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The discovery of a new class of small molecule compounds that target the BCL-2 family

of anti-apoptotic proteins is one of the great success stories of basic science leading to

translational outcomes in the last 30 years. The eponymous BCL-2 protein was identified

over 30 years ago due to its association with cancer. However, it was the unveiling of the

biochemistry and structural biology behind it and its close relatives’ mechanism(s)-of-

action that provided the inspiration for what are now known as ‘BH3-mimetics’, the first

clinically approved drugs designed to specifically inhibit protein–protein interactions.

Herein, we chart the history of how these drugs were discovered, their evolution and

application in cancer treatment.

Introduction
The BCL-2 family of proteins consists of functionally opposing, though structurally related proteins
[1]. The founding member, BCL-2 was discovered in the mid-1980s due to its association with a
chromosomal translocation (t(14;18)) characteristic of blood cancers such as follicular lymphoma [2–5].
However, it was not until 1988 that its true function was discovered as an oncogene that promoted
cell survival, rather than cell proliferation, like other known oncogenes at that time [6]. Several other
pro-survival proteins (BCL-XL, MCL-1, BCL-W and BFL-1) were later discovered, all related by four
regions of sequence homology termed BCL-2 homology (BH1–4) domains [7–10]. These were also
found in a subset of proteins with death-promoting functions, namely BAX, BAK and BOK (hereafter,
the BAX/BAK proteins) [11–13]. In parallel, a second group of pro-apoptotic proteins (i.e. BAD, BIM,
BID, BIK, BMF, NOXA, PUMA, HRK), were also discovered that only possessed the BH3 domain,
hence, were termed the BH3-only proteins [14–21].
Biochemical and genetic studies soon revealed a general pathway, now known as the intrinsic apop-

totic pathway, by which cells commit suicide in response to diverse stresses (e.g. growth factor deple-
tion, reactive oxygen species, endoplasmic reticulum stress, DNA-damaging chemotherapy). In a
healthy cell, BAX/BAK proteins reside in an ‘inactivated’ state, either in the cytosol or bound to pro-
survival proteins on the mitochondria [12,22–26]. Following a death stimulus, apoptosis is initiated by
transcriptional or post-translational up-regulation of the BH3-only proteins. These bind to the pro-
survival proteins and release any bound ‘activated’ BAX/BAK-like proteins, or alternatively, they can
bind BAX/BAK directly to induce conformational changes that enable them to oligomerise and subse-
quently form pores in the mitochondrial outer membrane [27–31], resulting in the release of cyto-
chrome c into the cytosol [32]. Cytochrome c facilitates oligomerisation of APAF-1 and assembly of
the apoptosome, a molecular platform which enables sequential activation of proteolytic caspase
enzymes (caspase 9, then caspase 3/7) [33] that cleave important intracellular substrates, leading to
the demise of the cell.
In general, apoptosis is restrained by pro-survival proteins sequestering their pro-apoptotic counter-

parts. When the levels of pro-apoptotic proteins overwhelm the pro-survival molecules, apoptosis
ensues. Deregulated apoptosis due to various cellular defects including abnormal expression of pro-
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survival (and some pro-apoptotic) proteins, is a recognised ‘hallmark’ of most, if not all cancers, as it enables
abnormal or damaged cells to survive when they should otherwise be eliminated [34,35]. It also leads to resist-
ance to anti-cancer treatments such as chemotherapy and radiotherapy that predominantly act by activating
apoptosis through up-regulation of BH3-only proteins, including via the transcription factor TP53. Inactivating
mutations in TP53 are highly prevalent in cancer, leading to drug resistance. Combined, these findings led to
the premise that drugs that could mimic the BH3-only proteins, and by-pass the requirement for activation of
upstream apoptotic regulators such as TP53, could be highly effective anti-cancer agents. There are now numer-
ous small molecule compounds targeting all BCL-2 pro-survival proteins, either specifically or in combination,
except BFL-1 (Table 1). Below, we review how these drugs were discovered and how they have been applied in
cancer.

Structures of pro-survival proteins and pro-apoptotic

ligands informed BH3-mimetic development
Early biochemical studies demonstrated that the BH3 domains of pro-apoptotic proteins act as ligands for
binding pro-survival proteins, though these interactions can be highly selective [24,36,37]. A breakthrough in
the development of drugs targeting BCL-2 proteins came in 1997 with the first structure of a pro-survival
protein (BCL-XL) bound to a BH3 domain peptide sequence (from BAK) [38]. Here, the BH3 domain formed
an amphipathic helix that engaged a large hydrophobic groove on the surface of BCL-XL. Four conserved
hydrophobic residues (‘h1–h4’) on one face of the helix penetrated corresponding pockets lining the groove
(‘p1–p4’). A conserved aspartate also formed a characteristic salt bridge with an arginine residue, conserved in
all pro-survival proteins. Subsequent structures of other pro-survival protein:BH3 domain complexes all pos-
sessed the same overall characteristics [39,40] (Figure 1A), providing a prototype for small molecule BCL-2
antagonists that could mimic this common interaction mode to trigger apoptosis.
This review discusses the major successes in the evolution of such ‘BH3-mimetic’ drugs. Numerous other

compounds have been labelled as BH3-mimetics, including the widely studied obatoclax and gossypol. Whilst
these induce apoptosis, they also affect multiple other pathways (e.g. cell cycle, autophagy, DNA damage
response) [41–49], thereby distinguishing themselves from bona fide BH3-mimetics that induce apoptosis in a
purely BAX/BAK-dependent fashion [50–52]. Accordingly, these putative BH3-mimetics are not discussed
further.

BH3-mimetics against the major cancer-associated BCL-2

pro-survival proteins
ABT-737 and ABT-263— the first bona fide BH3-mimetics targeting BCL-2/

BCL-XL
Early attempts at generating compounds that mimic BH3 domain binding interactions included oligoamide
‘foldamers’ that projected hydrophobic moieties similarly to the h1–h4 residues [53]. Although these inhibited
BAK BH3 binding to BCL-XL, their affinity was relative weak (low micromolar) and there was no evidence for
them possessing cell-killing activity.
In 2005, Abbott Laboratories (now AbbVie), reported ABT-737, an acylsulfonamide compound with low

nanomolar affinity for BCL-2, BCL-XL and BCL-W but negligible binding to MCL-1 or BFL-1 [54]
(Figure 1B). ABT-737 was discovered using a ‘structure–activity relationships (SAR)-by-NMR’ approach that
involved screening BCL-XL against small molecule ‘fragment’ libraries where binders were identified by NMR
chemical shift perturbations. Initially, two very weak binders (Kd of 0.3 mM and 4 mM) were identified
engaging the p2 and p4 pockets (Figure 1C,D,E). Subsequent structure-guided medicinal chemistry linked these
and enhanced their binding site occupancy, resulting in a compound with single-agent activity on multiple
cancer cell lines, and in xenograft models of lymphoma and small cell lung cancer.
Due to its low solubility and poor oral bioavailability, an analogue was later developed by targeting three

sites on the ABT-737 backbone that affected charge balance, metabolism, and oral absorption. The resulting
compound, ABT-263 (tradename Navitoclax) (Figure 1B), maintained the same target binding profile as
ABT-737, but improved its oral absorption and pharmacokinetic properties [55]. Due to promising pre-clinical
activity [55,56], Navitoclax entered Phase I/II clinical trials where some efficacy was observed [57–62].
However, patients developed dose-limiting thrombocytopaenia, which was attributed to its potent targeting of

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).2382

Biochemical Society Transactions (2021) 49 2381–2395

https://doi.org/10.1042/BST20210749

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

c
h
e
m

s
o
c
tra

n
s
/a

rtic
le

-p
d
f/4

9
/5

/2
3
8
1
/9

2
3
8
0
4
/b

s
t-2

0
2
1
-0

7
4
9
c
.p

d
f b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u

s
t 2

0
2
2

https://creativecommons.org/licenses/by/4.0/


Table 1. Key BH3-mimetics leading to the clinical applications or as tool compounds Part 1 of 2

Compound Discovery Notes Clinical application References

Pan-specific BCL-2/BCL-XL

ABT-737 Fragment library

screen using

SAR-by-NMR

First bona fide

BH3-mimetic

No — tool compound [54]

ABT-263

(Navitoclax)

Modification of three

sites on ABT-737 to

improve PK properties

First orally bioavailable

BH3-mimetic. First

BH3-mimetic to enter

clinical trials

Yes — clinical trials

initially halted due to

dose-limiting

thrombocytopaenia

though now being

explored in other cancer

types

[55]

AZD4320/

AZD0466

Structure-guided

modification of

Navitoclax to add

solubilising moieties

AZD4320 is now

formulated as a novel

nanoparticle, AZD0466

for clinical application

Yes — trials (solid and

haematological).

AZD0466 administered

intravenously and only

induces transient

thrombocytopaenia

[71,72]

BCL-XL-specific

WEHI-539 High thoughput small

molecule screen

against BCL-W

First potent

BCL-XL-specific

compound

No — tool compound [74]

A-115463,

A-1331852,

A-1293102

Iterative SAR-by-NMR

coupled with

structure-guided

design using

WEHI-539 as starting

point

A-1331852 was the first

orally-available

BCL-XL-specific

BH3-mimetic with potent

in vivo activity

No — useful tool

compounds for

determining tumour

BCL-XL dependence

[75,76,77,78]

PZ15227,

DT2216

Modification of

ABT-263 linking it to

E3 ligase ligands for

cereblon (PZ15227)

and Von Hippel

Landau protein

(DT2216).

PROTAC forms of

ABT-263 that degrade

BCL-XL and can

overcome

thrombocytopaenia as

E3 ligases are poorly

expressed in platelets.

Conversion of ABT-263

to PROTACs makes it

more specific for

BCL-XL.

No — tool compounds [132–135]

BCL-2-specific

ABT-199

(Venetoclax),

ABBV-167

Structure-guided

design based on

Navitoclax

First BCL-2-specific

compound. ABBV-167 is

a pro-drug form that

increases solubility and

oral exposure.

Yes — first approved

BH3-mimetic. Currently

being used for

haematological cancers

but being trial in various

others and solid cancers

[79,83]

S55746/

BCL201

Structure-guided

design based on

literature compound

Potent BCL-2 specific

inhibitor

Yes — trials in

haematological cancers

[84]

MCL-1-specific

A-1210477 SAR-by-NMR fragment

screen

First MCL-1-specific

compound reported with

(modest) biological

activity

No — tool compound [102,103]

Continued
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BCL-XL, the critical pro-survival protein for platelet survival [55,63]. Nevertheless, Navitoclax is still undergo-
ing Phase I/II clinical trials (particularly in combination with other anti-cancer agents) for various indications
including myelofibrosis, melanoma and other advanced solid cancers. It is also the basis for several ‘next-
generation’ BH3-mimetics (see below).

Other BCL-2/BCL-XL dual-specific inhibitors
Since the disclosure of ABT-737/Navitoclax, additional BCL-2/BCL-XL dual inhibitors have been reported, and
some are now undergoing clinical evaluation. For example, structure-guided de novo design on a benzoylurea
scaffold led to nanomolar binders (IC50 20–40 nM) of both BCL-XL and BCL-2 [64,65]. Similarly, a sub-
nanomolar inhibitor of BCL-XL/BCL-2 (BM-1197) with in vivo activity was developed by computer-aided
structure-based design [66–68]. An apparently related compound, APG-1252-M1, is now undergoing clinical
trials in solid cancers [69]. Perhaps most promising is AZD4320 based on the ABT-737/Navitoclax scaffold
[70]. Through the addition of solubilising moieties guided by structural data, AZD4320 evolved to have similar
affinity for BCL-XL/BCL-2 as Navitoclax and equivalent or more potent biological activity [71]. A major
advantage of AZD4320 over Navitoclax is it requires just once weekly dosing to be effective which is given by
intravenous delivery, rather than daily oral dosing. This reduced exposure only causes transient thrombocyto-
paenia with platelet levels recovering within 72 h [71], unlike with Navitoclax where platelets are persistently
supressed. A novel nanoparticle formulation of AZD4320, AZD0466 [72], is currently undergoing clinical trials
(see below).

BCL-XL-specific BH3-mimetics
Due to the dependence of many cancers, especially solid tumours, on BCL-XL (see accompanying article),
there is still considerable interest in developing BCL-XL-targeting agents, despite the potential for thrombocyto-
paenia. Discriminating BCL-XL from BCL-2, however, is challenging due to their ligand binding grooves being
highly conserved between the proteins.
An early attempt to use structural and biochemical data as a basis for increasing the affinity of ABT-737 for

MCL-1 inadvertently resulted in a compound (W1191542) with 10-fold selectivity for BCL-XL over BCL-2
[73]. Associated studies showed structural changes upon W1191542 binding to BCL-XL consistent with the
binding groove progressively opening along its length. Notably, W1191542 was significantly less active than
ABT-737 despite similar affinities for BCL-XL, which was attributed to its faster off-rate.

Table 1. Key BH3-mimetics leading to the clinical applications or as tool compounds Part 2 of 2

Compound Discovery Notes Clinical application References

S63845/

MIK665

Fragment-based

screen

First MCL-1-specific

compound reported with

potent in vivo activity

Yes — trials of MIK665

in haematological

malignancies

[106–108]

AMG-176/

AMG-397

High throughput

screen plus

structure-guided

design (AMG-176).

Details not reported for

AMG-397.

Potent MCL-1 inhibitor

with in vivo activity.

AMG-397 first orally

dosed MCL-1 inhibitor to

enter trials.

Yes — trials halted for

both due to reported

cardiotoxicity observed

with AMG-397.

[111]

AZD5991 Structure-guided

design

Potent MCL-1 inhibitor

with in vivo activity

Yes trials in

haematological

malignancies

[110]

sMCL1–2,

C3, C5

Modification of MCl-1

inhibitor A-1210477

(sMCL-1–2), or

MCL-1/BCL-2 dual

inhibitors S1–6 or

Nap-1 (C3, C5), linking

them to E3 ligase

ligand for cereblon

PROTAC forms that

induce MCL-1

degradation.

No — tool compounds [136,137]
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A more potent BCL-XL-selective compound WEHI-539 emerged from a high-throughput screen originally
performed against BCL-W [74]. Hits that engaged the p2 pocket were extended into the p4 pocket guided by
extensive structural studies, increasing their affinity and selectivity for BCL-XL over other pro-survival proteins
(IC50 1 nM, 400-fold selectivity over BCL-2). The BCL-XL functional specificity of WEHI-539 was confirmed
using engineered cell lines and by its potent killing of platelets. Notably, WEHI-539 is considerably smaller
than Navitoclax (584 Da versus 975 Da) being based on a different chemical (benzothiazole hydrazone)
scaffold.
SAR-by-NMR and structure-guided approaches to replace the labile and potentially toxic hydrazone moiety

of WEHI-539 led to A-1155463 which has increased selectivity for BCL-XL over BCL-2 (>1000-fold), increased
cell-based activity and modest in vivo activity [75]. Further improvements using structure-based design gener-
ated A-1331852 with further increased affinity for BCL-XL [76,77] and importantly oral bioavailability,

Figure 1. Discovery of the first bona fide BCL-XL/BCL-2 targeting BH3-mimetics.

(A) Crystal structure of BCL-XL (grey) bound to a peptide corresponding to the BIM BH3 domain (blue; PDB: 3FDL) showing

the conserved hydrophobic residues (h1–h4) engaging four pockets (p1–p4) along a large surface groove. All BH3 domains

bind to pro-survival proteins similarly. (B) Chemical structures showing the evolution of ABT-737 to Navitoclax then Venetoclax.

(C) Overlay of ABT-737 (pink) with BIM BH3 (blue) showing how the compound mainly targets (D) the pockets engaged by the

h2 and h4 residues of BCL-XL (grey; PDB: 2YXJ). Close-up of (E) ABT-737 (pink) bound to BCL-XL (grey) and (F) Venetoclax

(yellow) bound to BCL-2 (grey; PDB: 6O0K).
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affording it potent anti-tumour activity in haematological and solid tumour mouse models as a single agent, or
in combination with chemotherapy. Very recently, AbbVie reported A-1293102, an even more potent and
selective BCL-XL inhibitor that combines elements of A-1155463 and ABT-737/Navitoclax [78].
Although A-1331852 or A-1293102 have yet to undergo clinical assessment, they have significant utility as

probes for determining tumour pro-survival protein dependency, and/or providing proof-of-principle for
BCL-XL targeting in different cancers [76]. Potential avenues to overcome issues such as thrombocytopaenia
associated with such agents are discussed below (see ‘Next-generation BH3-mimetics’ section).

BCL-2-specific BH3-mimetics
As many haematological cancers are predominantly dependent on just BCL-2, there was a strong rationale to
develop BCL-2-selective compounds that should obviate the platelet killing that is exclusively associated with
BCL-XL inhibition. Accordingly, AbbVie initially attempted to reverse engineer Navitoclax to reduce some of
its affinity for BCL-XL. In the process, a co-crystal structure of one analogue with some selectivity towards
BCL-2 fortuitously crystallised as a dimer where a tryptophan residue from one monomer crossed into the p4
pocket of the other [79]. Critically, it was noted that the tryptophan’s nitrogen atom interacted with Asp103 on
BCL-2, one of the few residues not conserved in BCL-XL (it is a glutamate). This interaction was eventually
mimicked, and further interactions gained through additional medicinal chemistry on the central core and the
p2 pocket binding portion, leading to a potent and highly selective BCL-2 inhibitor, ABT-199 (tradenames
Ventoclax/Venetoclaxa) (Ki 0.01 nM for BCL-2, 48 nM for BCL-XL, 245 nM for BCL-W and >444 nM for
MCL-1) [79] (Figure 1B,F).
Venetoclax has potent, single-agent activity against lymphoma and leukaemia cancer cell lines, particularly

those with higher BCL-2 levels due to BCL-2 amplification or t(14;18) translocation. Pre-clinical mouse studies
showed efficacy without the thrombocytopaenia associated with Navitoclax. A highly promising small initial
trial in human chronic lymphocytic leukaemia (CLL) patients [79] led to further successful large-scale clinical
trials, and the fast-tracking of Venetoclax for approval for use in patients with CLL (with 17p deletion) in April
2016. It is now approved for, and showing remarkable outcomes in, several haematological cancers including
acute myeloid leukaemia and small lymphocytic lymphoma, alone or in combination with other agents such as
rituximab and chemotherapy [80–82]. Further trials across multiple malignancies continue, and although death
associated with tumour lysis syndrome was observed in a few patients, response rates have been impressive
[81]. Very recently, a pro-drug form of Venetoclax (ABBV-167) was developed to increase its solubility and
exposure of the parent drug following oral dosing [83]. On the back of these successes, Servier Laboratories
developed another BCL-2-selective inhibitor (S55746/BCL201) using structure-guided approaches on a moder-
ately active ‘literature compound’ [84]. In vitro and pre-clinical in vivo studies demonstrated S55746 is as active
as Venetoclax, and is now being trialled in haematological cancers.
One issue that has become apparent with the clinical use of Venetoclax is the development of drug resistance

due to mutations emerging that impact the binding site [85–89]. At a structural level, these have only minor
effect on the binding mode of Venetoclax, but reduce its affinity for BCL-2 [87]. Although S55746 targets the
same general binding site, its binding mode is apparently different, hence, could provide a means for overcom-
ing resistance if it develops with Venetoclax.

MCL-1-specific BH3-mimetics
Although MCL-1 was the last of the key cancer-associated BCL-2 pro-survival proteins targeted with
BH3-mimetics, several potent MCL-1-specific compounds have now been reported. The importance of MCL-1
in cancer was demonstrated in multiple mouse models where Mcl1 deletion has a profound effect on the initi-
ation and development of haematological cancers [90]. Gene expression analysis across many cancers also
showed Mcl1 is amplified in ∼10% of cases [91]. With the discovery of ABT-737, MCL-1 expression was also
demonstrated to be a significant barrier to realising the full potential of BH3-mimetics targeting BCL-2 or
BCL-XL [50,92]. Accordingly, various studies showed that targeting MCL-1, either through genetic- or BH3
peptide-based approaches, makes resistant cells significantly more sensitive to BCL-XL/BCL-2 inhibition, and
abrogates growth of MCL-1-dependent cancers (e.g. AML and MYC-driven lymphoma) [74,93–96]. These
studies provided a strong rationale for the development of MCL-1-targeting BH3-mimetics.
Biochemical mutagenesis studies on BH3 peptides showed MCL-1 was distinct from other pro-survival pro-

teins as it tolerates substitutions at the h2 and h4 positions critical for BCL-XL/BCL-2 binding [96,97], suggest-
ing its binding groove is quite distinct, and providing a rationale for why BCL-2/BCL-XL inhibitors fail to bind
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MCL-1. Accordingly, screening campaigns were conducted by different groups to identify novel agents against
MCL-1. The first to emerge was from the Fesik group [98] using an NMR-based fragment screen. Low affinity
(Ki∼ 50–100 mM) fragments of different classes that bound in an overlapping manner in the p2 region were
eventually merged, resulting in a final compound with Ki <100 nM for MCL-1 and significant selectivity over
BCL-2/BCL-XL, though no biological activity was reported. The affinity of these compounds was later improved
>100-fold (generating VU661013) using structure-based design, whilst maintaining selectivity over BCL-XL/
BCL-2, by extending them into the p4 pocket [99–101]. Around the same time, AbbVie performed a small
molecule high-throughput screen to identify a hit that eventually became A-1210477 which possessed a similar
core to the Fesik compounds, though with higher (sub-nanomolar) affinity [102,103]. Although compromised
by high serum protein binding, A-1210477 has modest (micromolar) killing activity in MCL-1-dependent cell
lines and potentiates the effects of BCL-XL/BCL-2 inhibitors and other targeted therapies [103–105].
A major breakthrough came with the development of S63845 by Servier [106,107] (Figure 2A,B). This

potent and selective MCL-1 inhibitor (Kd 0.19 nM, 20-fold more potent than A-1210477) was discovered using
a fragment-based screen and structure-based design and targets p2 and p4, though somewhat differently than
the BCL-X/BCL-2 inhibitors (Figure 2B,C). S63845 potently kills MCL-1-dependent haematological (e.g. mul-
tiple myeloma, acute myeloid leukaemia (AML)) and some solid cancers, as a single agent or in combination
with other anti-cancer agents. More importantly, S63845 also has robust in vivo activity. A related compound
S64315/MIK665 is now undergoing clinical trials [108].

Figure 2. MCL-1 targeting compounds and next-generation BH3-mimetics.

(A) Structure of a peptide corresponding to the BIM BH3 domain (blue) bound to MCL-1 (grey; PDB: 2NL9) overlayed with

S63845 (cyan) from a structure of it in complex with MCL-1 (PDB: 5LOF). (B) Close-up of how S63845 (cyan) engages the p2

and p4 pockets of MCL-1 (grey; PDB: 5LOF). Note the interaction at p2 is somewhat different to that of ABT-737 and

Venetoclax (see Figure 1E,F). This is further illustrated in (C) showing an overlay of the BIM BH3 helix (blue) with S63845 (cyan),

ABT-737 (pink) and Venetoclax (yellow). (D) Schematic illustrating AZD0466 consisting of Starpharma’s polylysine dendrimer

and AstraZeneca’s BCL-XL/BCL-2 dual inhibitor, AZD4320. (E) Chemical structure of the DT2116 PROTAC targeting BCL-XL.
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Although there are reports of multiple other MCL-1 inhibitors (see [109] for a recent review), the most
advanced are AZD5991 (AstraZeneca), a sub-nanomolar MCL-1 macrocyclic inhibitor developed using
structure-guided design [110], and AMG-176 (Amgen) [111], an orally bioavailable inhibitor derived from a
high-throughput screen coupled with structure-based design. Both compounds have also entered clinical trials
in haematological malignancies.
Notably, most MCL-1 inhibitors were well-tolerated in pre-clinical studies. This was not necessarily expected

as genetically modified mice with Mcl1 deletion have defects in several tissues including heart and haematopoi-
etic stem cells [112,113]. One explanation for this is that drug treatment has only a transient effect on MCL-1
versus the permanent absence following Mcl1 deletion. MCL-1-targeting compounds (as seen with some BH3
peptides [114]) also bind mouse MCL-1 weaker than human MCL-1 which perhaps influences outcomes. As
such, mice ‘humanised’ for MCL-1 were generated, and although their tumours were more sensitive to S63845,
and significant reductions were observed in some blood cell populations following AMG-176 treatment, no
major organ toxicities were reported [111,115]. It was, therefore, somewhat surprising that clinical trials on
AMG-397 (the first orally dosed MCL-1 inhibitor, also from Amgen; details not yet published) were recently
halted due to a ‘cardio signal’. Hence, trial outcomes with other compounds currently under investigation are
eagerly awaited as they could significantly influence the future of MCL-1-targeting agents progressing into the
clinic.

Peptides as BCL-2-targeting agents in cancer
Although the major focus around targeting BCL-2 proteins in cancer has been on the development of small
molecule BH3-mimetics, there have also been some efforts towards the generation of BH3 peptide-based mole-
cules. This approach is hampered by peptides generally being readily degraded by proteases and unable to cross
cell membranes. However, BH3 peptides have proven to be a useful model system for the development of
generic strategies to overcome these issues as they are readily assayed, have high affinity for their targets, and
have obvious therapeutic potential.
Two main approaches have been applied to BH3 peptides in this context. The first is through the incorpor-

ation of hydrocarbon ‘staples’ linking residues several turns apart on the same face of the BH3 helix. Staples
are advantageous as they lock BH3 peptides into an α-helical conformation, making them less prone to prote-
olysis, and they also possess cell-penetrating properties. Early efforts focussed on direct targeting of BAX via
pan-specific BID and BIM BH3 domain stapled sequences which notably showed evidence of in vivo activity
[116,117]. More recently, stapling has been applied to BH3 peptides specific for particular pro-survival proteins
including MCL-1 and BFL-1 (currently not targeted by any small molecules) [118–121].
The second approach is to incorporate β-amino acids into BH3 domain sequences as these are not readily

recognised by proteases and, therefore, confer protection from proteolysis [122–128]. As β-amino acid incorp-
oration alone does not enable cell entry, these peptides have also been prepared with hydrocarbon staples
which has afforded them activity on cancer cells [124]. Despite these successes, peptide-based BCL-2-targeting
agents have yet to advance beyond the laboratory.

Next-generation BH3-mimetics and overcoming toxicities
Probably the biggest limitation associated with current BH3-mimetics is the dose-limiting thrombocytopaenia
induced by BCL-XL inhibition. This is a particularly significant issue for the treatment of many solid tumours
that are largely BCL-XL-dependent [129]. However, several different tumour-targeting approaches are showing
promise for overcoming this problem.
Although intermittent (intravenous) dosing of the dual BCL-XL/BCL-2 inhibitor AZD4320 causes only tran-

sient thrombocytopaenia, pre-clinical testing also revealed unexpected cardiotoxicity at sub-efficacious doses
[72]. To overcome this issue, AstraZeneca developed a nanomedicine formulation based on Starpharma’s DEP®
dendrimer PEGylated poly-L-lysine platform. Dendrimers are branched polymers that are smaller than most
nanoparticles but with many surface groups for drug conjugation via hydrolysable linkers. Following modelling
and testing of different dendrimer formulations, AZD0466 was developed (Figure 2D) [72]. AZD0466 provides
prolonged responses in haematological and solid tumour xenografts with only transient thrombocytopaenia
and no cardiotoxicity. This improved tolerability is probably due to multiple factors related to the optimised
release rate that minimises AZD4320 plasma Cmax, and its accumulation at tumour sites [72,130,131].
AZD0466 is now undergoing clinical trials in haematological and solid cancers.
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A second approach that has gained recent attention is to use proteolysis-targeting chimera (PROTAC) tech-
nology. PROTACs couple a ligand targeting the protein of interest to a second ligand for recruitment of E3 ubi-
quitin ligases. Hence, PROTAC treatment results in proximity-induced ubiquitination of the target and its
subsequent degradation. As this process is catalytic, sub-stoichiometric levels can be highly efficacious, there-
fore, potentially lower doses can be administered. As different E3 ligases are differentially expressed in different
cell types, PROTAC tissue specificity can potentially be ‘tuned’. For example, PROTACs PZ15227 and DT2216
(Figure 2E) linking ABT-263 to E3 ligase ligands for cereblon or Von Hippel Landau protein, respectively,
effectively degrade BCL-XL in a range of cell types, but not platelets where both E3 ligases are poorly expressed
[132–135]. Moreover, they demonstrate more potent tumour cell-killing activity than ABT-263 in vitro and in
vivo. Interestingly, linkage of ABT-263 within the PROTAC lowered its affinity for BCL-2, hence, it does not
induce BCL-2 degradation. Several MCL-1 PROTACs (based on A-1210477, S1–6 and Nap-1) have also been
reported [136,137] which potentially could prove useful for overcoming the cardiotoxicity noted above.
One final approach to making BH3-mimtics more specific for tumour cells is by linking them to antibodies

directed against antigens preferentially expressed on tumours (e.g. mutant EGF receptor). Reports of antibody-
drug conjugates (ADCs), such as with A-1331852, have only appeared in the patent literature, however, the
supporting data presented suggests they maintain anti-tumour activity whilst sparing platelets.
One further issue with targeting BCL-XL in some cancers, especially solid tumours, is that co-targeting of

MCL-1 is required for maximal killing activity [129]. However, as some normal tissues (such as liver) are
highly dependent on BCL-XL plus MCL-1 for their survival, fatal toxicity has been observed in mice upon
co-administration of MCL-1 and BCL-XL inhibitors [129]. Whilst there is evidence this can be prevented by
careful dose scheduling [138], the inherent dangers this presents for clinical application means that more tissue-
specific approaches (e.g. ADCs or even PROTACs) might also have greater utility for extending the range of
cancers that can be treatable with BH3-mimetics.

Concluding remarks
The success of Venetoclax in the clinic has undeniably validated BH3-mimetics for cancer treatment. However,
the fact that it is currently the only clinically approved BH3-mimetic, despite multiple other compounds
showing promising pre-clinical activity, emphasises how the full potential of BH3-mimetics has yet to be
achieved. Additionally, the emergence of resistance mechanisms as well as unknown toxicities are significant
challenges that must be addressed in the next phase of progressing any new BH3-mimetic compounds towards
the clinic. Nevertheless, exciting new approaches such as PROTACs, ADCs and novel formulations show enor-
mous potential for overcoming many of these issues, making it likely that BH3-mimetics will soon have signifi-
cant impact for the treatment of a wider range of cancers in the future.

Perspective

• BH3-mimetic drugs represent the first clinically approved compounds developed to target

protein:protein interactions. They are now having a significant impact in patients with haem-

atological malignancies.

• Currently, there are multiple BH3-mimetics against different BCL-2 family targets being devel-

oped and trialled for a range of cancers.

• In the future, new approaches, including novel formulations and targeting strategies, will be

needed to overcome any on-target toxicities associated with BH3-mimetics, and resistance

mechanisms that are emerging.
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