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Abstract

We present Keck/Keck Cosmic Web Imager (KCWI) integral field spectrograph observations of the complex system
surrounding SMMJ02399−0136 (a lensed z= 2.8 sub-mm galaxy), including an associated Lyα nebula, a dust-
obscured, broad-absorption-line quasar, and neighboring galaxies. At a 3σ surface brightness contour of 1.6×
10−17 erg s−1 cm−2 arcsec−2, the Lyα nebula extends over 17 arcsec (140 physical kpc) and has a total Lyα luminosity
of ´ -2.5 10 erg s44 1 (uncorrected for lensing). The nebula exhibits a kinematic shear of~ -1000 km s 1 over 100 pkpc
with lowest velocities east of SMM J02399−0136 and increasing to the southwest. We also discover a bright, Lyα
emitter, separated spatially and kinematically from the nebula, at a projected separation of≈60kpc from the quasar. This
source has no clear central counterpart in deep Hubble Space Telescope imaging, giving an intrinsic Lyα rest-frame
equivalent width greater than 312Å (5σ). We argue that this “dark cloud” is illuminated by the quasar with a UV flux
that is orders of magnitude brighter than the emission along our sightline. This result confirms statistical inferences that
luminous quasars at z>2 emit UV radiation anisotropically. Future KCWI observations of other lines, e.g., Lyβ, He II,
C IV, etc, and with polarimetry will further reveal the origin of the Lyα nebula and nature of the dark cloud.

Key words: cosmology: observations – galaxies: formation – galaxies: high-redshift – intergalactic medium –

quasars: general

1. Introduction

In the unified model of active galactic nucleus (AGN) emission
from Antonucci (1993), the ionizing radiation propagates
anisotropically from an active black hole due to the absorption
from a clumpy torus. For this reason, AGNs appear differently
depending on their inclination with respect to our line of sight.
This model thereby unifies observations of two main classes of
AGNs: Type I quasars, which have both broad and narrow
emission lines, and Type II quasars, which have only narrow lines
(e.g., Tristram et al. 2007; Nenkova et al. 2008). Both types of
AGNs are characterized by extreme ionizing luminosities (up to
~1047 erg s−1), which should reveal the surrounding gas
distribution out to large distances, if illuminated (Rees 1988;
Haiman & Rees 2001; Cantalupo et al.2005).

Following this idea, over the last few years, a few enormous
Lyα nebulae (ELANe) with sizes up to 500 kpc were discovered
around luminous Type I and a few Type II QSOs at z=2–3 (e.g.,
Hennawi & Prochaska 2013; Cantalupo et al. 2014; Hennawi
et al. 2015; Cai et al. 2017; Arrigoni Battaia et al. 2018).
Moreover, deep narrow band (NB) imaging and Integral Field
Spectroscopy have revealed the existence of Lyα line emitters
with high equivalent width ( > ÅEW 2400 ) around z=2–3
quasars, also known as “dark galaxies” (e.g., Cantalupo et al.
2012; Marino et al. 2018). Overall, the simultaneous and detailed
studies of the kinematics, metallicity, luminosity, and abundance
of the ELANe and dark galaxies provide us an indispensable

opportunity to understand the interactions between the galaxies
hosting AGNs at high redshift and the gas that surrounds and fuels
them (e.g., Prochaska & Hennawi 2009; Fumagalli et al. 2011).
With these motivations in mind, we have initiated a survey of

z>2 quasars and previously known Lyα nebulae with the Keck
Cosmic Web Imager (KCWI; Morrissey et al. 2012), a new blue-

sensitive integral field spectrograph with wavelength coverage

spanning from ∼3500 to 5600Å. Its field-of-view (FoV), spectral
resolution, and capability for precise sky subtraction are optimal
for studying gas on scales of ≈200 kpc. Here we report on deep
KCWI observations of the complex system surrounding
SMM J02399−0136 (Ivison et al. 1998), hereafter SMMJ02399,
the first galaxy selected at submm wavelengths (i.e., a SMG),
gravitationally amplified by the massive foreground galaxy cluster
A370. Typical SMGs are dust-rich and highly obscured. In
particular, the Lyα nebula surrounding SMM J02399 was quickly
found to lie at z∼2.8, using the 4m Canada–France–Hawaii
Telescope, in part because its Lyα luminosity is extremely bright

(~ -10 erg s ;44 1 Ivison et al. 1998). This source resides at the high
luminosity end of the WISE detected LAB in Bridge et al. (2013),
which are also Lyα nebulae powered by SMGs and have a Lyα
luminosity of -–10 10 erg s42 44 1. It was the first SMG detected in
CO, revealing it to contain a massive reservoir of molecular gas
(»1011 Me, Frayer et al. 1998). This gas reservoir was later shown
to cover a large volume and contain multiple, merging galaxies
(Ivison et al. 2010), one of which is a dusty, broad-absorption-line
(BAL) quasar (Villar-Martín et al. 1999a, 1999b; Vernet &
Cimatti 2001; Frayer et al. 2018, e.g., Genzel et al. 2003). The
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existence of a large reservoir of diffuse molecular gas has been
recently inferred by observations of the CH+ cation (E. Falgarone
et al. 2019, in preparation), following the detections against several
other SMGs (Falgarone et al. 2017).

Inspired by these earlier results, we observed the system with
KCWI tuned to the Lyα nebula and directed to cover it and its
neighboring galaxies and quasar. To our surprise, the data
reveal a new, luminous Lyα source—the primary focus of this
paper, which is structured as follows. We describe our KCWI
observation and data reduction process in Section 2. In
Section 3, we present the detection of the 100 kpc Lyα
nebula powered by this system and the discovery of a new dark
cloud illuminated by the nearby BAL QSO. Finally, we discuss
the Lyα nebula and the physical interpretations of the
newly discovered dark galaxy in Section 4, and give a brief
summary in Section 5. Throughout this paper, we assume a flat
cosmological model with W = W =L 0.7, 0.3m and =H0

- -70 km s Mpc1 1, which implies the physical scale is
≈7.85 kpc per arcsec at the redshift of SMM J02399−0136.
We follow the naming convention presented in Ivison et al.
(2010): L1 marks the BAL quasar; L2 is a low-surface-
brightness companion to the east of L1; L2SW is a massive,
extremely luminous and dust-obscured starburst galaxy, east–
south–east of L1 and south–west of L2; L1N is a faint, compact
northern component, visible in post-SM2 HST imaging.

2. Observations and Data Reduction

2.1. KCWI Observations

The KCWI observations of SMM J02399 were carried out
on UT 2017 October 21 (seeing ∼1 5) using KCWI on the
Keck II telescope of the W. M.Keck Observatory in Hawaii.
We used the BM1 grating and the medium slicer (slice width
∼0 7), which yields an IFU datacube with FoV of 20″×
16 8 (pixel scale of 0 3×0 7) centered on J023951.88−
013558.0, the quasar optical position given by Ivison et al.
(1998). The grating was tilted to give a central wavelength of
4620Å and provides a spectral resolution, R≈4000. The good
wavelength coverage is ∼4230–5010Å. The total on-source
exposure time is four 10-minute exposures, each dithered by
∼0 6. For sky observations, we used an “offset-target-field” to
construct the sky datacube. The offset-target has a different
redshift and is located ∼2 degrees from SMM J02399. It is a
compact point source at the Lyα wavelength of SMM J02399.

To convert the spectral images and calibration frames (arcs,
flats, bias) to a calibrated datacube, we used the IDL-based KCWI
data reduction pipeline.11 Basic CCD reduction is performed on
each science frame to obtain a bias-subtracted, cosmic-ray-
cleaned, gain-corrected image. The continuum flat images are
employed for CCD response corrections and pixel-to-pixel
variations. We used a continuum-bar image and an arc image
(ThAr) to define the geometric transformations and wavelength
calibration, generating a rectified object datacube (see the
pipeline documents12). Twilight flats were used for slice-to-
slice flux correction, and the data was corrected for atmospheric
refraction. Each object and sky frame was flux calibrated with
the standard star, Hiltner 600. For the sky frame, we first
masked the point source of the offset-target, and then estimated
the sky level at each wavelength channel by the median of

unmasked sky pixels. Then, for each channel, we subtract the
sky from SMM J02399. For each exposure, we found the QSO
centroid to measure the offsets between exposures, and then
performed a weighted mean with inverse-square variance
weighting to construct the final datacube.

2.2. Ancillary Data

CO(3–2) observations of SMM J02399 were obtained by
Genzel et al. (2003) with a synthesized beam of 5.2×
2.4arcsec2. We use these data, kindly provided by L.Tacconi,
to compare the cool molecular gas emission with that traced by
Lyα. SMM J02399 is strongly magnified by A370, which was
imaged as part of the HST Frontier field survey (HST-14038,
PI: J. Lotz). It was observed with three broadband filters: ACS/
WFC F435W, F606W and F814W, for total exposure times of
12, 6 and 29hr, respectively. We retrieved the publicly
available reduced data13 and produced an average image,
weighted by the exposure time. The F435W filter covers the
Lyα emission of SMM J02399 and thereby provides an
independent estimate of its spatial extent.

3. Results

3.1. Deep NB Imaging at Lyα

Figure 1 shows our continuum-subtracted, pseudo-narrow band
image, spanning »30Å with central wavelength l =NB

l + »a ( )z1 4025LLy 1 Å, and Gaussian smoothed spatially by
2″. The 3σ depth flux density of this image in a 1.7 arcsec2

aperture14 is ´ - - -4 10 erg s cm18 1 2 Å−1, corresponding to a

surface brightness of ´ - - - -1.6 10 erg s cm arcsec17 1 2 2 . In the
following discussion, we refer only to observed quantities (i.e.,
without lensing corrections for magnification by A37015.) The
peak surface brightness in the region encompassing L1 and L2
is » ´ - - - -1.2 10 erg s cm arcsec16 1 2 2 . To a 3σ surface
brightness contour, this nebula has a lensing-uncorrected size
of 17 arcsec (i.e., 140 physical kpc) and has a total Lyα
luminosity of ´ -2.5 10 erg s44 1 .
Figure 1 also reveals a bright, previously unreported source

approximately 7 5 to the SW of L1. We refer to this source as L3
and measure a Lyα luminosity of ´ -1.3 10 erg s43 1 within an
aperture of 6 arcsec2. The peak surface brightness of L3 is
´ - - - -3.0 10 erg s cm arcsec17 1 2 2 , similar to Lyαblobs sur-

veyed by Matsuda et al. (2004, 2011), as well as the extended Lyα
nebulae detected around z∼2 high-redshift radio galaxies and
radio-loud quasars (e.g., Villar-Martín et al. 2007; Heckman et al.
1991). The properties for individual sources are listed in Table 1.
Figure 2(a) shows the HST imaging around L3, comprised of

ACS/WFC F435W, F606W, and F814W deep images and
contours for the CO and Lyα emission. CO(1–0) and CO(3–2)
observations suggest there is a large gas reservoir in this system,
and the peak location of which coincides with the Lyα emission at
L1. We have also confirmed that there is no continuum (stellar)
counterparts corresponding to L3 in the SDSS,WISE and 2MASS

11
Available at https://github.com/kcwidev/kderp/releases/tag/v0.6.0.

12
https://github.com/kcwidev/kderp/blob/master/AAAREADME

13
http://archive.stsci.edu/

14
In this paper, we used two kinds of apertures. One (~1.7 arcsec ;2

 ´ 1. 4 1. 2) matches the seeing of the observations, and it is used to subtract
spectral features and measure the continuum in the HST image. The second
(~6 arcsec2 ) is defined by the 5σ contour at the L3 location (see Figure 1) and
is used to measure its total/average properties. This second aperture is used to
calculate the observed (Section 3.1 para.2) and inferred results (in Section 4.1).
15

The magnification factor of L1, L2, L3 are almost the same (∼2.4× for
each; Ivison et al. 2010).
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catalogs16 , nor in the deeper surveys of PanSTARRS, DES,
DECaLS.17 Examining Figure 2(b), we derive a s5 upper limit
to the continuum  ´ - - -4.0 0.8 10 erg s cm20 1 2 Å−1 from
the HST F435W image in a 1.7 arcsec2 aperture. The Lyα rest-
frame equivalent width is therefore greater than 312Å, which
follows the scenario of a dark galaxy18 illuminated by
aluminous AGN (Cantalupo et al. 2012).

Here we also estimated the s5 continuum upper limits
from both F606W and F814W imaging in an aperture of
1.7 arcsec2, obtaining ´ - - -1.9 10 erg s cm20 1 2 Å−1 and

´ - - -9.7 10 erg s cm21 1 2 Å−1, respectively. Then we calcu-
lated that the s5 upper limit of the rest-frame UV SFR is

-0.3 yr 1 (Kennicutt & Evans 2012). This SFR is not high
enough to give rise to the bright Lyα emission.

3.2. Lyα Kinematics

Our KCWI datacube enables a study of Lyα emission
throughout the complex system surrounding SMM J02399.

Figure 3 shows the flux-weighted centroid velocity vLyα
relative to zL1 and the velocity dispersion σv. A gradient in
vLyα is evident as one traverses from L2 to L3 through the
nebulae ranging from −300 to + -800 km s 1. In contrast, the
velocity dispersion is roughly constant at s » -500km sv

1.
We extract one-dimensional spectra from the final datacube

for L1, L2, L1N, L2SW, and L3 through a aperture of
1.7 arcsec2 (Figure 2(c) and Figure 3(c)). The Lyα emission of
L3 is well-modeled by a single Gaussian with central

wavelength l = a 4634.9 0.1L3
Ly Å corresponding to zL3=

2.81259± 0.00008. The Gaussian model also gives a a velocity

dispersion of s = a -150 6km sL3
Ly 1 (or FWHML3= 353

-15 km s 1).
In Figure 3(c), except for L3, the Lyα emission from the nebula

shows both broad and narrow components, confirming the
previous long-slit spectra (see also Vernet & Cimatti 2001; Ivison
et al. 2010). The nebular emission cannot be well described by a
single Gaussian. The figure also emphasizes that L3 is
kinematically distinct from the larger nebula; its centroid is offset
by several hundred -km s 1 and it exhibits no broad component.
The Lyα emission spectrum of the nebula also shows

evidence for two weak absorption features on both the red and
blue sides of the primary emission. Intriguingly, line observa-
tions of the CH+ cation, a specific tracer of turbulent
dissipation (Falgarone et al. 2017), reveal broad emission
lines ascribed to shocks and a broad absorption line
(FWHM=600 -km s 1) in the direction of L2SW (E. Falgar-
one et al. 2019, in preparation). Lyα and CH+ emission of this
system both show broad line-emission ascribed to shocks and
narrower lines that may imply that L1 and L2 are encompassed
by a large and massive HI cloud.

4. Discussion

4.1. Illumination of the Dark Cloud (L3)

In the previous section, we reported on the discovery of L3, a
luminous Lyα emitter with an extremely high Lyα equivalent
width ( >aW 312Ly Å) and a FWHM of » -350km s 1. Canta-
lupo et al. (2012) reported on a sample of sources with

>aW 240Ly Å surrounding the ultra-luminous quasar HE0109
−3518, which lacks detectable continuum counterparts in deep
broadband imaging. They termed these sources “dark galaxies”
and argued they were illuminated by the quasar as no star
formation could power such high aWLy , i.e., the observed Lyα
is fluorescent radiation powered by the incident, ionizing
photons. The properties of L3 are consistent with this dark-
galaxy scenario, except that the observed UV emission from L1
is orders of magnitude lower than HE0109−3518. Therefore,

Figure 1. The continuum-subtracted pseudo-narrow band Lyα image of the gas
surrounding SMM J02399. The color map and the contours indicate the Lyα flux
density and the signal-to-noise ratio (+3, 5, 10, 15, 20σ), respectively. The axes
are centered on the position of L1 and the image has been smoothed with a
Gaussian kernel of 2″. The offset from L1 to L3 is 3 45 W, 6 45 S (∼58.8 kpc).

Table 1

The Properties for Individual Source in SMM J02399

Source R.A. Decl. ldetected Redshift Aperture SB(Lyα) L(Lyα)
a

J2000 J2000 Å - - - -10 ergs cm arcsec17 1 2 2 -10 ergs43 1

(1) (2) (3) (4) (5) (6) (7) (8)

L1 02:39:51.86 −01:35:58.15 4625.5 2.8048±0.0004 ∼0 7×0 6 8.3±1.8 3.5±0.6
L2 02:39:52.04 −01:35:57.27 4621.6 2.7985±0.0004 ∼0 7×0 6 8.3±1.7 3.5±0.6

L3 02:39:51.63 −01:36:04.56 4634.9 2.81259±0.00008 ∼1 4×1 2 3.0±0.6 1.3±0.2

Entire nebula 25.0±3.6

Note.
a
The observed luminosities, which do not include the lensing magnification factor of 2.4× due to the foreground cluster (Ivison et al. 2010).

16
SDSS catalog: Alam et al. (2015), Abazajian et al. (2009) WISE catalog:

Cutri (2012, 2013) 2MASS catalog: Cutri et al. (2003); Skrutskie et al. (2003).
17

The Pan-STARRS1 Surveys: Chambers et al. (2016) DES DR1: Abbott
et al. (2018) DECaLS: http://legacysurvey.org/dr7/.
18

The definition of “dark galaxy” is defined as a Lyα emitter with rest-frame
EW greater than 240 Å, following the definition of Cantalupo et al. (2012).
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we propose a scenario wherein the dust-obscured BAL quasar

is emitting UV radiation anisotropically, with bright UV

emission emitted transverse to our line of sight (Figure 4).
We may test the Lyα fluorescence hypothesis by comparing the

observed Lyα flux with that predicted for optically thick gas

illuminated by the unobscured ionizing radiation of L1. To

estimate the unobscured luminosity of L1, consider the following

analysis. L1 is detected by theWISE satellite with aW2 magnitude

at m»4.6 m of 15.2±0.1 mag from ALLWISE source catalog.

Adopting the Type-I QSO template from Richards et al. (2006)

and scaling to this W2 measurement, we may estimate nF LL, , with

nLL the frequency at the HI Lyman limit. We estimate nL LL, of L1

to be =n
- -( )Llog erg s Hz 30.07LL10 ,
1 1 and note that this model

also reproduces the observedW1 flux. In contrast, we estimate the

obscured UV luminosity at nLL along our sightline to be only

=n
- -( )Llog erg s Hz 27.74LL10 ,
1 1 , using the Type-II QSO

template from Polletta et al. (2007) and the QSO ultraviolet

template from Lusso et al. (2015).
We further assume: (1) the redshift offset between L1 and L3

is due to peculiar motions rather than the Hubble flow, such

that the physical separation between the two is comparable to

the projected offset; (2) L3 is an optically thick gas cloud with

radius of »R 10 kpcL3 , estimated from the NB image

(Figure 1); (3) the optically thick cloud converts a fraction

h = 0.66thick of the ionizing photons from the quasar to

Lyαphotons emitted at a uniform brightness (Gould &

Weinberg 1996; Hennawi & Prochaska 2013); (4) L3 is

“half-moon” illuminated with a geometric reduction factor of

=f 0.5gm consistent with radiative transfer simulations

(Cantalupo et al. 2005; Kollmeier et al. 2010).

Figure 2. Left panel: a false color HST image of SMM J02399 from the Frontier field survey (HST-14038, PI: J. Lotz). We overlay on it KCWI narrow band contours
(white) and CO J=3–2 contours (green; Genzel et al. 2003). Middle panel: zoom in on the bright Lyα emitter (L3) marked by red box in the left panel. Right panel:
Lyα emission of L3 through the aperture of ∼1.7 arcsec2 (1 4×1 2, yellow box in Middle panel). The red dashed line shows a Gaussian fit to the emission profile.
The gray line indicates the noise spectrum.

Figure 3. Left panel: flux-weighted velocity-shift map with respect to the systemic redshift of L1, with 3×2 pixels (1 2×1 4) in a top-hat filter. Middle panel:
velocity dispersion map obtained from the second-moment of the flux distribution. Right panel: spectra at several locations in the system, observed through an aperture

of 1 2×1 4. The spectra are shifted by ´ - - - -Å2 10 erg s cm18 1 2 1
for presentation purposes. The vertical red lines are a coherent absorption system.
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From these assertions, we derive the Lyα surface brightness
(Hennawi & Prochaska 2013),

h n
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where Φ (phots−1cm−2
) is the ionizing photon number flux, and

R is the distance of L3 from L1. Integrating this surface brightness

over the observed size of L3, we estimate = ´af 3.2
L3
Ly

- - -10 erg s cm16 1 2. The observed flux of Lyα from L3 is

= ´a - - -f 1.8 10 erg s cm
L3,obs
Ly 16 1 2, corresponding to surface

brightness of = ´a - - - -SB 3.0 10 erg s cm arcsecL3,obs
Ly 17 1 2 2 .

This derived value is consistent with the observed flux of Lyα

from L3.
Adopting fluorescence as the origin of the Lyα emission, we

further estimate a cool gas mass of ~ ´ M M1.7 10cool
10 using

Equation (8) in Cantalupo et al. (2012), assuming a clumping
factor C=1 and T=2×104K. We have also used CLOUDY
ionization modeling (Ferland 1996) with the same assumptions
above, and found that the best parameter combinations to match

aLLy ,L3 is (N Z n, ,H H)∼( - -
Z10 cm , 0.01 , 0.1 cm22 2 3). Future

metal-line observations may provide more precise limits. As the
assumed H density of L3 is ∼0.1 cm−3 according to our best
CLOUDY model, the collapse timescale tff is ∼1.6×108 years.
Additionally, the cosmic correction tff from earth is ∼6.1×
108 years, ∼4.5% of the universe age; thus, the “dark matter” tff
will be shorter. The integrated opacity due to Thompson scattering
of the ionized cloud is negligible given its very low cross-section
( ´ -0.665 10 cm24 2) even given our relatively large total electron
column density of ~ -N 10 cme

22 2. Even a very luminous quasar
will give an insignificant flux compared with what we observed.

Numerical studies indicate that the dark-galaxy phase
corresponds to gas-rich galaxies prior to efficient star formation
(e.g., Francis & Bland-Hawthorn 2004; Cantalupo et al.
2005, 2012; Hennawi et al. 2009; Kollmeier et al. 2010;
Marino et al. 2018). A few dedicated dark-galaxy surveys using
deep NB imaging and the Multi Unit Spectroscopic Explorer
(MUSE; e.g., Cantalupo et al. 2012; Marino et al. 2018) found

that the dark clouds reside in the mass range ~ -M 10gas
8 10 Me,

and in the Lyα luminosity range of -1041 43 erg s−1. The dark
cloud discovered here is consistent with these properties.
Note that there are three galaxies within 5″×5″ from L3 in

the deep HST images, which we indicate in panel b of Figure 2
as G1, G2, and G3. The broadband colors of G1 and G3 are
consistent with Lyman break galaxies at z=3, though with
large uncertainties given the faintness of these galaxies. Even if
we allow that G1 and G3 are partially powering L3 and adopt a
UV flux from those sources, then the EW aLy estimated for L3

decreases to 209–270Å. Nevertheless, the Lyα kinematics of
L3 has a FWHM of  -353 15 km s 1, which is relatively
quiescent. Also, the emission peak has a large spatial offset
(∼2 0) from both galaxies. These evidences support that L3 is
not likely to be powered by either G1 or G3.
Indeed, we cannot rule out a scenario where L3 is powered

by gravitational infall, but our current data supports that L3 is
more likely to be externally illuminated. Future deep polari-
metric observations may rule out such scenarios.

4.2. Lyα Tracing Anisotropic QSO Emission

The dimensions, luminosity, and kinematics of the Lyα
nebula surrounding SMM J02399 are reminiscent of the
MAMMOTH-1 nebula, which extends to 450kpc (Cai et al.
2017) and is also powered by a Type-II AGN (Arrigoni Battaia
et al. 2018). Cai et al. (2017) argued that the powering
mechanism of MAMMOTH-1 could be a combination of
photoionization and shocks due to an AGN outflow (e.g.,
Harrison et al. 2014). SMM J02399 is another nebula
hosting a highly obscured system, and may have a similar
powering mechanism. For the full nebula around SMM J02399,
we measure a total Lyα luminosity of ´2.5 1044 erg s−1

(uncorrected for lensing). The AGN bolometric luminosity is
´2.5 1046 erg s−1 estimated by the UV luminosities (1450Å)

with n= n ÅL L4.2 , 1450bol (Runnoe et al. 2012). Considered
the lensing magnification, the BAL QSO has a similar
bolometric luminosity (~1046 erg s−1

) with a normal QSO at
z=3. To compare with MAMMOTH-1, we subtracted the
Lyα PSF. The PSF is constructed using a full-width-half-
maximum that is equal to the seeing of 1 5. The PSF amplitude
is determined from the Lyα luminosity of L1 (in an aperture of
∼1.7 arcsec2) convolved with a Moffat kernel. We find that the
central PSF luminosity constitutes only 4.4% of the entire
nebula, which is similar to the MAMMOTH-1 measurement of
4%. In the scenario involving collimation, previous studies
have already shown that L1 may have a jet/outflow betrayed
by the radio morphology, and L2 is likely explained as the
shock-excited region or a reflection nebula (Ivison et al. 2010;
Frayer et al. 2018). High-resolution CO observations with
ALMA and JVLA, and red-sensitive observations of extended
and broad metal-line emission (e.g., CIV; Cai et al. 2017) could
provide decisive evidence for the outflow scenario.
We note that this Lyα nebula is not the only one that

contains multiple embedded galaxies and lacks a clear
continuum sources at the peak of the Lyα extended emission.
Currently, ∼10 Lyα nebulae (also known as Lyα blobs, LAB)

are reported as powered by obscured sources. Examples of
these are the LABs in Prescott et al. (2012), Bridge et al.
(2013), and a few LAB in the SSA22 field (e.g., Matsuda et al.
2004, 2007). With an extent of >140 kpc and a luminosity of
´2.5 1046 erg s−1, our nebula is one of the largest and most

Figure 4. A schematic diagram of the aniostropic emission of L1, illuminating
the neighboring, and otherwise dark cloud, L3.
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extended among these systems, and intriguingly hosts the most
luminous powering source. Regarding the previous samples of
Lyα nebulae and LABs, the SMM J02399 nebula is one of the
most luminous discovered to date, and also has multiple
components. Also, this is the only system containing a proto-
galaxy (a dark galaxy by the definition of Cantalupo et al.
2012), indicating a highly asymmetric ionization.

Figure 4 illustrates the anisotropic emission of ionizing
radiation from L1 that we envisage with L1 unobscured in the
direction of L3. The UV photons ionize the outer layers of the
cool gas cloud to produce Lyα emission. Along our line of
sight, it is a typical dust-obscured BAL quasar with substantial
foreground absorption, supporting unified models of AGNs.
This confirms the primary conclusion from a series of papers
that have studied the anisotropic clustering of optically thick
gas transverse to and along the line of sight to quasars (e.g.,
Hennawi & Prochaska 2007, 2013). Based on the same
assumption in Section 4.1, here we estimate a lower limit
of the open angle of L1 conservatively as pW >4 0.007
( p= - W <f 1 4 0.993obscured ), with the half-angle θ>9°.5.
The opening angel is estimated using the linear size of L3 and
the distance between L1 and L3, assuming L1 and L3 is at the
same redshift, and that the redshift offset is due to the
kinematics and not Hubble flow. Further evidence supporting
the anisotropic emission hypothesis is the BAL nature of L1,
which has been constrained by the moderate continuum
polarization with VLT/FORS1 (Vernet & Cimatti 2001).
BAL QSOs are expected to radiate as Type-I QSOs only
through patches free of dust and dense outflowing gas (e.g.,
Ogle et al. 1999). On the other hand, the SMG (L2SW) close to
L1 also can be a plausible source to illuminate L3, the dust
cocoon of which may not necessarily be homogeneous.

5. Concluding Remarks

In this paper, we present the Keck/KCWI IFU observations
of a Lyα blob powered by SMM J02399 at z∼2.8. With
KCWI, we discover a dark cloud that we argue is illuminated
by the dust-obscured QSO of the system. This implies strong,
anisotropic UV radiation from the QSO, which was also
suggested by previous polarimetry observations. The future
red/blue-sensitive IFS, Keck Cosmic Reionization Mapper
(KCRM)/KCWI can further reveal the properties and kine-
matics of other lines, such as Lyβ, He II, C IV, to further reveal
the nature of this and similar systems. We are also pursuing a
KCWI survey of Type-II AGN to study the population of Lyα
nebulae in a set of fully obscured sources.
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