene at over 552 
200 associations. Although distance from the sentinel variant has been shown to be a reasonable 553 
predictor of causal genes across many phenotypes,[14, 41] our approach provides added 554 
confirmation for many associations. For example, at several newly identified associations, such 555 
as those nearest ITGA1, LIPC and MYO9B, we provide strong support that these proximal genes 556 
are most likely causal through both locus-based and similarity-based evidence. However, our 557 
framework prioritized a gene that was not the nearest gene for 15% of associations. These 558 
included well-known genes such as APOC3 and PLTP, as well as several genes with less well-559 
established, but plausible, roles in CAD, including MFGE8. While experimental evidence is 560 
required to confirm causal mechanisms, we provide a prioritization framework yielding evidence-561 
based candidates that may be amenable to functional follow-up. Future efforts to improve gene 562 
prioritization for CAD may include addition of further disease-specific lines of evidence, such as 563 
data from a broader range of relevant cell types (e.g. vascular smooth muscle cells) or high-564 
throughput assays (e.g. genome-wide CRISPR screens).  565 

 566 

 567 

 568 

 569 
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METHODS 570 

  571 

Genetic discovery meta-analysis 572 

Details of the ten de novo studies, including the source of participants, case and control definitions 573 
and basic participant characteristics are presented in Supplementary Table 1.  Ethical approval 574 
and informed consent were obtained for all participating studies. With the exception of UK Biobank 575 
(which used the ThermoFisher UK Biobank Axiom array), studies used Illumina genotyping 576 
arrays. Most studies used the Haplotype Reference Consortium v1.1 panel for imputation, but 577 
several utilized local whole-genome sequence data for improved imputation. Study-specific 578 
sample and variant filters were applied before additive logistic (or logistic mixed) models were 579 
run, with CAD status as the outcome and study-specific covariates, including accounting for 580 
potential ancestry effects. 581 

  582 

We performed an inverse variance weighted meta-analysis on the betas and standard errors 583 
using METAL,[61] combining the results from the ten de novo studies with previously published 584 
summary statistics. To maximize the variant-specific sample size, we used summary statistics 585 
from either (a) a previous 1000 Genomes-imputed GWAS meta-analysis of up to 60,801 CAD 586 
cases and 123,504 CAD-free controls;[7] (b) a meta-analysis of ~79,000 variants in up to 88,192 587 
CAD cases and 162,544 controls, predominantly based on the Illumina CardioMetabochip 588 
array;[2] or (c) a meta-analysis ~184,000 variants in up to 42,335 CAD cases and 78,240 controls 589 
based on the Illumina Exome array.[10, 16] From each meta-analysis, we dropped variants which 590 
were only present in one study or had fewer than 30,000 cases in total from all contributing 591 
studies. Where a variant was found in multiple meta-analyses, we kept the result which had the 592 
highest total number of ‘effective cases’ across studies (approximated within each study as the 593 
variant-specific number of CAD cases multiplied by the imputation quality score). Finally, to avoid 594 
false positive associations driven by an extreme result in a single study, we filtered variants with 595 
a meta-analysis p-value≤5.0x10-6 that did not have a p-value<0.2 in at least two studies for which 596 
the direction of effect was consistent with the overall meta-analyses effect estimate. Our final 597 
dataset included 20,073,070 variants after filtering. 598 

 599 

Joint association analysis 600 

We performed joint association analysis using GCTA software.[62] This approach fits an 601 
approximate multiple regression model using summary-level meta-analysis statistics and LD 602 
corrections estimated from a reference panel (here the UKBB sample using European ancestry 603 
participants only). We adopted a chromosome-wide stepwise selection procedure to select 604 
variants and estimate their joint effects at i) a genome-wide significance level (pJoint≤5.0x10-8) in 605 
the meta-analyzed variants that reached genome-wide significance (n=18,348), ii) an FDR 1% p-606 
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value cut-off (pJoint≤2.52x10-5) in the 1% FDR variant list (n=47,622). We identified 241 607 
independent variants at the genome-wide significance threshold and 897 independent variants 608 
within the 1% FDR list. 609 

  610 

Identifying previously reported regions and associations 611 

To identify regions of the genome previously reported as having associations with CAD, we first 612 
collapsed variants reaching genome-wide significance by clumping variants within 500kb of each 613 
other into a single locus. We compared these regions with all variants previously found to be 614 
associated with CAD at a genome-wide level of significance (p-value≤5.0x10-8) from previous 615 
large-scale genetic association studies of CAD. Regions were annotated as ‘known’ if they 616 
included a previously reported CAD-associated variant. To assess which of our associations were 617 
previously reported or novel, we examined the pairwise correlation between each of our 241 618 
genome-wide significant sentinel variants and any nearby previously reported variants, defining 619 
‘novel’ as having r2<0.2 in UK Biobank European ancestry participants. 620 

  621 

Phenome-wide association study (PheWAS) in UK Biobank 622 

To understand the spectrum of phenotypic consequences of our 241 independent associations 623 
with CAD, we conducted a phenome-wide association study in the UK Biobank. For analyses, we 624 
selected 53 cardiovascular and non-cardiovascular diseases and 33 continuous traits. A complete 625 
list of the phenotypes assessed, details on disease definitions, and relevant sample sizes are 626 
provided in Supplementary Tables 29 & 30. We limited analyses to UK Biobank participants of 627 
European genetic ancestry as defined by principal components analysis, and excluded one 628 
individual in each pair with KING coefficient > 0.0884, indicating 2nd degree or closer relatedness 629 
(n=393,461). In sensitivity analyses, the PheWAS was repeated after excluding cases of CAD 630 
(remaining n=360,255). For disease phenotypes, we performed logistic regression adjusted for 631 
age, sex, genotyping array, and the first five principal components. An association with a disease 632 
phenotype was deemed significant at a Bonferroni-corrected threshold of p-value<3.9x10-6 (53 633 
diseases x 241 genetic variants). Continuous phenotypes were residualized after adjusting for 634 
age, sex, genotyping array, and the first five principal components; linear regression was 635 
performed on residuals following inverse-normal transformation. For analysis of glycemic traits 636 
(hemoglobin A1c and serum glucose), participants with type 1 or type 2 diabetes were excluded. 637 
An association with a disease phenotype was deemed significant at a Bonferroni-corrected 638 
threshold of P-value<6.3x10-6 (33 continuous traits x 241 genetic variants).  639 

  640 

Rare variant analyses 641 

Variant annotation for autosomes was performed using Variant Effect Predictor v96.0 with 642 
LOFTEE plugin on version three imputed data and variants with an information score ≥ 0.8.[63, 643 
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64] Various gene-based groupings were tested (Supplementary Table 4) and allele frequencies 644 
from the entire UK Biobank cohort were used for groupings. Variants (n=64,102) were considered 645 
to be in a gene if they fell within the gene coordinates as defined by GENCODE v19. Gene-based 646 
association tests were performed in SAIGE-GENE v0.35.8.5 using a white British subset of UK 647 
Biobank (28,683 CAD cases and 367,783 controls).[65] Software defaults were used except in 648 
step 0 the number of markers for sparse matrix was 2000, and in step 1, the tolerance for 649 
preconditioned conjugate gradient to converge was 0.01 and variance ratios were estimated 650 
across MAC categories. Two variants were required in each gene for testing. Covariates in the 651 
model included the genotyping array, the first five principal components calculated in the white 652 
British subset of samples, birth year, and sex. Burden, SKAT, and SKAT-O tests were performed 653 
for each gene. As no strong signals were observed except for the PCSK9 gene, we did not extend 654 
our rare variant testing to other studies. 655 

  656 

Sex-specific analysis 657 

We performed a sex-stratified GWAS analysis in UK Biobank following the same phenotype 658 
definition and sample exclusions with the main analysis. We used the SAIGE software and 659 
adjusted our single-variant association analysis for the first five genetic principal components and 660 
the genotyping array, separately for men and women.[66] Based on promising initial results in UK 661 
Biobank, we collated sex-stratified GWAS summary statistics from an additional 16 datasets 662 
(Supplementary Table 6). All sex-specific summary statistics were checked for quality control 663 
(QC) cohort-wise to exclude poorly imputed variants (info<0.4), improbable betas (>|4|) and 664 
significant deviations from Hardy-Weinberg Equilibrium (p-value<1.0x10-9). Cohort-wise sex-665 
specific q-q plots were generated and inspected and the genomic inflation statistic (λ) was also 666 
calculated. Association summary statistics from all 17 studies were combined via inverse-variance 667 
weighted meta-analysis in GWAMA.[67, 68] We implemented three different types of meta-668 
analysis: a) a sex-specific meta-analysis, where summary statistics were combined separately for 669 
men and women; b) a sex-combined meta-analysis, where effect estimates from men and women 670 
were combined assuming no between-sex heterogeneity; and c) a sex-differentiated meta-671 
analysis, where sex-specific estimates were combined while allowing for heterogeneity between 672 
men and women. We excluded genetic variants that had a minor allele count < 10 or minor allele 673 
frequency < 0.01, were only present in one study, or had a sample size below the median sample 674 
size in the sex-combined meta-analysis. To identify significant sex-differentiated genetic variants, 675 
we considered variants that had a p-value≤5.0x10-8 from the sex-differentiated meta-analysis and 676 
a sex-heterogeneity p-value≤0.01. Among the significantly associated genetic variants we then 677 
applied a 500kb pruning to identify the sex-differentiated CAD loci. 678 

  679 

False discovery rate (FDR) estimation 680 

The false discovery rate (FDR) following the meta-analysis was assessed using the ‘qvalue’ R 681 
package. We generated q-values for all 20.1M variants. The p-value cut-off for a q-value of 1% 682 
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was 2.52x10-5 and there were 47,622 variants reaching that threshold. Joint conditional analysis 683 
was performed using GCTA (as described earlier) to identify approximately independent 684 
association signals. 685 

 686 

Estimation of heritability explained 687 

Heritability calculations were based on a multifactorial liability-threshold model, implemented in 688 
the INDI-V calculator (http://cnsgenomics.com/shiny/INDI-V/), under the assumption of a baseline 689 
population risk (K) of 0.0719 and a twin heritability (HL

2) of 0.4.[69, 70] Single-variant regression 690 
estimates from the meta-analysis summary statistics were used to estimate heritability for the 691 
sentinel variants at the 241 conditionally independent genome-wide significant associations and 692 
the 897 conditionally independent associations reaching the 1% FDR threshold. To account for 693 
correlation between variants, multiple regression estimates from the GCTA joint association 694 
analysis were also used to estimate heritability for both sets of variants. 695 

 696 

Trans-ethnic comparison 697 

For trans-ethnic comparison we used summary statistics from a recent GWAS of 29,319 CAD 698 
cases and 183,134 controls from the Biobank Japan [3]. 199 of the 241 sentinel variants from our 699 
primary meta-analysis were also found in the Biobank Japan study; after aligning effect alleles, 700 
we compared the beta estimates and minor allele frequencies using Pearson’s correlation 701 
coefficient. To investigate the effect of outliers on the between-ancestry correlation of beta 702 
estimates, we re-estimated the correlation coefficient after excluding three strong outliers (at 703 
ATXN2, FER, and SLC22A1). We then performed an inverse variance weighted meta-analysis 704 
on the beta estimates and standard errors, incorporating summary results from Biobank Japan 705 
and those from all other studies in our primary meta-analysis. After trans-ethnic meta-analysis, 706 
we again dropped variants which were only present in one study or had fewer than 30,000 cases 707 
in total from all contributing studies, leaving 23,333,163 variants after filtering. We then collapsed 708 
variants reaching genome-wide significance (p-value≤5.0x10-8) by clumping variants within 500kb 709 
into a single locus.  710 

 711 

Derivation and training of polygenic risk scores 712 

Polygenic risk scores (PRS) were derived using one of two methods – pruning and thresholding 713 
or the LDpred computational algorithm (LDpred v.1.0), using 503 European ancestry individuals 714 
derived from the 1000 Genomes Project study as the linkage disequilibrium reference panel.[42] 715 
To evaluate the added utility of our GWAS for the prognostication of CAD risk, we compared two 716 
sets of scores using effect estimates from either the current meta-analysis or from our previous 717 
1000 Genomes-imputed GWAS of CAD involving ~60,000 cases.[7] For each derivation method 718 
and summary statistic, we constructed a range of scores of varying sizes drawing from common 719 
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genetic variants that overlapped between the current meta-analysis, the earlier 1000 Genomes-720 
imputed CAD GWAS, and our training/validation datasets from the Malmö Diet and Cancer (MDC) 721 
Study.  722 
  723 
Pruning and thresholding-based scores were created using a combination of p-value (1, 0.5, 724 
0.05,5x10-3, 5x10-4, 5x10-5, 5x10-6, 5x10-7, 5x10-8) and r2 (0.2, 0.4, 0.6, 0.8, 0.99) thresholds, 725 
yielding 45 distinct PRS for each of the two GWAS summary statistics utilized (90 total pruning 726 
and thresholding-based scores). LDpred-based scores were constructed incorporating all 727 
available SNPs, HapMap3 SNPs (gs://gnomad-728 
public/resources/grch37/hapmap/hapmap_3.3.b37.vcf.bgz), or a soft LD-clumping approach 729 
using combinations of p-value (0.05, 0.5, 1) and r2 (0.2, 0.4, 0.6, 0.8, 0.99) thresholds (17 total 730 
sets of input variants). Additionally, we employed a tuning parameter (ρ) for LDpred, which 731 
represents the fraction of causal variants, and tested all LDpred-based scores across a range of 732 
ρ parameters (1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001 and an infinitesimal model), yielding 136 distinct 733 
PRS per summary statistic utilized (272 total LDpred-based PRS). 734 
  735 
PRS were computed using variants with high-quality imputation results available in MDC, defined 736 
by information score (INFO) > 0.3. For each participant, the raw PRS was generated by 737 
multiplying the genotype dosage for each risk-increasing allele by its respective weight and then 738 
summing across all variants in the score using PLINK2 software. To permit adjustment for genetic 739 
ancestry, principal components of ancestry were computed using the EIGENSOFT software 740 
package. The calculated raw PRS was ancestry-adjusted by taking the residual of a linear 741 
regression model that predicted PRS using the first ten principal components.  742 

We trained all pruning and thresholding and LDpred PRS (362 total scores) in a subset of the 743 
Malmö Diet and Cancer Study (n=22,872; nincident_cases=3,307). Cox proportional hazard models 744 
were used to assess the time-to-event relationship between each PRS and incident CAD with or 745 
without adjustment for age and sex. Bootstrapping analysis was performed (100 iterations) and 746 
the mean hazard ratio (HR) and mean area under the receiver operator characteristic curve (AUC; 747 
as calculated by Harrell’s C-statistic) were reported as performance metrics to rank scores within 748 
each of four categories as classified by the PRS derivation method (pruning and thresholding; 749 
LDpred) and effect estimates utilized (2015 CAD GWAS; Current meta-analysis). Metrics for the 750 
top-performing PRS in each category were compared by Wilcoxon rank-sum test based on results 751 
of bootstrapping analyses. 752 

 753 

Primary event prediction analyses in the Malmo Diet and Cancer study (MDC) 754 

The Malmö Diet and Cancer Study is a prospective, population-based cohort that enrolled 30,447 755 
participants between 1991 and 1996 ranging in age from 44 to 73 years. Baseline information on 756 
lifestyle and clinical factors was collected using a detailed questionnaire as previously 757 
described.[71] From the total study population, 28,556 participants (94%) who had genetic data 758 
available and were free of CAD at time of enrollment were analyzed. A subset of 5685 randomly 759 
selected participants, that comprised the Malmö Diet and Cancer Cardiovascular Cohort, had 760 
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blood cholesterol concentrations recorded. Incident cases of CAD had either fatal or nonfatal 761 
myocardial infarction, coronary artery bypass graft surgery, percutaneous coronary angioplasty 762 
or death due to CAD. Incident event adjudication was available through December 31, 2016. 763 
Genotyping was performed using the Illumina GSA v1 genotyping array. Of 29,304 samples which 764 
underwent genotyping and were free from CAD at baseline, 28 556 (97%) were retained after 765 
quality control procedures that removed low-quality samples (discordance between reported and 766 
genetically inferred sex, low call rate (<90%), and sample duplicates). With respect to genetic 767 
variants, quality control was performed with removal of those not in Hardy-Weinberg equilibrium 768 
(p-value<1×10−15). Imputation was then performed using the Haplotype Reference Consortium 769 
reference panel. 770 

 771 

Cox proportional hazard models were used to assess the time-to-event relationship between each 772 
PRS and incident CAD events; baseline models were adjusted for age and sex only, and then 773 
subsequently for established risk factors for CAD (total cholesterol, HDL cholesterol, systolic 774 
blood pressure, body mass index, type 2 diabetes, current smoking status, and family history of 775 
CAD). Harrell C-statistics were estimated using Cox proportional hazard analysis over a 21-year 776 
follow-up period to assess the discrimination of the PRS. 777 

   778 

The FOURIER trial (and genetic subset) 779 

The FOURIER trial was a multinational, randomized, double-blind, placebo-controlled trial of the 780 
efficacy of evolocumab in patients with clinically evident atherosclerotic cardiovascular 781 
disease.[29] The key inclusion criteria for the trial were age between 40 and 85 years, LDL 782 
cholesterol of 70 mg/dl or greater or non-HDL-C of 100 mg/dl or greater, and a history of either 783 
myocardial infarction, non-hemorrhagic stroke, or symptomatic peripheral artery disease. The 784 
genetic sub-study included all participants in FOURIER who provided consent for genetic 785 
analyses at enrollment into the trial and had genotyped data that passed quality control (QC), and 786 
were of European ancestry. The final genetic cohort comprised of 14,298 unrelated European-787 
ancestry participants, of whom 7,135 were in the placebo arm of the trial. There were no clinically 788 
important differences between the overall trial participants and the participants in the genetic 789 
subset. 790 

  791 

Secondary event prediction analyses in the FOURIER trial 792 

The two optimal PRS (“2021 PRS” and “2015 PRS”) were calculated using the genotype dosage 793 
for each allele, multiplied by its weight, and then summed across all variants. Patients received a 794 
raw score standardized per 1-SD (continuous), as well as a percentile score relative to the total 795 
cohort. All scoring was performed using PLINK v2.0 (www.cog-genomics.org/plink/2.0/).[72] 796 
Model goodness-of-fit was evaluated using the concordance statistic and the Akaike’s Information 797 
Criterion (AIC). R version 3.6.1 was used for statistical analyses. 798 
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  799 

The clinical outcome of interest was recurrent major coronary events, defined as myocardial 800 
infarction, coronary revascularization or death from CAD (nincident_cases=673). Participants in the 801 
genetic cohort were followed for a median of 2.3 years. All endpoints were formally adjudicated 802 
by a blinded clinical events committee during the trial. A Cox model was used to determine the 803 
hazard ratio per 1 standard deviation higher level of the polygenic risk score and for the extreme 804 
deciles compared to the middle 80%. Analyses were adjusted for age, sex, and ancestry (using 805 
principal components 1-5). 806 

  807 

Identifying protein-altering variants 808 

To identify protein-altering variants among our genome-wide significant associations, we took the 809 
241 sentinel variants and their LD proxies at r2≥0.8 as estimated in the European ancestry subset 810 
of UK Biobank, and annotated them using the Ensembl Variant Effect Predictor (VEP).[64] We 811 
selected for each sentinel variant any proxies identified as having a ‘high’ (i.e. stop-gain and stop-812 
loss, frameshift indel, donor and acceptor splice-site and initiator codon variants) or ‘moderate’ 813 
(i.e. missense, in-frame indel, splice region) consequence and recorded the gene that the variant 814 
disrupts. 815 

  816 

Functional GWAS analysis 817 

To fine-map loci and identify credible functional variants, we applied the FGWAS software.[32] 818 
The software integrates GWAS summary statistics with epigenetic data and we used the 819 
ChromHMM-derived states from the NIH Roadmap Epigenomics Consortium on a selection of ten 820 
CAD relevant cell/tissue types (adipose nuclei, aorta, human skeletal muscle myoblasts [HSMM], 821 
liver, human umbilical vein endothelial cells [HUVEC], kidney, adrenal gland, pancreatic islets, 822 
primary monocytes and T-cells from peripheral blood).[73, 74] In order to maximize our search 823 
space to find functional elements we prepared a custom state by merging likely functional 824 
ChromHMM states (enhancers, transcription start sites [TSS], repressed polycomb, transcription 825 
at 5’ and 3’ of gene) for each genomic position. We reweighted the GWAS by running a null model 826 
and then a model containing the custom annotation for each of the ten tissues. The regions of the 827 
genome that showed strong enrichment (>3SD increment in Bayes Factor [BF]) and had a 828 
genome-wide significant CAD-associated variant (p-value<5.0x10-8) were selected. For each 829 
region, we identified the tissue that showed maximum increment in BF and then constructed a 830 
95% credible functional set of variants based on the ranked posterior probability of association 831 
(PPA) for each variant within a region.  832 

  833 

Expression QTL analysis in CAD-relevant tissues 834 
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To examine whether the CAD associations were driven by changes in gene expression in CAD-835 
relevant tissues and cell types, we interrogated the Stockholm-Tartu Atherosclerosis Reverse 836 
Network Engineering Task (STARNET) eQTL study and the Genotype-Tissue Expression (GTEx) 837 
study.[37, 38] For STARNET we used cis-eQTL associations from seven tissues (atherosclerotic 838 
aortic root [AOR], atherosclerotic-lesion-free internal mammary artery [MAM], blood [BLD], liver 839 
[LIV], subcutaneous fat [SF], skeletal muscle [SKLM], and visceral abdominal fat [VAF]) taken 840 
from 600 CAD patients as previously described. We cross-referenced the sentinel CAD variants 841 
and their proxies (r2≥0.8) with STARNET eQTLs reaching a 5% FDR for all tissues. To ensure the 842 
CAD association and eQTL are likely to be driven by the same causal variant, we retained only 843 
those eQTLs where the CAD-associated variant and the lead eQTL variant had r2≥0.8 among 844 
European ancestry participants from UK Biobank. For GTEx we followed the same procedure 845 
using the v7 data release (https://www.gtexportal.org/home/datasets) and restricted to cis-eQTLs 846 
reaching a 5% FDR from eight tissues (adipose [subcutaneous, visceral omentum], adrenal gland, 847 
artery [aorta, coronary, tibial], liver and whole blood). 848 

  849 

Polygenic prioritization of candidate causal genes (PoPS) 850 

We implemented PoPS, a gene prioritization method designed to leverage the full genome-wide 851 
signal to nominate causal genes independent of methods utilizing GWAS data proximal to the 852 
gene.[15] PoPS leverages polygenic enrichments of gene features including cell-type specific 853 
gene expression, curated biological pathways, and protein-protein interaction networks to 854 
compute a polygenic priority score (POPS) and a p-value for each gene without using any genetic 855 
association data on the chromosome containing the gene. Specifically, PoPS was used to train a 856 
linear model to predict gene-level association scores from gene features. First, PoPS applied 857 
MAGMA to GWAS summary statistics using the 1000 Genomes Project reference panel,[42] and 858 
computed gene p-values that are derived from the mean chi-square statistic of SNPs within the 859 
gene body. The gene p-values were converted to z-scores zg=F−1(1 – pg), where F−1 was the probit 860 
function. This yielded a roughly normally distributed variable that reflects the strength of the 861 
association each gene has to the phenotype, which PoPS used as the model target. In total, 862 
57,543 features were considered for analysis, including data on gene expression, protein-protein 863 
interaction networks, and biological pathways. After marginal feature selection, PoPS used leave 864 
one chromosome out (LOCO), generalized least squares, with l2 regularization to learn linear 865 
coefficients for the gene features. Finally, using LOCO prediction, PoPS computed a polygenic 866 
priority score for each gene. 867 

  868 

Variants responsible for cardiovascular-relevant monogenic disorders 869 

To identify genes harboring pathogenic variants responsible for cardiovascular-relevant 870 
monogenic disorders, we searched the NCBI’s ClinVar database 871 
(https://www.ncbi.nlm.nih.gov/clinvar/) on 26th June 2020. Variants were pruned to those: within 872 
±500kb of our CAD sentinel variants; categorized as ‘pathogenic’ or ‘likely pathogenic’; with a 873 
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listed phenotype; and with either (a) details of the evidence for pathogenicity, (b) expert review of 874 
the gene, or (c) a gene that appears in practice guidelines. We then filtered variants that were 875 
annotated with a manually curated set of cardiovascular-relevant phenotype terms, including 876 
those related to cardiovascular diseases (CAD, cardiovascular disease), CAD risk factors (lipids, 877 
metabolism, blood pressure, obesity, platelets), bleeding disorders and relevant cardiac, 878 
vasculature or neurological abnormalities (Supplementary Table 31). Where a variant was 879 
annotated with multiple genes, both genes were considered as potentially pathogenic. 880 

  881 

Phenotyping knock-out mice 882 

Human gene symbols were mapped to gene identifiers (HGNC) and mouse ortholog genes were 883 
obtained using Ensembl (www.ensembl.org). Phenotype data for single-gene knock-out models 884 
were obtained from the International Mouse Phenotyping Consortium, data release 10.1 885 
(www.mousephenotype.org), and from the Mouse Genome Informatics database, data from July 886 
2019 (www.informatics.jax.org). For each mouse model, reported phenotypes were grouped 887 
using the mammalian phenotype ontology hierarchy into broad categories relevant to CAD: 888 
cardiovascular physiology (MP:0001544), cardiovascular morphology (MP:0002127), growth and 889 
body weight (MP:0001259), lipid homeostasis (MP:0002118), cholesterol homeostasis 890 
(MP:0005278), and lung morphology (MP:0001175). This resulted in mapping from genes to 891 
phenotypes in animals (Supplementary Table 32). 892 

  893 

Rare variant associations, Mendelian randomization and drug evidence 894 

To inform prioritization of causal genes within 1Mb regions around our genome-wide associations, 895 
we reviewed the literature for three sources of evidence: (1) rare coding variants previously 896 
associated with CAD, either individually or in aggregate gene-based tests, through whole-exome 897 
sequencing or exome array studies; (2) Mendelian randomization studies of gene expression, 898 
protein levels or proximal phenotypes that implicate specific genes as causal effector genes for 899 
CAD; (3) drugs proven to be effective for cardiovascular-relevant indications and that target 900 
specific proteins encoded by genes. 901 

  902 

Systematic integration of gene prioritization evidence 903 

To systematically prioritize likely causal genes for all 241 genome-wide associations, we 904 
integrated eight of the aforementioned similarity-based or locus-based predictors of causal genes: 905 
(1) the top two prioritized genes from PoPS; (2) genes with eQTLs in CAD-relevant tissues from 906 
STARNET or GTEx; (3) genes containing protein-altering variants that are in strong LD (r2≥0.8) 907 
with the CAD sentinel variant; (4) genes harboring variants responsible for monogenic disorders 908 
of cardiovascular relevance according to ClinVar; (5) genes containing rare coding variants that 909 
have been associated with CAD risk in previous whole-exome sequencing or array-based studies; 910 
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(6) genes encoding proteins of causal relevance to CAD per Mendelian randomization studies, or 911 
that are targets for established cardiovascular drugs; (7) genes that display cardiovascular-912 
relevant phenotypes in knock-out mice from the International Mouse Phenotyping Consortium or 913 
Mouse Genome Informatics database; and (8) the nearest gene to the CAD sentinel variant 914 
(Figure 5a). We prioritized the most likely “causal gene” for each association using a consensus-915 
based approach, selecting the gene with the highest, unweighted sum of evidence across all eight 916 
predictors. 917 

We tested our approach by evaluating whether 30 (“positive-control”) genes with established 918 
relevance to CAD were prioritized as the most likely causal genes within their respective genomic 919 
regions. In addition, we defined two measures to summarize the relative contributions of individual 920 
predictors and pairs of predictors to the consensus-based approach. Specifically, we defined 921 
“Agreement” as the proportion of times that an individual predictor prioritized the same gene that 922 
was nominated as the most likely causal gene by the consensus-based framework. 923 
“Concordance” was defined as the proportion of times a pair of predictors both converged on the 924 
gene that was nominated as the most likely causal gene by the consensus of the eight predictors. 925 

 926 

DATA AVAILABILITY 927 

Summary statistics will be made available upon publication through the CARDIoGRAMplusC4D 928 
website (http://www.cardiogramplusc4d.org/) and the NHGRI-EBI GWAS Catalog 929 
(https://www.ebi.ac.uk/gwas/) and polygenic risk score weights will be deposited in the Polygenic 930 
Score (PGS) Catalog (https://www.pgscatalog.org/). Interactive searchable Manhattan plots and 931 
a locus-specific epigenome annotation browser for functionally enriched loci are available at: 932 
https://procardis.shinyapps.io/cadgen/. Regional association plots for all 241 genome-wide 933 
significant associations are available for download from 934 
https://drive.google.com/file/d/1AULeR5zAQJIdR6uNHidJ6xs5AxOe6i5M/view?usp=sharing. An 935 
interactive searchable browser detailing the locus-specific evidence prioritizing causal variants, 936 
genes and pathways is available at the Common Metabolic Disease’s Knowledge Portal (beta 937 
version available at: https://hugeamp.org/method.html?trait=cad&dataset=cardiogram). 938 

  939 

 CODE AVAILABILITY 940 

Code used in this project is available on reasonable request to the corresponding authors. 941 
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Table 1. 30 novel loci for CAD. 1280 
 1281 

Nearest gene Lead variant 
rsID Chr Position Effect 

allele 
Non-
effect 
allele 

Odds 
ratio 95% CI P-value 

KDF1 rs79598313 1 27,284,913 T C 1.10 (1.06-1.14) 3.6x10-8 
LOC100131060 rs71646019 1 59,433,354 T C 1.04 (1.03-1.05) 6.1x10-10 
OTUD7B rs67807996 1 149,995,265 A G 1.04 (1.03-1.05) 1.1x10-12 
MIR4432 rs243071 2 60,619,028 A G 1.03 (1.02-1.04) 2.7x10-8 
SAP130 rs114192718 2 128,785,663 T C 1.06 (1.04-1.08) 2.6x10-8 
ACVR2A rs35611688 2 148,377,860 T C 0.97 (0.96-0.98) 1.5x10-8 
LNX1 rs17083333 4 54,572,066 T G 0.97 (0.96-0.98) 1.2x10-8 
ITGA1 rs4074793 5 52,193,125 A G 0.95 (0.93-0.97) 1.6x10-8 
FER rs112949822 5 108,085,190 A G 0.95 (0.93-0.96) 1.1x10-9 
DMXL1 rs13169691 5 118,448,279 T C 1.04 (1.03-1.06) 2.6x10-8 
FBN2 rs6883598 5 127,926,190 A C 0.97 (0.96-0.98) 9.7x10-10 
PTK7 rs1034246 6 43,068,370 T G 0.97 (0.96-0.98) 6.4x10-10 
MACC1 rs10486389 7 20,300,416 A G 0.97 (0.96-0.98) 6.5x10-10 
C9orf146 rs10961206 9 13,724,051 A T 1.05 (1.04-1.07) 8.1x10-10 
ACER2 rs10811183 9 19,436,055 A G 1.04 (1.02-1.05) 1.6x10-8 
C5 rs41312891 9 123,726,749 G GCAAA 0.94 (0.92-0.96) 5.9x10-9 
PLCE1 rs55753709 10 96,029,170 T C 0.96 (0.95-0.97) 2.2x10-13 
R3HCC1L rs884811 10 99,923,763 C G 1.03 (1.02-1.04) 3.1x10-9 
MMP13 rs1892971 11 102,795,606 A G 0.96 (0.95-0.97) 5.1x10-10 
ST3GAL4 rs10790800 11 126,262,638 A G 1.03 (1.02-1.04) 9.1x10-9 
TBX3 rs34606058 12 115,353,368 T C 0.97 (0.96-0.98) 7.7x10-9 
DOCK9 rs8000794 13 99,434,810 C G 1.03 (1.02-1.04) 4.3x10-8 
LIPC rs588136 15 58,730,498 T C 0.96 (0.95-0.98) 7.0x10-10 
UNC13D rs2410859 17 73,841,285 T C 1.03 (1.02-1.04) 4.3x10-9 
CPLX4 rs11663411 18 56,960,510 T C 0.97 (0.96-0.98) 2.6x10-8 
MYO9B rs7246865 19 17,219,105 A G 1.03 (1.02-1.05) 1.9x10-8 
RRBP1 rs1132274 20 17,596,155 A C 1.04 (1.03-1.05) 1.8x10-8 
MAFB rs2207132 20 39,142,516 A G 1.10 (1.07-1.13) 6.7x10-10 
ARVCF rs71313931 22 19,960,184 C G 0.97 (0.96-0.98) 2.3x10-9 
SCUBE1 rs139012 22 43,623,972 A G 0.97 (0.96-0.98) 2.1x10-8 

 1282 
Positions are according to GRCh37. Odds ratios (and 95% confidence intervals) are for per-allele effect estimates according to 1283 
the effect allele.  1284 

 1285 
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Minor allele frequency versus per-allele odds ratio for CAD for common sentinel variant (MAF>5%) associations reaching genome-wide significance or the 1% FDR threshold in our study.
Colored circles indicate genome-wide significant associations (p-value<5.0x10-8) with sentinel variants that are not correlated (r2<0.2) with a previously reported variant (‘novel’ – red), genome-
wide significant sentinel variants correlated with a previously reported variant (‘known’ - blue), and associations reaching the 1% FDR threshold (p-value<2.52x10-5) in our meta-analysis (grey). 

Figure 1. Common variant association signals for CAD. 
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Figure 2. Polygenic prediction of primary and secondary coronary artery disease.

Prognostication of (a) incident coronary artery disease and (b) recurrent coronary events by optimal polygenic risk scores derived from the current meta-analysis of ~180K CAD cases 
(”2021 PRS” – includes ~2.3 million variants) or a previously reported GWAS meta-analysis of CAD from 2015 involving ~60K CAD cases (”2015 PRS” – includes ~1.5 million variants). 815 
incident events were analyzed in the validation subset of the Malmo Diet and Cancer Study and 1,074 recurrent coronary events were analyzed in the FOURIER trial. Cox proportional 
hazards models were adjusted for age, sex and genetic principal components. Error bars represent 95% confidence intervals of hazard ratio estimates.
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Figure 3. Epigenetic enrichment and functionally-informed fine-mapping of CAD loci.

a)

a) Number of tissues/cell-types the 116 regions were enriched in. 

b) Distribution of 95% credible set sizes for the 116 enriched regions.

c) Circos plot of epigenetic enrichment for 49 significantly enriched GWAS regions containing a variant with PPA≥0.5. 
The number of regions each tissue showed enrichment in is displayed in the upper right quadrant. The number of regions that show enrichment with a given tissue/cell-type is displayed in 
the box next to the tissue/cell-type name. The 49 significantly enriched GWAS regions containing a variant with PPA≥0.5 are colored according to the tissue with the strongest evidence of 
enrichment for that region. Region names with an asterisk (*) denote those for which all conditionally independent association signals were annotated as being novel. The histogram shows 
the total number of tissues with enrichment for each region and the links indicate the tissues/cell-types each region was enriched in. The number of 95% credible variants per region is 
displayed in the outer ring. 
HSMM = human skeletal muscle myoblasts; HUVEC = human umbilical vein endothelial cells.
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Figure 4: Polygenic priority score (PoPS) informs the identification of causal genes for coronary artery disease (CAD). 

100 101 102 103

log10(cluster rank)

0.00

0.02

0.04

0.06

0.08

0.10

C
on

tri
bu

tio
n 

to
 P

oP
 s

co
re

Cholesterol/lipoprotein homeostasis

EC/VSMC function and proliferation

Cardiovascular development

Collagen/extracellular matrix function

Metabolic regulation

Cholesterol/lipoprotein homeostasis

EC/VSMC function and proliferation
Cardiovascular development

Collagen/extracellular matrix function

Metabolic regulation

(a)

(b)

0

0.4

-0.4

0.8

1.2

PoPS
score

ISG20

MFGE8

rs1807214

* PoPS – 1st ranked gene

Cell cycle signaling

Nuclear signaling

Embryonic development/signaling

Cell cycle/developmental

(a) Feature clusters contributing to causal gene prioritization. Rank-order plot of 3,149 feature clusters (arising from 21,407 distinct features) contributing to the prioritization of likely causal 
genes for CAD by PoPS.  Similarity-based cluster labels are provided for several top clusters. 

(b) Prioritization of MFGE8 for rs1807214. Regional association plot at chromosome 15 demonstrating the prioritization of MFGE8 as the likely causal gene for rs1807214, which lies in an 
intergenic region of chromosome 15. Genes in the region are plotted by their chromosomal position (X-axis) and PoPS score (Y-axis).
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Figure 5. Integrating eight gene-prioritization predictors to identify most likely causal genes.

a) Prioritization of 185 likely causal genes using eight predictors. 
Blue circles represent the eight predictors used to prioritize causal genes, which are:
1) A gene in the region harbors a variant that ClinVar classifies as having evidence for being pathogenic for a 

cardiovascular-relevant monogenic disorder (Supplementary Table 31);
2) A gene in the region has been implicated by an effective drug targeting the protein and/or a positive 

Mendelian randomization (MR) study suggesting a causal effect of the protein on CAD (Supplementary Table 
28);

3) Either of the two top prioritized genes in the region from PoPS (Supplementary Table 21);
4) A gene in the region has an eQTL in a CAD-relevant tissue from GTEx or STARNET for which the lead eSNP is 

in high LD (r2≥0.8) with the CAD sentinel variant (Supplementary Tables 24 & 25);
5) A gene for which a mouse knock-out has a cardiovascular-relevant phenotype (Supplementary Table 32);
6) A gene in the region harbors a protein-altering variant that is in high LD (r2≥0.8) with the CAD sentinel 

variant (Supplementary Table 28);
7) A gene in the region has been shown to have a rare variant association with CAD in a previous whole-exome 

sequencing (WES) or genotyping study (Supplementary Table 28);
8) The nearest gene to the CAD sentinel variant.

Numbers in the blue circles indicate, firstly, the number of genes for which this predictor agreed with the most 
likely causal gene, secondly, the number of genes for which this predictor provided evidence for at least one 
gene, and in parentheses, the percentage agreement (i.e. the first number as a percentage of the second). 

The central histogram shows the number of agreeing predictors that supported the 185 prioritized genes by the 
number of genes.

b) Predictors for 94 most likely causal genes strongly prioritized by at least three agreeing predictors. 
The matrix denotes predictors that supported the mostly likely causal gene (colored red) for each of 94 most 
likely causal genes with at least three predictors that supported the gene. Genes are ordered by number of 
agreeing predictors. Lines denote three associations for which two genes were tied for the highest number of 
agreeing predictors. The sentinel variant for the association with the smallest P-value for CAD is shown for each 
gene.

Full details of the causal gene prioritization evidence for all 241 genome-wide associations are presented in 
Supplementary Table 28.

Number of 
concordant predictors
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drug trial or 
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variant gene(s) features
rs11591147 PCSK9 7 1 1 1 1 1 1 0 1
rs3918226 NOS3 7 1 1 1 0 1 1 1 1
rs55997232 LDLR 6 1 1 1 0 1 1 0 1
rs515135 APOB 5 1 1 0 0 1 1 0 1
rs1250247 FN1 5 1 0 0 1 0 1 1 1
rs781663 REST 5 1 0 0 1 0 1 1 1
rs894211 LPL 5 1 1 1 0 0 1 0 1
rs1051338 LIPA 5 1 1 0 1 0 0 1 1
rs7485656 SCARB1 5 1 1 0 0 0 1 1 1
rs116843064 ANGPTL4 5 1 0 1 1 1 0 0 1
rs7412 APOE 5 1 1 0 1 0 1 0 1
rs6686750 IL6R 4 1 0 0 0 1 1 1 0
rs61806987 NME7 4 1 0 0 1 0 1 1 0
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rs633185 ARHGAP42 4 1 0 0 0 0 1 1 1
rs964184 APOC3 4 0 1 1 0 1 1 0 0
rs2244608 HNF1A 4 1 1 0 1 0 0 0 1
rs588136 LIPC 4 1 0 0 0 0 1 1 1
rs12691049 MYH11 4 1 1 0 0 0 1 0 1
rs12446515 CETP 4 1 0 0 0 1 1 1 0
rs12936927 SREBF1 4 1 0 0 0 0 1 1 1
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Figure 6. Prioritizing the likely causal variant, gene and pathway at the ITGA1 locus.
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a) Regional association plot from the primary CAD meta-analysis for the ITGA1 region. 
Colored dots represent the position (X-axis) in GRCh37 coordinates and –log10(meta-analysis p-value) (Y axis) of each variant in the region. Dots are shaded to represent the r2 with the lead CAD 
variant (rs4074793), estimated using a random sample of 5,000 European ancestry participants from the UK Biobank. Recombination peaks are plotted in blue based on estimates of 
recombination from 1000 Genomes European ancestry individuals.

b) Tissue-specific imputed chromHMM states at the two credible set variants in the ITGA1 region.
The top track shows the position on chromosome 5 (GRCh37) with respect to the ITGA1 gene. The second track shows as a vertical orange line the posterior probability (Y-axis) for each variant in 
the region from the FGWAS fine-mapping, identifying rs4074793 (PPA=0.95) as the likely causal variant. The third track indicates as a black box the position of an enhancer state in each of the 10 
CAD-relevant tissues, using custom imputed chromHMM states based on epigenomic data from the NIH Roadmap Epigenomics Consortium project. The yellow vertical line indicates the position 
of the likely causal variant (rs4074793) with respect to the chromHMM states. rs4074793 is annotated to a chromHMM state for all five tissues that show enrichment in the region.
HSMM = human skeletal muscle cells; HUVEC = human umbilical vein endothelial cells; PPA = posterior probability of being the causal variant

c) Effect of rs4074973 on ITGA1 expression in liver in the STARNET study.
The plot shows the position (X-axis) in GRCh37 coordinates and –log10(p-value) (Y axis) of each variant in the region. The likely causal CAD variant rs4074973 is circled in black. 

d) Associations of rs4074973 with ITGA1 expression and phenotypes from a phenome-wide association study.
The per-allele association of rs40747973-G (the CAD risk allele) measured in SD units is plotted for each phenotype. The box indicates the point estimate and the horizontal bars represent the 
95% confidence intervals. The top panel shows the association estimates for ITGA1 expression from the STARNET study. The bottom panel shows associations from UK Biobank (liver enzymes and 
inflammatory markers) and the literature (lipids: Klarin et al., Nat Genet, 2018).
ALP = alkaline phosphatase; ALT = alanine aminotransferase; CRP = C-reactive protein; GGT = gamma glutamyltransferase; LDL-c = low-density lipoprotein cholesterol; Tchol = total cholesterol.
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