
Chronic pain, defined as pain that occurs on ≥50% of 
days over a period of at least 6 months or as pain that 
persists for at least 3 months1, represents one of the most 
prevalent, costly and disabling health conditions2. In 
the 2017 Global Burden of Disease Study, low back pain 
and headache disorders ranked in the top three global 
causes of years lived with disability3. A 2018 analysis 
of Medical Expenditure Panel Survey data found that 
the proportion of adults in the United States reporting 
at least one painful health condition increased from 
120 million (32.9%) in 1997–1998 to 178 million (41%) 
in 2013–2014 (ref.4). An estimated 50–100 million adults 
in the United States live with chronic pain that can sub-
stantially restrict work, social and self-care activities5–7. 
The increased prevalence of chronic pain has been asso-
ciated with a substantial rise in the use of prescription 

opioids to treat non-cancer-related chronic pain, with 
275 million people worldwide using opioids in 2016 
and 27 million of these people developing opioid use 
disorders8. In addition, each day in the United States, 
>90 individuals die from opioid overdose9. Solutions 
are urgently needed to address the chronic pain and 
prescription opioid crises around the world10.

In April 2018, the NIH launched the Helping to End 
Addiction Long-term (HEAL) Initiative to stem the 
national opioid public health crisis. Experts from pub-
lic and private organizations identified two major areas 
that would most benefit from focused efforts by the NIH, 
alone or in partnership with outside organizations: first, 
improvement of treatment options for opioid misuse and 
addiction in adults and for infants exposed to opioids;  
and, second, enhancement of pain management through 
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non-addictive pharmacological therapeutics and non- 
pharmacological interventions, as well as improved treat-
ment integration into healthcare systems. To help improve 
pain management, there is a need to develop translational 
tools, such as well-validated biomarkers and objective 
clinical trial end points for pain, which could be used to 
select participants for clinical trials, demonstrate target  

engagement of new therapeutics and predict the therapeu-
tic response. This topic provided the basis for the NIH 
Discovery and Validation of Biomarkers to Develop Non- 
Addictive Therapeutics for Pain workshop. In this Con-
sensus Statement, we report on the outcomes of this 
workshop and provide guidance for the development and 
validation of biomarkers and end points for chronic pain.

Methods

As a result of the NIH HEAL initiative-sponsored 
Pain Biomarker Workshop planning discussions, the 
National Institute of Neurological Disorders and Stroke 
(NINDS), in collaboration with other NIH institutes — 
the National Center for Complementary and Integrative 
Health (NCCIH), the National Institute of Nursing 
Research (NINR), the National Institute on Drug Abuse 
(NIDA), the National Cancer Institute (NCI), the 
National Institute on Alcohol Abuse and Alcoholism 
(NIAAA), the National Institute of Biomedical  
Imaging and Bioengineering (NIBIB), the Office of 
Behavioral and Social Sciences Research (OBSSR) 
and the National Institute of Dental and Craniofacial 

Research (NIDCR) — held the Discovery and Validation 
of Biomarkers to Develop Non-Addictive Therapeutics 
for Pain workshop on 14–15 November 2018. The goals 
of the workshop were to evaluate the state of the science 
in pain biomarker development; to explore potential sci-
entific and collaborative approaches that could facilitate 
the discovery and validation of robust biomarkers and 
end points; and to inform the community about regu-
latory standards and guidelines for the development of 
biomarkers and end points.

The workshop sessions showcased the status of the 
science for different categories and modalities of bio-
markers or end points, and the potential for transforma-
tional improvements in clinical trial design and clinical 
practice, focused on non-addictive treatment of pain. 
The five main discussion topics are listed in Box 1. Each 
session was followed by a panel discussion, in which the 
audience was encouraged to discuss their views on how 
the biomarkers presented in the session might be trans-
lated into useful tools for pain therapeutic development. 
The workshop closed with a discussion of the realities of 
biomarker development and the potential of these mark-
ers to transform treatment options for people afflicted 
with chronic pain.

The workshop co-chairs, Mary Ann Pelleymounter 
and Simon Tate, obtained feedback from 29 participants 
who volunteered to write this Consensus Statement. 
The writing team consisted of 16 academic investiga-
tors, 6 scientists from the pharmaceutical industry, the 
Director of the Chronic Pain Alliance (a patient-based 
organization) and 3 Program Directors from the NIH. 
Karen Davis was selected to lead the writing effort with 
the assistance of the workshop co-chairs. An outline  
for the summary and a publishing venue was proposed 
with group consensus. The manuscript was divided into 
sections, each assigned to a section lead with between 
two and seven writers. Monthly and ad hoc telecon-
ferences were held to track progress against timelines 
and content. All sections were integrated into a full  
manuscript to create this Consensus Statement.

The need for pain biomarkers

Current pharmacological, interventional, behavioural 
and surgical therapies for chronic pain have limited 
efficacy, as reflected in the high prevalence of chronic 
pain, the low rates of functional recovery and return 

Target engagement

A demonstration that the drug 

in question reaches its target in 

the body and, in doing so, 

results in a measurable effect 

(for example, opioid binding to 

the μ receptor).

Author addresses

1Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, 

ON, Canada.
2Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western 

Hospital, University Health Network, Toronto, ON, Canada.
3Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University 

School of Medicine, Stanford, CA, USA.
4Teva Pharmaceuticals, Frazer, PA, USA.
5Center for Pain and the Brain, Harvard Medical School, Boston, MA, USA.
6Mycroft Bioanalytics, Salt Lake City, UT, USA.
7Teva Pharmaceutical Industries, Frazer, PA, USA.
8Xyzagen, Pittsboro, NC, USA.
9Pain Management Center, Brigham and Women’s Hospital and Harvard Medical School, 

Boston, MA, USA.
10The Vivian L. Smith Department of Neurosurgery, The University of Texas Health 

Science Center at Houston, McGovern Medical School, Houston, TX, USA.
11Department of Perioperative Medicine, Clinical Center, NIH, Rockville, MD, USA.
12Division of Translational Research, National Institute of Neurological Disorders and 

Stroke, NIH, Rockville, MD, USA.
13The Biostatistics Center, Milken Institute School of Public Health, The George 

Washington University, Washington, DC, USA.
14Department of Neuroscience and Department of Neurosurgery, Carney Institute for 

Brain Science, Brown University, Providence, RI, USA.
15Department of Anesthesiology, Brigham and Women’s Hospital and Harvard Medical 

School, Boston, MA, USA.
16Neurocognitive Disorders, Pain and New Indications, Biogen, Cambridge, MA, USA.
17Asarina Pharma, Copenhagen, Denmark.
18Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
19Chronic Pain Research Alliance, Bethesda, MD, USA.
20Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU School  

of Medicine, New York, NY, USA.
21Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
22Anesthesiology and Perioperative Medicine and Psychiatry, University of Pittsburgh, 

Pittsburgh, PA, USA.

Box 1 | Discussion topics

The workshop discussion centred on five main topics:

•	Topic #1: what are the general guiding principles  

for biomarker development?

•	Topic #2: what is the current state of the science  

for pain biomarkers and end points?

•	Topic #3: what are the challenges in developing and 

implementing pain biomarker use in clinical trials  

and clinical practice?

•	Topic #4: how are regulatory agencies addressing the 

need for validated biomarkers?

•	Topic #5: what are the societal and ethical issues that 

should be considered in the development and use of 

pain biomarkers?
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to work, and the continued reliance on opioid ana-
lgesics5,6,11. Three new drugs that utilize a non-opioid  
mechanism of action were recently approved by the 
FDA for the treatment of migraine12, but a large gap still 
remains in the available armamentarium to treat other 
types of chronic pain effectively.

There are numerous challenges in the identification 
and development of safe and effective, non-addictive 
pain medications. For example, most clinical trials to 
date have failed owing to a lack of efficacy13. Reasons for 
these failures could include insufficient understanding 
of the neurobiological mechanisms of chronic pain, poor 
translation of preclinical data and challenges inherent to 
clinical trials, such as large placebo responses. Perhaps 
most importantly, healthcare professionals who treat 
pain lack reliable biomarkers to demonstrate therapeu-
tic target engagement, to stratify patients and to predict 
disease progression or therapeutic response14. Evidence 
from other therapeutic areas, such as cardiovascular and 
metabolic diseases, have illustrated the value of such  
biomarkers15. The importance of target engagement bio-
markers was highlighted by AstraZeneca, who reported 
that clinical proof of mechanism by these biomarkers 
increased the probability of project advancement to 
phase II by 25% (ref.16). Furthermore, a large biomarker 
business intelligence analysis of clinical development 
success rates between 2006 and 2015 showed that avail-
ability of selection or stratification biomarkers increased 
the probability of success by as much as 21% in phase III 
clinical trials and by as much as 17.5% from phase I to 
regulatory approval in all disease areas17.

Patient stratification biomarkers are especially impor-
tant to inform the design of clinical trials in disease areas 

with heterogeneous pathophysiology, such as pain. By 
enabling selection of patients from a mixed disease popu-
lation, these biomarkers could reduce variability of the  
response to an intervention and the consequent expense 
of unnecessarily large clinical trials of pain therapeutics. 
Patient selection biomarkers also provide the potential 
for a personalized approach to treat pain, as is used in 
the field of oncology18,19. Biomarkers that represent acute 
and chronic pain, predisposition to develop chronic 
pain, and pain chronification, recovery and treatment 
outcomes are being sought in both preclinical animal 
models and human studies (fig. 1).

Rigorously validated biomarkers and end points 
also have the potential to provide objective measures of 
pain. Medical conditions are traditionally characterized 
by signs (objective evidence) and symptoms (subjective 
reports). Given that pain is a subjective experience, the 
gold standard for its assessment has long been the indi-
vidual self-report20. Thus, pain as defined by an individ-
ual is their ground truth. Accordingly, the International 
Association for the Study of Pain (IASP) defines pain 
as “an unpleasant sensory and emotional experience 
associated with actual or potential tissue damage or 
described in terms of such damage”21. At present, assess-
ment of pain in the clinical setting relies largely on rating 
scales and symptom-based questionnaires22–26. However, 
these subjective measures are influenced by contextual 
factors and are only moderately reliable, even with 
intensive training programmes to improve the ability of 
individuals to accurately self-report pain27. These limi-
tations highlight the lack of universally accepted objec-
tive biomarkers for pain and the pressing need for these 
tools27. After rigorous validation, neuroimaging and 
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Fig. 1 | Preclinical and human pain biomarkers. a | Development of preclinical pain biomarkers starts with induction of 

different modalities of pain that are clinically relevant. In the absence of a ground truth for pain in animals, a critical first 

step relies on converging lines of evidence from behavioural, electrophysiological and other overt signs. The next step is to 

demonstrate reversal of these signs using analgesic compounds with proven efficacy in humans. b | Development of human 

pain biomarkers starts with the individual’s self-report, also known as the ground truth (asterisks), and a set of signs and 

symptoms, with the goal of defining objective methods and criteria, as well as end points for assessing, predicting and/or 

classifying pain and analgesia. Thus, biomarkers are obtained to indicate chronic pain predisposition, pain mechanisms, 

diagnostic stratification, chronification, recovery and treatment outcome (response or failure).

  VOLUME 16 | JULY 2020 | 383NATURE REVIEWS | NEUROLOGY

C O N S E N S U S  S TAT E M E N T



neurophysiological measurements such as PET, MRI, 
EEG, quantitative sensory testing (QST)28–30 and genetic 
and genomic analysis could be considered as additional 
tools to complement self-reports in the assessment 
and differentiation of mechanisms and aetiologies of 
different chronic pain conditions.

Topic #1: general guiding principles

The workshop addressed the following general guiding 
principles for biomarker development: first, standard-
ized definitions; second, the process of biomarker dis-
covery and validation; and, third, criteria for validation 
and evaluation of biomarkers.

According to the FDA Biomarkers, EndpointS and 
other Tools (BEST) glossary of biomarker terms, a 
biomarker is a defined characteristic that is measured 
as an indicator of normal or pathological biological 
processes, or of responses to an exposure or interven-
tion31,32. Biomarkers can be based on molecular, histol-
ogical, radiographic or physiological characteristics. 
Importantly, a biomarker is different from an end point 
and a clinical outcome assessment. An end point is a 
precisely defined variable designed to indicate an out-
come of interest that is statistically analysed to address 
a particular research question32. A clinical outcome 
assessment is an evaluation of how an individual feels, 
functions or survives32.

The FDA32 and the European Medicines Agency 
(EMA)33 have also developed definitions around several 
categories for biomarkers (TABle 1). These categories 

include the following types of biomarkers: suscepti-
bility/risk, diagnostic, prognostic, pharmacodynamic/
response, predictive, monitoring, safety and surrogate 
end points. Susceptibility/risk biomarkers identify risk 
factors and individuals at risk, and prognostic biomark-
ers can predict disease trajectory, which can guide pre-
vention and treatment efforts and can stratify patients, 
thereby redefining disease categories to align with 
pathophysiology. Diagnostic biomarkers can confirm 
the presence or absence of a disease or disease sub-
type, and monitoring biomarkers are used to monitor 
disease progression, therapeutic response and safety. 
Pharmacodynamic/response biomarkers reflect target 
engagement either directly or indirectly, and predic-
tive biomarkers can predict response to a therapeutic. 
Safety biomarkers reflect the potential or presence of 
toxicity related to a therapeutic agent. Surrogate end 
points are used as a substitute for a clinical end point 
and require extensive and robust validation32.

Biomarker discovery and validation

The biomarker development process is a systematic and 
directed endeavour in which the degree of validation 
evidence supporting the use of the biomarker increases 
as the intended purpose of the biomarker moves from 
research to clinical trials and clinical practice34 (fig. 2). 
The process can be conceptualized as a continuum that 
begins with biomarker discovery and development, 
encompassing initial identification and preliminary 
proof-of-concept studies of the potential biomarker. 

Table 1 | Use cases for biomarkers

Type of 
biomarker

BEST (FDA/NIH) 
category

EMA category Use cases Examples in pain indications

Pre-incident Susceptibility/risk NA Evaluate risk of developing chronic 
pain

Anxiety, depression208

COMT and OPRM1 variants for the prediction  
of opioid efficacy and the risk of addiction209

Tracking and 
mechanism

Prognostic Prognostic Identify likelihood of a clinical event, 
disease recurrence or progression

QST for prognosis of post-surgical pain at  
12 months in painful knee arthrosis210

Diagnostic Diagnostic Identify individuals with the 
biologically defined disorder of 
interest or define a subset of the 
disorder (biological ‘mechanism’)

Skin biopsy and intraepidermal nerve fibre density 
to diagnose small-fibre neuropathy211

QST to identify subgroups of pain profiles in 
neuropathic pain conditions212

Monitoring NA Detect a change in the degree or 
extent of disease over time

NA

Treatment Predictive Predictive Predict which individuals will 
benefit from a treatment

Baseline circulating levels of the microRNA miR-548d 
proposed as predictive of response to intravenous 
ketamine in complex regional pain syndrome93

NA Enrichment Select populations likely to benefit 
from a treatment

painDetect to select patients with chronic low back 
pain for clinical trials on the basis of nociceptive 
versus neuropathic pain components213

Pharmacodynamic/
response

Pharmacodynamic Demonstrate a biological response 
to treatment; track response in 
biological intervention targets

TrkA phosphorylation in skin biopsies to demonstrate 
target engagement and inhibition of NGF–TrkA 
signalling214

Safety Safety signal Indicate the presence or extent of 
toxicity

Joint X-ray or MRI to detect rapid progression of 
osteoarthritis in patients treated with antibodies 
against NGF

Surrogate end 
point

Surrogate end 
point

Use as an outcome to be targeted in 
clinical practice or trials

NA

BEST, Biomarkers, EndpointS and other Tools; EMA, European Medicines Agency; NA, not applicable; NGF, nerve growth factor; QST, quantitative sensory testing.

Quantitative sensory testing

(QST). A series of standardized 

psychophysical protocols that 

are used to quantify sensory 

function.
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The discovery and development phase can also include 
studies aimed at verifying the accuracy and reliability 
of the detection method, formulating a hypothesis for 
the context of use (COU) and testing the association 
between the biomarker or biomarker signature and the 
clinical outcomes that reflect the presence of the dis-
ease, disease prognosis, therapeutic target engagement, 
response to an intervention and/or potential to respond 
to an intervention.

Once a candidate biomarker is identified and a detec-
tion method is developed, various levels of validation are 
required, depending on the COU. Analytical validation 
involves rigorous testing of the performance character-
istics of the assay or detection technology in a manner 
that is appropriate for the purpose of the biomarker 
or biomarker signature. Variables assessed during the 
analytical validation process include the precision, 
dynamic range and sensitivity of the detection method. 
The clinical validation step assesses the sensitivity and 
specificity of the biomarker or biomarker signature to 
identify, measure or predict the clinical outcome that it 
is intended to reflect. Sensitivity refers to the rate of true 
positive findings and specificity is associated with the 
rate of true negative findings. The degree of evidence 
that is required to provide the necessary confidence in 
biomarker or biomarker signature validation depends on 
the COU and ultimate purpose of the biomarker. As the 
COU moves from research use to accepted utility in clin-
ical trials (as a marker of target engagement by a drug or 
response prediction for a drug) or to accepted utility in 
clinical practice (as a diagnostic marker or a predictor 
of disease trajectory to inform the course of treatment), 

the required degree of validation evidence increases and 
should include prospective, multisite validation data.

Diagnostic and predictive accuracy

The diagnostic utility of a biomarker is directly related  
to its positive predictive value (PPV) and negative predictive  

value (NPV), which provide a ‘real-world’ assessment 
of true positives or true negatives, respectively, on the 
basis of documented prevalence of the condition in  
the population35,36. PPV and NPV are strongly influenced 
by both biomarker specificity and the prevalence of the 
condition studied. For example, in a disease that affects 
1% of the population, even if sensitivity and specificity 
are both 98%, the PPV is only 33%. That is, a positive 
biomarker test only implies a 33% chance of having the 
underlying condition. A drop in sensitivity to 90% has 
little impact (PPV = 31%), but if the specificity drops to 
90%, the PPV drops to 9%. Thus, testing and optimiza-
tion for specificity is crucially important in biomarker 
development37,38. PPV and NPV apply to dichotomous 
outcomes, for example, disease present or absent. When 
predicting outcomes on a continuous scale, such as pain 
reports, the same principles regarding the importance 
of specificity apply to the magnitude of prediction accu-
racy (for example, r2). Ideally, a biomarker would pre-
dict the severity of an outcome such as pain intensity 
with high precision, and would not correlate with other 
confounding variables (for example, medication usage).

Specificity of a pain biomarker relates to its true 
reflection of pain or an underlying mechanism of pain. 
As such, it should not depend on other factors often 
associated with pain, for example, anxiety or depression. 
A biomarker for evoked pain, known as the Neurologic 
Pain Signature, has been tested against a range of con-
ditions that might be confusable with physical pain35. 
Although the Neurologic Pain Signature is specific in 
that it does not respond to many salient, arousing affec-
tive stimuli, some classes of non-painful stimuli or men-
tal states might activate the Neurologic Pain Signature 
to some degree.

Biomarker evaluation: considerations

In addition to accuracy, specificity, PPV and NPV, 
there are additional important considerations. These 
considerations include transparency and explainability; 
potential for external validation; generalizability across 
populations, test settings and contexts; ease of deploy-
ment in clinical settings and clinical trials; procedures 
for ongoing validation, including positive and negative 
controls; and cost-effectiveness. We highlight the most 
important aspects of biomarker evaluation below; pre-
vious publications have discussed this process more 
extensively36,37,39. Different COUs and pain conditions 
are likely to require different considerations, and a sin-
gle set of criteria or standards is unlikely be applicable 
to all situations. Beyond debates of biomarker simplicity 
or complexity, pain biomarkers must provide a strong 
enough signal for differentiating pain from non-pain 
conditions or successful from failed treatment, and the 
degree of change must be sufficiently large to rise above 
the clinical ‘noise’ associated with sample collection and 
assay variability.

Context of use

(CoU). A statement that  

fully and clearly describes  

the way the medical product 

development tool is to be  

used and the medical product 

development-related purpose 

of the use.

Sensitivity

The proportion of true (actual) 

positive findings that are 

correctly identified, also known 

as the true positive rate or 

probability of detection.

Specificity

The proportion of true (actual) 

negative findings that are 

correctly identified, also known 

as the true negative rate.

Positive predictive value

(PPV). The probability that 

people with a positive screening 

test result do indeed have the 

condition of interest, taking into 

account the prevalence of the 

disease or condition.

Negative predictive value

(NPV). The probability that 

people with a negative 

screening test result do not have 

the condition of interest, taking 

into account the prevalence of 

the disease or condition.

Discovery Development Validation Clinical use

Identify candidate
biomarkers

Assay development

Specific detection
of the analyte

Prototype assay

Test set

Results (test and
retest) reproducible

Specific detection
of the analyte

Validation set
(naive samples)

Real-world 
prospective 

validation

Specific detection
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Fig. 2 | Steps to identify and develop biomarkers for clinical use. The process starts with 

recognition of the need for a biomarker followed by discovery of candidate biomarkers. 

Assay development ensues. The type of assay selected is based on the properties of the 

biomarker or analyte. Specific detection of the analyte is required to move forward to the 

assay development phase. The analyte must be measurable and the detection method 

must be reliable and reproducible. During development, a prototype assay is tested 

with a test set of samples, including both positive and negative controls. As the assay is 

developed, conditions are optimized, and the prototype assay is then refined, tested and 

retested to ensure reliable, reproducible results. For an omics assay, this process may 

include optimizing the pH, reducing the background signal or filtering the biological fluid 

to remove signal interference (for example, from haemoglobin). Once the prototype assay 

is optimized and produces reliable, verifiable results on test sets of samples, it must be 

validated using a naive sample set. Validation must be performed without knowledge of 

patient status to eliminate any bias in interpretation of results. If specific detection of the 

analyte is demonstrated, prospective validation is performed. Reproducible, reliable, 

sensitive and specific biomarker detection positions a biomarker for clinical use.
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Application of biomarkers to new settings. To enable 
a biomarker to be applied to new situations, standard 
operating procedures must be followed36. For exam-
ple, if a composite biomarker (that is, a biosignature) 
consists of a combination of individual genes, proteins, 
MRI voxels or EEG leads, it is crucial to define precisely 
which variables are included and how they should be 
combined. For many patients, a written description 
of the measure will be inadequate, and electronic files 
defining the model or algorithm applied, along with 
data preprocessing and scaling steps, are essential. This 
process provides transparency about what the model is 
based on and how to derive a biomarker score for an 
individual test case. To date, many studies have used 
machine learning to develop MRI-based biomarkers 
for various brain disorders39, but only a small num-
ber of models have generated procedures that can be 
applied to new individuals and used for validation by 
other groups.

Trust that a biomarker is delivering valid predictions 
in a new sample or setting, such as a clinical trial of a 
new population, will vary as a function of the complexity 
of the measure and the procedures involved, and their 
potential failure points. Biomarkers that are simple to 
understand and validate, and that are biologically plau-
sible, are likely to be more robust39. In addition, biomark-
ers will generally be more successful if the principles 
underlying their predictions can be explained, for exam-
ple, in terms of crucial brain regions, systems, biologi-
cal pathways or neurochemicals. Successful biomarkers 
should also have convergent validity with other methods 
to provide external validation that the biomarker is bio-
logically meaningful and, for some applications, causally 
related to pain40. Validation could come from human 
electrophysiology, lesion studies or invasive techniques 
in animal studies (for example, omics, optogenetics, 
chemogenetics or imaging)37.

Generalizability. Inevitably, the conditions under 
which a biomarker is applied will differ in some ways 
from those under which it was developed. Therefore, 
biomarkers will need to generalize to conditions that 
differ from the original conditions37. Generalization 
can be assessed across individuals, variations in test-
ing procedures, analysis pipelines, equipment (for 
example, different scanners) and populations38. As the 
test context (including the location, population, scan-
ner, personnel and environment) will inevitably differ 
to some degree from the training context (such as the 
population and environment of the sample used for 
model development), diagnostic accuracy invariably 
decreases when applying the biomarker in new con-
texts, and the greater the loss in accuracy across differ-
ent contexts, the less generalizable the biomarker. This 
factor must be taken into account in decision-making 
as to whether a biomarker should be further developed 
and validated.

Scaling up validation. A recommended approach to the 
biomarker development process is to use cross-validation 
in a discovery set, which can provide relatively unbiased 
estimates of diagnostic or predictive accuracy and adds 

statistical rigour (but is not infallible)41. Cross-validation 
or out-of-sample testing is a technique that is used to 
ensure that a model is robust if separate training and 
test data sets are not available. Typically, the bulk of the 
data are used in the training phase of creating a machine 
learning model and then hold-out samples (that is, the 
remainder of the data that are put aside for testing  
the model) are used to test the model. This approach 
is followed by further validation of the biomarker in a 
similar but independent population, using a similar test 
protocol42,43. Eventually, broader tests of generalization 
and performance across diverse populations and test 
protocols are performed44,45. This strategy scales up 
effort and cost in proportion to provisional success46,47 
and establishes the boundary conditions for when a  
biomarker should or should not be applied.

Studies can also be designed to optimize generaliz-
ability. One such strategy is to train a model — that is,  
select biological features and estimate parameters — 
across diverse samples (for example, from different popu-
lations and ethnicities) and including diverse examples  
of painful and non-painful conditions. The model can 
thus be trained to pick out what features are related to 
pain in a generalizable way across these variations, but 
unrelated to various potentially confusable non-pain 
conditions38.

Systematic approaches to scaling up validation remain 
rare. For example, in our survey of machine learning-based 
neuroimaging biomarkers, cross-validation was used in 
nearly all papers, but only a small subset of studies (~9%) 
tested the results in an independent cohort39.

Summary and recommendations

•	 Standard definitions regarding biomarkers, end 
points, clinical outcome assessments and biomarker 
categories that are consistent with the FDA and the 
EMA were conveyed and discussed by the workshop 
participants.

•	 The process of biomarker development is a system-
atic and highly directed endeavour, involving rigor-
ous proof-of-concept studies, careful assessment of 
the performance of the detection method and an 
extremely rigorous multisite evaluation of the PPV 
and NPV of the biomarker relative to the COU.

•	 Cross-validation and the use of independent test  
sets improve the reliability and generalizability of 
validation data.

•	 The overall feasibility of the biomarker is critical to 
its usefulness and, therefore, should be evaluated 
by assessment of generalizability, explainability and  
validation in the real-world setting.

Topic #2: current state of the science

A wide and growing array of biological measures, 
encompassing multiple domains and levels of analysis, 
are being explored as potential biomarkers. These mea-
sures include electrophysiology in peripheral nerves and 
brain; omics assays of blood, cerebrospinal fluid (CSF) 
and other tissues; and structural and functional imaging 
of peripheral tissues and the brain (TABle 2). Few bio-
markers based on electrophysiology, omics and imag-
ing are currently being widely used in clinical trials or 
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Table 2 | Measures and assays being explored as potential pain biomarkers

Measure/assay Peripheral 
nerves

Spine, 
joints

Soft 
tissue

Blood, 
serum and 
plasma

CSF and 
bodily 
fluids

Brain Techniques Scalability and ease 
of use

Electrophysiology

Microneurography215,216 Yes NA NA NA NA NA Recording of spontaneous 
action potentials in 
nociceptive nerve fibres

Useful in research 
setting only

Nerve excitability217 Yes NA NA NA NA NA Assessment of nerve 
excitability (for example, 
threshold tracking)

Available and scaled or 
scalable

Slice electrophysiology 
(cellular recordings)64

NA NA NA NA NA NA Induced nociceptive 
neurons derived from human 
pluripotent stem cells and 
human tissue biopsies

Useful in research 
setting only

EEG66,67,72,115,218 NA NA NA NA NA Yes Laser and evoked potentials

Time–frequency spectra

Coherence

Effective connectivity

Available and scaled or 
scalable

Magnetoencephalo-
graphy219–221

NA NA NA NA NA Yes Laser and evoked potentials

Time–frequency spectra

Coherence

Functional coupling

Useful in research 
setting only

Bioassay

CGRP222,223 NA NA NA Yes NA NA Biochemistry Specialized laboratories 
only

Tissue biopsy (skin 
punch)51,224,225

Yes NA NA NA NA NA Intraepidermal nerve fibre 
density

Biopsy feasible clinically, 
analysis requires 
specialized laboratory

Confocal corneal 
microscopy

Yes NA NA NA NA NA Intracorneal nerve fibre 
terminals

Technically easy to use, 
but equipment available 
only at specialized 
clinics, optometrists and 
ophthalmologists

Omics

Genome82,83,90,91,108 NAa NAa NAa Yes NAa NAa Genotyping and sequencing Available and scaled or 
scalable

Epigenome93–95 NA NA Yes Yes NA NA DNA methylation and 
microRNA arrays

Sequencing

Quantitative PCR

MS

Specialized laboratories 
only, not readily scalable

Transcriptome82,108 NA NA Yes Yes Yes NA RNA sequencing

Cell-free RNA

Available and scaled or 
scalable

Proteome100–102 NA NA Yes Yes Yes NA Antibody-based or 
aptamer-based

MS

Available and scaled or 
scalable

Metabolome and 
lipidome109,110

NA NA Yes Yes Yes NA Gas chromatography–MS

Liquid chromatography–
tandem MS

Nuclear magnetic resonance 
spectroscopy

Specialized laboratories 
only, not readily scalable

Immunome97–99,105 NA NA Yes Yes Yes NA Mass and flow cytometry

Peripheral blood 
mononuclear cell stimulation 
assays

Available and scaled or 
scalable
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clinical practice in the pain field, although large-scale 
validations are beginning to emerge.

Although not strictly meeting the qualifying crite-
ria, behavioural measures including QST48,49 (reviewed 
elsewhere50,51), facial expressions52–55, vocal characteris-
tics56,57 and body movements58,59, as well as other data 
types such as geotagged measures of social and envi-
ronmental exposures60, are often considered ‘biomark-
ers’. Increasingly, data within the various domains are 
multivariate, and analysis should probably be guided by 
machine learning approaches to derive robust patterns 
from high-dimensional and multilayered data sets39,42.

Electrophysiological biomarkers

Electrophysiology can reveal pain-related electrical sig-
nals travelling from the peripheral nerves to the brain. 
Peripheral measures include microneurography61–63 and 
assays of induced pluripotent stem cell-derived neurons 
or non-neural cells16,64. Brain measures include EEG and 
related magnetoencephalography measures of evoked 
potentials and oscillations in brain systems associated 
with pain.

EEG is non-invasive, affordable and fairly easily 
assessed in the clinical setting. The two main types 
of EEG data that can be acquired are event-related 

Measure/assay Peripheral 
nerves

Spine, 
joints

Soft 
tissue

Blood, 
serum and 
plasma

CSF and 
bodily 
fluids

Brain Techniques Scalability and ease 
of use

Imaging

Structural imaging 
(MRI, CT)66,142,143,149,226

Yes Yes NA NA Yes Yes T1-weighted scans Available and scaled  
or scalable

Magnetic resonance 
diffusion imaging227,228

NA NA NA NA Yes Yes Tractography (white matter) Available and scaled  
or scalable

Magnetic resonance 
elastography111,229

NA Yes NA NA Yes Yes Elastography maps Available and scaled  
or scalable

Hyperspectral 
imaging230

Yes NA Yes NA NA NA Spectral analysis of skin or 
blood

Available and scaled  
or scalable

PET129,223,231 NA NA NA NA Yes Yes Blood flow

Metabolism 
Neurotransmitter

Microglial markers

Useful in research 
setting only

Functional 
MRI35,114,115,134,145,148

NA NA NA NA Yes Yes Stimulus-related and 
percept-related activation

Resting-state functional 
connectivity

Effective connectivity

Useful in research 
setting only

Functional near-infrared 
spectroscopy232,233

NA NA NA NA Yes Yes Stimulus-related and 
percept-related activation

Resting-state functional 
connectivity

Effective connectivity

Available and scaled  
or scalable

Behaviour

Quantitative sensory 
testing48–51,234

NA NA NA NA NA NA Detection threshold and 
sensitivity to noxious and 
non-noxious stimuli

Temporal summation of pain

Conditioned pain 
modulation

Available and scaled  
or scalable

Facial expression52–55 NA NA NA NA NA NA Analysis of pain-related facial 
muscle movements

Available and scaled  
or scalable

Voice audio 
spectrum56,57

NA NA NA NA NA NA Acoustic spectrography Available and scaled  
or scalable

Movement and 
activity58,59

NA NA NA NA NA NA Wearable devices Available and scaled  
or scalable

Autonomic 
responses51,235

NA NA NA NA NA NA Skin conductance, pupil 
diameter and other 
physiological indicators of 
autonomic activity

Available and scaled  
or scalable

CGRP, calcitonin gene-related peptide; CSF, cerebrospinal fluid; MS, mass spectroscopy; NA, not applicable. aAssumed to be tissue type-independent.

Table 2 (cont.) | Measures and assays being explored as potential pain biomarkers
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potentials and resting-state EEG, which relate to stimulus- 
evoked and ‘spontaneous’ pain, respectively (reviewed 
elsewhere65–67). Gamma-frequency event-related poten-
tials have been associated with pain evoked by nox-
ious stimuli in rodents68 and humans69,70. Pain can also 
enhance resting-state theta (4–8 Hz) oscillations. In rat 
models, theta power manifests in acute, inflammatory 
and neuropathic pain71 and is reversed dose-dependently 
by pharmacological therapies and neuromodula-
tion71–75. Theta power has been attributed to thalamo-
cortical dysrhythmia in patients with pain76–78 and has 
been shown to be causally related to cell-specific and  
time-locked neural firing in the thalamus79,80.

Omic-based biomarkers

Omic approaches are attractive as they provide bio-
logical markers from readily accessible body compart-
ments. Biomarkers currently used in clinical medicine 
are mainly metabolites, proteins or DNA measured in 
blood, as blood analysis is widespread, minimally inva-
sive and relatively cheap81. In the context of pain man-
agement, clinically accessible omic biomarkers have the 
potential to aid patient management and uncover patho-
physiological mechanisms. However, such a prospect is 
currently anchored largely in exploratory data and will 
require thorough examination in large, diverse and 
well-phenotyped patient populations. Critical questions 
include whether omic signatures obtained from accessi-
ble biospecimens, such as blood, urine, CSF or exudate, 
reflect relevant biology, and if so, what pain conditions 
— for example, inflammatory versus neuropathic, 
or temporal patterns from acute to chronic — would  
benefit from such profiling.

A systems-based study published in 2017 integrated 
lipidomic measurements with transcriptomic profiling 
of lipid biosynthetic enzymes expressed in nociceptive 
circuits, including the skin, peripheral nerve, dorsal root 
ganglion and dorsal spinal cord82. An RNA-sequencing 
transcriptomics approach was used to measure the 
expression of biosynthetic enzymes and thereby pre-
dict the presence of lipid products in each tissue. Two 
previously unidentified linoleic acid-derived lipids 
were measured; one was elevated in blood in a human 
pain disorder (headache) and the other was elevated 
in skin in a pruritic disorder (psoriasis). In the latter 
case, biosynthetic expression profiles and levels of one 
11-hydroxy-epoxy-octadecenoate lipid were elevated 
only in patients with itch symptoms. This example 
illustrates the potential utility of a concerted multiomic 
approach for biomarker discovery in peripheral tis-
sues to advance our understanding of pain and pruritic 
conditions. Two other studies using a transcriptomic 
approach in blood also suggest that gene expression sig-
natures related to painful conditions can be identified 
in peripheral tissues19,83. However, further studies are 
required to extract and validate an actionable biomarker 
from these analyses.

Substantial efforts in other medical fields, including 
neuropsychiatry, provide additional reasons for cau-
tious optimism regarding the utility of omic biosigna-
tures in accessible tissues. A prominent example is the 
use of genotypic and proteomic features as prognostic 

and diagnostic biomarkers in Alzheimer disease (AD). 
The carrier status of the apolipoprotein E ε4 allele allows 
patient stratification, as carriers of two copies of this 
allele have a 12-fold increased risk of developing AD84. 
CSF levels of amyloid-β42, total tau and hyperphos-
phorylated tau are recognized diagnostic biomarkers 
for observational and interventional clinical trials85,86. 
Notably, a longitudinal study in >1,500 individuals 
suggested that the plasma level of the axonal protein 
neurofilament light is a useful biomarker for tracking 
disease progression and treatment responses in patients 
with AD87.

Important developments in the omics field include 
the recognition that prevalent pain conditions are 
likely to be polygenic in nature, which might explain 
why single gene variants often account for small effect 
sizes that fail replication88–90. Derivation of polygenic 
pain signatures in large patient cohorts has been  
proposed as a crucial next step to identify robust pain  
biomarkers91.

Clinical epigenetics is an evolving field strongly 
rooted in oncology, where cell-free DNA methylation 
and microRNA signatures in plasma show promise as 
diagnostic and prognostic markers92. In pain research, 
early evidence suggests that circulating microRNAs can 
allow profiling of chronic pain conditions and prediction 
of treatment responses93–96. Considering the substantial 
crosstalk between the immune and nervous systems, 
systemic proteomic and cell-based signatures might 
mirror biological aspects that are pertinent to the initia-
tion and maintenance of pain97–99. Novel antibody-based 
and aptamer-based proteomic platforms measuring 
>1,000 proteins are promising discovery tools that have 
uncovered predictive signatures in cardiovascular and 
feto-maternal medicine100–103. Novel high-dimensional 
and single-cell assays, including mass cytometry-derived 
immune signatures in peripheral blood, have predicted 
the resolution of post-surgical pain104–106. More con-
ventional functional assays in peripheral blood mono-
nuclear cells revealed strong signatures in patients 
with fibromyalgia107. Many of these techniques can be 
augmented by RNA-sequencing approaches, which 
provide high-resolution, comprehensive and quanti-
tative expression profiling of basal-state and induced 
genes82,108. Metabolomic approaches are also appealing, 
as metabolites are the final downstream products of 
translation and, as such, are close to a studied pheno-
type109. However, few studies have examined metab-
olomics profiles in patients with pain, and signatures 
derived in other fields, such as cardiovascular medicine 
and neurology, remain preliminary81,110.

Imaging-based biomarkers

Neuroimaging can reveal structural and functional 
abnormalities in pathways directly and indirectly related 
to nociception, pain and other aspects of function. 
Ultrasound, MRI and CT have broad applicability for 
the detection of gross structural pathology in peri pheral 
and central tissues. Emerging peripheral measures 
include magnetic resonance elastography for detection 
of shearing forces in tissue111 and hyperspectral imag-
ing to non-invasively detect cellular and biochemical 
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changes in skin, blood and other tissues112,113. The latter 
technique can be cross-linked with omics. An impor-
tant use of imaging is to study peripheral nerves, CNS 
pathways and brain networks in relation to self-reports 
of pain1,48,91,114–116 and co-occurring aspects of function 
and well-being, such as fatigue, fear and anxiety, and 
depression. Preclinical imaging studies have identified 
potential pathophysiological pain mechanisms in mul-
tiple nervous system pathways, including sensitization of 
nociceptive neurons throughout the neuraxis23,79,91,114,117, 
alterations in frontostriatal pathways71,106,117 and many 
others118–120. In some cases, brain changes potentiate 
descending pain facilitation, thereby amplifying spinal 
cord responses to noxious events121,122.

Identification of abnormalities and functional sen-
sitivity in brain pathways could provide a basis for 
studying and grouping patients with chronic pain on 
the basis of brain alterations. Neuroimaging is also 
increasing our understanding of the role of the spinal 
cord and brainstem systems in acute and chronic pain. 
Currently, efforts are focused on simultaneously imag-
ing the entire CNS to better characterize ascending 
and descending nociceptive and pain modulatory sys-
tems123–125. Characterization of CNS function and abnor-
malities will help us to understand the development and 
maintenance of chronic pain. CNS abnormalities might 
cause or maintain pain independently of or in interac-
tion with peripheral alterations, thereby complementing 
more traditional measures of pain.

Common forms of structural imaging include ana-
tomical MRI to measure cortical thickness, volume 
and grey matter density, and diffusion-weighted imag-
ing to measure white matter integrity and pathways126. 
Functional imaging can be accomplished with PET 
and functional MRI (fMRI)126,127. PET can measure  
metabolism and neurochemistry of hundreds of neuro-
transmitters and neuropeptides in the resting state 
and during tasks or stimulation. fMRI can measure 
resting functional connectivity and task-evoked or 
stimulation-evoked activity and connectivity. Magnetic 
resonance spectroscopy can be used to measure resting 
or task-evoked levels of metabolites, such as glutamate 
and GABA, although the spatial and temporal resolution 
is low. PET has been used for decades in preclinical and 
clinical drug discovery research to image drug pene-
trance and pharmacodynamic effects128, and various PET 
radioligands can be used to image brain neuropeptides 
(for example, opioids)129,130, neuroinflammation131,132 and 
peripheral immune activity133 in relation to pain.

Current work is focused on developing and validating 
fMRI-based measures as biomarkers for evoked pain sen-
sitivity35,44,134,135 and as diagnostic136–143, prognostic116,144,145, 
predictive146–149 or response120 biomarkers for clinical 
pain. Several reviews provide more detailed coverage of 
neuroimaging-related biomarker development38,39,91 and 
emerging biomarkers for clinical pain114,150.

Composite biomarkers

At present, we have no universally accepted composite 
assessment for chronic pain that incorporates biological 
and behavioural measures to arrive at a valid and com-
prehensive measurement of the pain experience. The 

current standard for assessment is primarily the patient’s 
self-report of pain intensity and severity151. Patient report 
has been shown to correlate with brain activity and pat-
terns of brain functional connectivity44,139,152. A compre-
hensive and quantitative assessment of pain correlates, 
incorporating the latest findings regarding pain bio-
markers (for example, fMRI and/or omics-derived), 
behavioural evidence (for example, facial expressions) 
and physiological measures (for example, heart rate 
variability), might augment the validity and meaning 
of self-report. Subsequently, a comprehensive and com-
posite assessment constituting a ‘chronic pain signature’ 
may lead to new and improved treatments. However, 
chronic pain signatures could vary depending on the 
context; for example, a diagnostic chronic pain signa-
ture may be different from a prognostic chronic pain 
signature or from a predictive chronic pain signature. 
Nonetheless, identification of biomarkers that reflect 
pain mechanisms could enable the development of 
targeted treatments91.

Systems-level biological profiling of pain in clinical 
settings requires a harmonized set of omics and brain 
assays, targeting and linking multiple levels of analy-
sis101. These brain assays may include brain imaging 
(fMRI or PET), as discussed above, fluid (blood or 
CSF) levels of CNS proteins or detection of mutations 
in genes encoding pain-associated molecules, such as 
voltage-gated sodium channels. The systematic analysis 
of the large amount of data produced by each of these 
high-throughput assays will lend itself to greater use 
of specialized machine learning tools in the future101. 
When applied to pain, higher-order integration of such 
data sets in a ‘multiomics’ setting will rely on complex 
machine learning pipelines that remain robust despite 
inconsistencies in the intrinsic properties of these 
high-throughput assays, as well as cohort-specific var-
iations. Signal strength must be optimized to reduce 
noise associated with clinical and technical variables 
such as patient presentation and sampling procedures. 
Addressing these challenges necessitates close collabora-
tions between consortia to develop well-curated biopsy 
and body fluid collections, harmonized data sets and 
analysis pipelines, and large-scale machine learning sys-
tems153–155. Importantly, algorithms that are developed 
should have the capacity to integrate non-biological 
measurements, including behavioural, clinical and 
imaging data156,157.

To enable true clinical impact, these computational 
approaches need to move beyond predictive power 
generated by high-dimensional and multilayer models. 
‘Explainable’ artificial intelligence is currently an active 
area of research to make complex models understand-
able by human investigators158. Such algorithms will 
facilitate downstream validation, improve mechanistic 
and biological understanding, and enable the develop-
ment of scalable assays to capture robust effect sizes in 
resource-limited and regulatory settings159,160.

End points and clinical outcomes

A clinical end point is a defined variable that is intended 
to reflect an outcome of interest in a clinical trial. 
End-point specifications typically include the type and 
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timing of assessments and the assessment tools used,  
and possibly other details, such as how multiple assess-
ments within an individual are to be combined32,161.  
A clini cal outcome directly reflects how a patient feels, 
functions or survives. Clinical outcome assessments 
can be made through report by a clinician, a patient, a 
non-clinician observer or a performance-based assess-
ment; these clinical outcome assessments are termed 
clinician-reported, patient-reported, observer-reported 
and performance outcomes, respectively. A surrogate end 
point indirectly predicts clinical benefit or harm on the 
basis of epidemiological, therapeutic, pathophysiological  
or other scientific evidence32,161.

The Initiative on Methods, Measurement, and Pain 
Assessment in Clinical Trials (IMMPACT) has recom-
mended multiple core outcome domains162. Measures 
of pain severity, pain qualities and physical function-
ing are most often designated as primary end points in  
pain trials. The Numerical Rating Scale measures of pain  
intensity, in the form of single-item 11-point (0–10) 
scales, the 10-cm Visual Analogue Scale and multi-item 
measures, such as the Brief Pain Inventory, are well val-
idated, widely used and generally considered the gold 
standard for pain intensity outcomes22,163. For patients 
who are unable to provide numerical ratings, validated 
pictorial and pain behaviour-based assessment tools 
are available24,25.

Intensity is only one dimension of pain, and instru-
ments such as the McGill Pain Questionnaire can mea-
sure numerous qualities of pain (for example, burning  
versus aching) and affect (for example, discomfort-
ing versus excruciating)23. The Neuropathic Pain 
Symptom Inventory, painDETECT, DN4 and the Leeds  
Assessment of Neuropathic Symptoms and Signs (LANSS)  
questionnaire are convenient, brief and well-validated 
tools to assess neuropathic pain30,164,165. Some evidence 
has suggested that different pain qualities respond dif-
ferentially to specific neuropathic pain treatments166. 
Despite their broad use, self-report-based measures are 
highly variable and only modestly reliable, even with 
intensive training programmes designed to improve 
pain reporting accuracy27, highlighting the urgent need 
to identify pain biomarkers. Measures of pain sensiti-
vity and modulation, assessed using QST, might serve 
as important biomarkers of phenotypes and outcome 
measures to help identify specific mechanisms that are 
influenced by treatment163,167.

Patient-assessed measures of pain are generally sup-
plemented by additional end points. An IMMPACT 
survey revealed that patients consider physical func-
tioning, enjoyment of life, emotional well-being, sleep 
and fatigue to be important outcome domains168. 
Physical functioning in various arenas, including work 
participation and recreation, is adversely affected by 
chronic pain. As a treatment end point, physical func-
tioning can be measured by patient self-report (for 
example, measures such as the Short Form-36 physi-
cal functioning scale, the PROMIS (Patient-Reported 
Outcomes Measurement Information System) and the 
Pain Disability Index), performance-based metrics and 
objective measures of activity169. Emotional function-
ing, typically measured by patient report of measures 

of affect, both general (for example, depression and 
anxiety) and pain-specific (for example, catastrophiz-
ing and fear of pain), is widely used as a secondary end  
point170.

Global ratings of improvement and satisfaction pro-
vide an opportunity for participants to aggregate their 
experience into one overall measure of the treatment’s 
effects162. For example, the Patient Global Impression 
of Change scale is a well-validated single-item rating of 
treatment-related improvement on a 7-point scale rang-
ing from ‘very much improved’ to ‘very much worse’171. 
In addition, measures of adverse effects and events are 
an essential component of all clinical trials, as they are a 
primary reason for trial attrition and have detrimental 
effects on function and quality of life172. Participant dis-
position — for example, adherence to treatment and rea-
sons for premature withdrawal — is an additional core 
outcome measure162. Collectively, these multidimen-
sional clinical end points reflect the broad biopsychoso-
cial nature of the pain experience and cover numerous 
specific domains in which pain treatments can provide 
clinical benefits.

Summary and recommendations

•	 Complex physiological biomarkers, such as QST, 
facial expression, vocal characteristics and body 
movements, have become an expanding area of 
biomarker research. Machine learning approaches 
to analyse these data are under development to 
derive robust patterns from high-dimensional and 
multilayered data sets39,42.

•	 Electrophysiological pain biomarkers, such as EEG, 
are non-invasive and can have a high level of utility, 
but are likely to require the same types of analysis as 
the complex physiological biomarkers.

•	 Omics biomarkers for pain are also becoming increas-
ingly complex and multidimensional because of  
the crosstalk between immune and neural circuitry. 
As a result, an increasing number of these biomark-
ers are biosignatures rather than single-molecule 
biomarkers.

•	 Imaging biomarkers for pain utilize multiple types of 
imaging, including MRI, ultrasound, fMRI and PET. 
These biomarkers can reflect circuitry and pathways 
in the pathophysiological state, providing complex 
anatomical signatures that could be combined with 
omics biomarkers to form multimodal signatures of 
chronic pain with and without treatment.

•	 Composite biomarkers for pain can include imaging, 
omics and physiological measures, the precise nature 
of which could depend on the COU (that is, diagnos-
tic versus prognostic). These complex measures will 
require algorithms to simplify final end points that 
are explainable.

•	 Explainable artificial intelligence is a new area that 
may make the complex models described above more 
feasible for broad use by the clinical and research 
community.

•	 Many self-report pain outcome measures are avail-
able, but they are highly variable and only modestly 
reliable, highlighting the need for objective pain 
biomarkers.
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•	 QST is used as a pain phenotype biomarker to iden-
tify mechanisms of pain, but requires additional 
validation and optimization.

Topic #3: implementing pain biomarkers

The use of a biomarker in treatment development 
or clinical practice requires a clear understanding of 
the pain construct assessed by that marker (TABle 3). 
A binary diagnostic marker may be useful for the pur-
pose of disease classification, whereas qualitative grad-
ing scales or quantitative methods will be necessary to 
evaluate the activity of pain mechanisms or treatment 
response. Rigorous evaluation of construct validity, assay 
sensitivity and reliability may entail collecting evidence 
through preclinical studies and clinical trials, the latter 
potentially involving healthy volunteers and patients.

One example that illustrates the complexity of con-
struct validity in painful neuropathies is the use of skin 
punch biopsies to determine the density of intraepi-
dermal nerve fibres (IENFs)173. Standardized histolog-
ical quantification and determination of age-specific  
normal values have helped to establish IENF density as 
a sensitive indicator of peripheral neuropathies involv-
ing thinly myelinated or unmyelinated (small-diameter) 
nociceptive nerve fibres (known as Aδ and C fibres, 
respectively)51. Conditions that selectively affect these 
fibres are termed small-fibre neuropathies174. Pain is a 
prominent clinical feature of small-fibre neuro pathies. 
However, its correlation with the loss of IENF is uncer-
tain175,176. Consequently, IENF density may serve as a 
histopathological biomarker of nociceptive nerve fibre 
involvement in a peripheral neuropathy but does not 
reliably indicate the functional consequences, that is, the 
presence of spontaneous pain or abnormal sensitivity 
to painful stimuli. The dynamic nature of pain mecha-
nisms is another challenge for the use of biomarkers. 

Inflammatory and neuropathic processes are not static177, 
and their relative contributions to clinical pain disorders 
can vary over time. Capturing these changes through 
repeated testing may be difficult in clinical practice if 
the diagnostic procedure is invasive, poorly tolerated by 
patients or costly. Inclusion of biomarkers in a clinical 
trial increases the complexity of the scientific and sta-
tistical design, and adds to the operational challenges of 
trial execution and data collection. Such an investment 
requires a thorough understanding of the diagnostic 
or therapeutic value to be gained. From a treatment 
developer’s point of view, markers of pain mechanisms 
support patient stratification in a more meaningful way 
than pain intensity, the emotional response to pain or 
comorbidity177,178. A sensitive marker of target engage-
ment that reliably predicts pain reduction might allow 
early identification of treatment responders, enable a 
streamlined trial design and increase the probability 
of success. The net impact of a biomarker assay further 
depends on its biological specificity and robustness 
against placebo effects179. Biomarkers will be most use-
ful if they deliver proof of target engagement or biology, 
demonstrate the validity of a therapeutic concept or help 
identify treatment responders.

Predictive biomarkers that qualify as surrogate end 
points may help to shorten trial duration during treat-
ment development and expedite the regulatory approval 
of effective pain treatments. Biomarkers meeting  
some of these criteria, including measures of thermal or 
capsaicin-evoked transient receptor potential ion chan-
nel activity180,181 or microneurographic recordings of 
nociceptive fibre firing182, have been employed in phase I  
and II trials of emerging pain treatments (TABle 3). 
Inclusion of biomarkers in a phase III trial designed to 
obtain regulatory approval requires robust evidence that 
the biomarker is not only relevant for disease but is also 

Table 3 | Potential pain biomarkers used in clinical trials

Pain disease 
state

Biomarker Correlation to 
disease

Correlation with 
pharmacodynamic 
outcome

Correlation 
with pain 
state

Clinical 
efficacy 
shown

Rheumatoid 
arthritis and 
neuropathic pain

CCL concentration in 
cerebrospinal fluid and 
plasma

CCL in neuropathic 
pain

Highly efficient 
antagonism of 
CCR2

No No236,237

Inflammatory pain TRPV expression TRPV elevated TRPV antagonism 
leads to reduction 
in inflammation

Yes No238,239

Chronic back pain Nerve growth factor High High Yes Yes240

Migraine CGRP concentration Elevated in disease 
state

Yes Yes Yes241

Neuropathic pain Resting-state functional 
connectivity, temporal 
summation of pain

No specific 
correlation

Unknown Yes Yes148

Painful diabetic 
neuropathy

Conditioned pain 
modulation

No specific 
correlation

Yes Yes Yes242

Migraine, 
fibromyalgia 
(nociplastic pain)

Conditioned pain 
modulation

Poor conditioned 
pain modulation 
capacity

Yes Yes Yes183,243–245

CCL, CC-chemokine ligand; CCR2, CC-chemokine receptor 2; CGRP, calcitonin gene-related peptide; TRPV, transient receptor 
potential cation channel subfamily V.
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sensitive to change by the intervention183. The potential 
to achieve greater effect sizes by targeting the treat-
ment to a well-defined subpopulation of patients with a 
substantial unmet need could justify the effort required 
to generate such evidence. However, early interaction 
with regulatory authorities (Box 2) will be necessary to 
gauge the implications of biomarker use for the devel-
opment path of a product and the indications covered 
in the product label.

Regulatory monitoring of biomarker use will help 
maintain rigorous quality standards that are compliant 
with Good Clinical Practice. Accessibility of biomark-
ers for pain specialists as well as general practitioners 
with limited scientific, technical and financial resources 
also needs to be considered early in the biomarker 
development process. Successful biomarker discovery 
and implementation requires reliable clinical evidence 
(the standard for what is being measured) and an 
accurate assay technique (specificity of what is being  
measured).

Finally, the process of biomarker discovery and vali-
dation is complex and requires multiple areas of exper-
tise in a collaborative or team approach. Transparency 
and data sharing are important factors in facilitating 
efficient pain biomarker development. Implementing 
biomarkers for diagnosis, prognostic prediction, patient 
stratification or monitoring of treatment response can 
also benefit from public–private partnership collab-
orations, as exemplified by the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI).

Summary and recommendations

•	 Both categorical and quantitative pain biomarkers are 
necessary, depending on the COU for the biomarker. 
Different design and analysis strategies are required 
for these two types of biomarkers.

•	 Rigorous validation of a biomarker (construct valid-
ity, detection method validation and clinical vali-
dation) is extremely time-consuming and may not 
match the timelines for clinical trial use. It is impor-
tant to begin developing biomarkers early in the drug 
development process.

•	 The dynamic nature of pain adds complexity to the 
development and validation of pain biomarkers.

•	 The use of surrogate end points for pain could sub-
stantially improve clinical trial design and increase 
the efficiency of clinical trials, but validation require-
ments are very high for surrogate end points from 

a regulatory standpoint. Therefore, interaction with 
regulatory officials should occur early in the drug 
development process.

•	 A collaborative approach to use of pain biomarkers 
in clinical trials is recommended, whereby academic 
groups, patients, regulatory agencies and biophar-
maceutical entities work together to develop pain  
therapeutics and their associated biomarkers.

•	 Transparency and data sharing are vital to a more 
efficient and effective approach to biomarker and 
end point development.

Topic #4: role of regulatory agencies

Several biomarkers related to pain have been evaluated 
by regulatory agencies (Box 2; TABle 4). Current prac-
tices for quantitatively measuring pain intensity and 
pain relief (for example, reduction in pain intensity) 
include the 0–10 Numerical Rating Scale or the Visual 
Analogue Scale, in combination with an assessment of 
health-related quality of life. These outcome measures 
form the basis of clinical development guidelines for 
acute, chronic, neuropathic and other specific pain syn-
dromes in the United States and Europe. At the time of 
writing, the FDA is about to release new guidelines on 
analgesic drug development184 to facilitate the evalua-
tion of alternatives to opioids to help combat the opi-
oid epidemic. A similar goal is being pursued by Health 
Canada185,186. The current and proposed new FDA guide-
lines for drug development in pain do not specifically 
address biomarker evaluation. However, this issue is 
addressed by numerous other publications and initia-
tives, including ICH E16 (ref.187), the FDA Biomarker 
Qualification Program, which features a draft FDA guid-
ance document on the evidentiary framework for bio-
marker development34, the FDA Drug Development Tool 
Qualification Programs and an EMA document entitled 
‘Essential considerations for successful qualification of 
novel methodologies’188.

Current regulatory guidance

Patient assessment of perceived pain intensity should 
continue to be the primary end point in a clinical trial. 
Biomarkers can serve as a supportive secondary mea-
sure or, in early-phase clinical trials (phase I and II),  
as a pharmacodynamic marker or surrogate end point. 
Similar to other therapeutic areas, regulatory author-
ities view biomarkers in pain drug development as diag-
nostic tools for patient stratification, cohort enrichment 
and development of eligibility criteria for inclusion in 
a drug trial. Biomarkers are also viewed as useful prog-
nostic tools and/or surrogate end points. For a bio-
marker to qualify for use in these contexts, its clinical 
utility in terms of guiding diagnostics, patient manage-
ment and outcomes needs to be demonstrated in a 
rigorous fashion. In addition, biomarker performance 
— that is, sensitivity, specificity and robustness — and 
the analytical platform must fulfil regulatory criteria. 
For composite biomarkers (diagnostic or outcome), the 
performance criteria must be characterized both indi-
vidually and in combination. At this time, no surrogate 
end points for pain are qualified by the FDA for use in  
clinical trials189.

Box 2 | Important regulatory agencies

The following agencies have ongoing active collaborations with regard to biomarker 

development guidance:

•	European Medicines Agency (EMA): https://www.ema.europa.eu/en

•	US Food and Drug Administration (FDA): https://www.fda.gov/

•	Health Canada: https://www.canada.ca/en/health-canada.html

•	The Japanese Pharmaceuticals and Medical Device Agency (PMDA): https://www.

pmda.go.jp/english/index.html

•	National Medical Products Administration — formerly the China Food and Drug 

Administration (CFDA): https://www.emergobyul.com/resources/china/

china-food-drug-administration
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In 2015, the private–public partnership Innovative 
Medicines Initiative (IMI) Europain put forward QST 
as a potential diagnostic and stratification tool in neuro-
pathic pain trials. On the basis of the scientific evidence 
put forward, the EMA concluded that QST was accept-
able to use as a stratification tool in clinical trials for 
peripheral neuropathic pain, provided that differential 
outcomes according to QST sensory phenotype could 
be confirmed through replication in a clinical trial. If 
this goal was accomplished, the indication of use would 
be limited to the subpopulations studied; for example, a 
trial in peripheral neuropathic pain, where patients were 
included on the basis of their sensory profile, would be 
acceptable. QST variables have also been accepted as 
secondary end points190.

Electrophysiological measurements (spontaneous 
C-fibre activity) have been generally thought useful to 
confirm the origin of neuropathic pain, but confirma-
tory trials were deemed necessary before they could be 
considered a surrogate efficacy end point.

In addition, there is an opportunity to have compan-
ion diagnostic biomarkers for a given drug treatment, 
which could facilitate the personalization of therapeu-
tics. One example is a blood biomarker test that would 
indicate whether a patient is likely to respond to a cer-
tain medication based on a specific pain condition. A list 
of early biomarkers being considered by regulatory 
agencies is provided in TABle 3.

Summary and recommendations

•	 Regulatory agencies regard biomarkers as adjunct 
tools for use in clinical trial design by acting as indi-
cators of drug target engagement, tools for patient 
stratification or therapeutic response predictors.

•	 Rigorous validation is required for the use of 
biomarkers as adjunct end points in clinical trials.

•	 No FDA-qualified surrogate end points for pain 
therapeutics are available at this time.

•	 Regulatory agencies in the United States and Europe 
are actively involved in facilitating best practices for 
biomarker validation.

•	 The EMA has concluded that QST will be accept-
able to use as a stratification tool in clinical trials for 
peripheral neuropathic pain if differential outcomes 
according to the QST sensory phenotype can be 
confirmed through replication in a clinical trial.

Topic #5: societal and ethical issues

As highlighted above, pain is currently defined by 
patient self-report1,2. However, objective pain biomark-
ers might be useful in individuals who are unable to 
effectively communicate pain, including infants191–194, 
minimally conscious patients195,196 and people with 
dementia197 or other intellectual disabilities55,198–200. The 
inability to report pain can result in continuing harm 
to such vulnerable groups. For example, US courts 
often will not take action unless physical evidence of 
pain or mistreatment is provided. Even when patients 
can report pain, clinicians’ mistrust of reports can have 
similar adverse effects. These harms are exacerbated 
by mismatches between pain communication norms 
across cultures201–203. In addition to their potential 
role in cases where self-report of pain is not possible, 
objective pain biomarkers might help us to determine 
the level of response to a treatment, predict who will 
develop chronic pain, identify and test novel mechanistic  
targets for treatments and select personalized treatment. 
Objective, accurate, verified pain biomarkers may also 
be useful in support of disability insurance or legal 
claims3. However, no universally accepted objective pain 
biomarker currently exists.

Undertreatment or overtreatment of chronic pain can 
result in physical, emotional, social or financial harm to 
patients, and misuse of biomarkers can also be harmful. 
For example, a false-negative result could disqualify a 
patient from the right treatment, and a false-positive 
test result could subject a patient to the risk of a poten-
tially harmful and/or ineffective treatment. The issue 
of false-positive test results was recently highlighted by 
the use of prostate-specific antigen (PSA) screening for 
prostate cancer. Until 2008, professional organizations 
recommended yearly PSA screening for men beginning 

Table 4 | Examples of biomarkers evaluated by regulatory agencies

Biomarker/tool What does it do? Patient stratification Surrogate end point for pain

Quantitative sensory 
testing profile in 
neuropathic pain

Somatosensory phenotype 
profiling

Patient stratification by 
phenotyping sensory profile

Supportive of evoked pain 
rating but does not evaluate 
spontaneous pain190

Microneurography Measuring spontaneous 
C-fibre activity

Yes, in laboratory setting In early trials, C-fibre activity 
correlated with pain intensity 
— more trial data requested190

Confocal corneal 
microscopy

Non-invasive diagnostic 
measure of peripheral 
small-fibre neuropathy

Yes, for small-fibre 
neuropathy in diabetes

No, accepted for diabetic 
neuropathy only190,246

Skin biopsy — nerve 
fibre density

Diagnosis of nerve injury Yes, would be approved  
if used

No

14-3-3η Diagnostic for rheumatoid 
arthritis, differentiation to 
osteoarthritis

Patient selection for clinical 
trials

No

Genomics have been accepted for patient stratification or definition of patient populations. Imaging or electrophysiology for 
quantification of pain modulatory systems has not yet been subject to regulatory evaluation. Few fluid biomarkers have yet been 
specifically evaluated in relation to pain.
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at 50 years of age. However, more recent research found 
that false positives of this biomarker were leading to 
substantial overtreatment of men and exposing them 
to unnecessary surgery and radiation therapy204.

An international taskforce reviewed the status of 
the utility of brain imaging for the diagnosis of chronic 
pain37 and also highlighted how its misuse can have ethi-
cal and societal implications37. Brain imaging is currently 
used as a tool to understand pain mechanisms, and the 
taskforce recommended standards for neuroimaging 
to meet in order to be applied as a pain biomarker for 
clinical diagnosis37. Although it has already been intro-
duced in litigation, brain imaging has not yet met the 
criteria to incontestably support or dispute a legal claim 
of chronic pain; however, it might augment patient 
self-report4.

Liquid biomarkers, such as DNA, RNA, proteins and 
metabolites, also have societal and ethical implications. 
Genetic testing carries risks relating to insurability, 
employment, stigmatization and law enforcement, both 
for the affected individual and their family members. 
For, example a biomarker predicting a future debilitating 
pain condition that could be financially costly to insure 
could limit both future employment and employability. 
Employers make an investment in employees through 
education and training. In addition, health insurance 
packages are an incentive offered by some employers 
to attract and keep valuable employees. The employ-
er’s cost to insure employees increases in parallel with 
the use of healthcare resources by the group. Even if 
insurance is not provided by an employer, a debilitating 
pain condition resulting in increased usage of health-
care resources, absenteeism and lost productivity, either 
through decreased efficiency or complete removal 
from the workforce, is a loss to the employer. Thus, an 
employer is less likely to hire someone with a known 
future debilitating pain condition.

Healthcare and insurance providers must find a bal-
ance between patient privacy and disclosure of infor-
mation. The United Nations International Declaration 
on Human Genetic Data supports protection of data 
privacy and security, and the Genetic Information 
Nondiscrimination Act was enacted to protect individ-
uals from employment and health insurance discrimina-
tion5. Genetic testing is recognized to carry risks but also 
has societal benefits. For instance, genetic testing may 
identify a mutation that provides an explanation for the 
pain condition and leads to optimized pain management. 
Accurate diagnosis and pain management assist with 
appropriate resource utilization, thereby benefiting soci-
ety205,206. Imaging and genetic testing both share issues 
related to patient privacy or potential future harms (for 
example, loss of insurability or employment). Potential 
misuse of data or loss of privacy through the use of 
imaging with artificial intelligence or machine learning 
algorithms poses risks to both society and individual 
patients. Harms could become generalized to the larger 
familial or ethnic group if a pain condition is determined 
to be of genetic origin.

Chronic pain disorders are classified primarily on 
the basis of anatomical location or the relationship to an 
underlying disease or injury7–11. These pain states may or 

may not generalize to other pain conditions. For exam-
ple, the mechanisms and biomarkers associated with 
the condition of chronic low back pain might not be the 
same as for chronic migraine. Therefore, pain may man-
ifest differently, and treatments and treatment responses 
could vary across pain conditions. Furthermore, the 
nature of chronic pain, for example, neuropathic or 
non-neuropathic pain, influences the response to treat-
ment, healthcare utilization and quality of life12. As an 
important crucial step towards better classification of 
chronic pain conditions, the new WHO International 
Classification of Disease (ICD-11) has adopted the 
IASP-developed classification system, with pain receiv-
ing its own improved classification and diagnostic cod-
ing1. Without the systematic classification of pain, the 
resources utilized for pain treatment and loss of produc-
tivity due to pain conditions are not measurable. Society 
requires a method of measuring resource consumption to 
ensure access to care1.

Research has identified multiple mechanisms that 
contribute to the development or maintenance of 
chronic pain; however, these mechanisms are not fully 
understood13. Moreover, there is considerable hetero-
geneity within and across subgroups for each chronic 
pain condition (as currently classified), and the underly-
ing pathophysiology of this variability is not fully under-
stood. Understanding the underlying pathophysiological 
mechanisms may be the optimal way to select appro-
priate treatment. Biomarkers need to identify specific 
mechanisms and subgroups of patients within or across 
chronic pain disorders.

Objective biomarkers may validate a patient’s self- 
report, but should not confer distrust14–17. Because chro nic 
pain is a complex biopsychosocial disorder, biomarkers  
might have limited use in determining the severity, 
impact and disability related to an individual’s pain con-
dition. Also, structural findings often correlate poorly 
with pain severity. For each biomarker, a specific COU 
must be narrowly defined and broadly understood, so as 
to prevent potential misuse, inappropriate conclusions 
and bias. As each biomarker is developed and vali-
dated for a specific COU, use outside that COU could  
constitute misuse.

Socio-economic and racial factors contribute to 
disparities in both the experience of chronic pain and 
pain care, with poorer neighbourhood socio-economic 
status and black race being associated with worse out-
comes18,19. Inaccessibility of primary and specialty pain 
care, lack of conveniently located pharmacies or ther-
apists, language barriers or culturally subscribed com-
munication styles of both patients and providers, and 
varied life experiences all contribute to suboptimal pain 
management19,20. Communication with technical med-
ical jargon is culturally appropriate (subscribed) within 
healthcare provider groups, but when speaking with a 
patient is likely to be ineffective. Likewise, a person’s 
culture influences how they communicate pain, for 
example, whether they are stoic or emotive. Such person-
ality traits could influence a patient’s self-assigned pain 
intensity score, resulting in inadequate or inappropriate 
treatment207. If biomarkers for pain are to contribute to 
pain diagnosis, management and development of new 
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therapeutics, they must be tested on and applicable to 
diverse populations3,4,14–17,21–29.

Summary and recommendations

•	 Objective, accurate, verified pain biomarkers might be 
useful in support of disability insurance or legal claims.

•	 Biomarkers could carry risks relating to insurability, 
employment, stigmatization and law enforcement, for 
both the affected individual and their family mem-
bers, emphasizing the importance of very rigorous 
validation before use.

•	 Systematic and approved classification of pain is a 
necessary adjunct to measures of pain.

•	 Translation of pain measurement to clinical practice 
requires effective communication and sensitivity to 
the importance of environmental influences on the 
patient’s perception of pain.

Conclusions

Pain can be conceptualized as a conscious interpretation 
of a sensory stimulus that activates nociceptive afferents 
and the mental projection of that stimulus onto a body 
part. Often, the stimulus–pain relationship can be weak, 
distorted or absent, such as in many chronic pain con-
ditions. Pain assessment is the process of approximating 
a person’s self-narrative or ground truth, and pain bio-
markers can aid this effort. In addition to representing 
pain intensity, biomarkers can identify the factors that 
predict treatment outcomes. The general consensus 
among the authors of this paper is that there is a sub-
stantial unmet need for better biomarkers to facilitate 
the development of non-addictive pain therapeutics  
for the following reasons. First, biomarkers can pro-
vide an indication, either directly or indirectly, that a 
thera peutic intervention reached its intended molecular 
target. Second, biomarkers can predict the response to 
a therapeutic. Third, biomarkers can improve the qual-
ity of a clinical design by allowing the stratification of 
patients into specific subcategories of a disease or condi-
tion. Last, biomarkers can be used to monitor safety and 
efficacy over time16. In addition, we agree that biomark-
ers, signatures and clinical end points have the potential 
to transform the medical landscape by introducing pain 
diagnostic tools that are precise, fast and adaptive to an 
individual’s state, hence radically changing how pain is 
managed, monitored and treated on an individual basis. 
Machine learning techniques can rapidly interpret pat-
terns in reams of data, and thus identify key information 
that healthcare providers cannot resolve in a brief patient 
visit at the point of care. The addition of biomarkers with 
a mechanistic relationship to the pain may lead to novel 
non-addictive therapeutics.

The emphasis on composite biomarkers and end 
points is likely to grow, given the widespread accept-
ance of the complexity and multidimensionality of the 
pain experience. In addition, due to the large variabil-
ity and heterogeneity in pain conditions and sensiti vity 
among individuals, validation should be conducted 
using personalized data sets and correlative designs 
that could facilitate flexible use of the biomarker or 
signature for both categorical and personalized classi-
fications. New technologies are providing composite, 

functional representations of neural circuits that could 
potentially predict pain transition to a chronic state or 
reflect abnormal sensitivity. However, multiple techni-
cal challenges hinder the development of portable diag-
nostics and adaptive closed-loop therapies, including 
dimensionality reduction of neural data, standardization 
of artefact removal in imaging and electrophysiologi-
cal data, and miniaturization of wearable sensors and 
high-speed processors. In addition, ethical issues such 
as verification of a patient’s self-report by healthcare pro-
viders, withholding treatment and the legal ramifications 
of discrimination and incrimination are serious societal 
challenges that must be considered when developing 
biomarkers for pain.

We believe that this is an opportune time to discover, 
develop and validate new pain biomarkers, as compel-
ling scientific knowledge can be gained in the process. 
In theory, a strong biological rationale exists to develop 
pain biomarkers that rely on brain signals recorded 
non-invasively. In practice, however, linking specific pat-
terns of neural activity to distinct mental states is the ‘hard 
problem’ in neuroscience. Elucidating the neural circuits 
of the multiple pain dimensions will require ultra-fast 
recording techniques, robust computing power and big 
data analytics, as well as fine control of neural elements 
to demonstrate causality, for example, using optogenetics.

As the volume of biomarker data continues to 
grow, artificial intelligence-driven scientific discovery 
is emerging complementary to the more traditional 
hypothesis-driven approach. In some cases, machine 
learning algorithms can be leveraged to rank the features 
that contribute to the accuracy of an algorithm’s predic-
tion of pain states, thus generating novel and testable 
hypotheses. Additional important considerations to bet-
ter align diagnosis with therapy include demonstration 
of a biological rationale, standardization of protocols and 
equipment, cross-validation in large-scale, multicentre 
trials controlling for age, gender and culture variables, 
defining end points and use cases, cost-effectiveness and 
ease of use.

It is important to recognize the need for a detailed 
and rigorous path towards discovery and validation 
of pain biomarkers in research and clinical settings. 
The workshop participants agreed on the importance 
of standard definitions and a clear process to validate 
and develop first-generation empirical, scalable and 
translational biomarkers that complement the patient’s 
self-report and obviate the need for inconclusive and 
costly diagnostic tests. A risk–benefit analysis for the 
multiple types of pain biomarkers is still needed in light 
of unprecedented levels of societal and economic pres-
sures urgently calling for alternatives to current gold 
standards for pain assessment.

Biomarker development for pain is still in its early 
stages. However, substantial increases in funding and 
resources for biomarker and non-addictive therapeutic 
development, resulting from initiatives such as the EU–
IMI Europain consortium and the NIH HEAL Initiative, 
should stimulate research and technology development 
in this area of high unmet medical need.

Published online 15 June 2020

Dimensionality reduction

reducing the number of 

random variables to a smaller 

set of principal variables.
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