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Els van der Meijden1, René W. A. Janssens2, Chris Lauber1, Jan Nico Bouwes Bavinck3, Alexander E.

Gorbalenya1, Mariet C. W. Feltkamp1*

1Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands, 2Department of Dermatology, Jeroen Bosch Hospital, ‘s-

Hertogenbosch, The Netherlands, 3Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands

Abstract

The Polyomaviridae constitute a family of small DNA viruses infecting a variety of hosts. In humans, polyomaviruses can
cause infections of the central nervous system, urinary tract, skin, and possibly the respiratory tract. Here we report the
identification of a new human polyomavirus in plucked facial spines of a heart transplant patient with trichodysplasia
spinulosa, a rare skin disease exclusively seen in immunocompromized patients. The trichodysplasia spinulosa-associated
polyomavirus (TSV) genome was amplified through rolling-circle amplification and consists of a 5232-nucleotide circular
DNA organized similarly to known polyomaviruses. Two putative ‘‘early’’ (small and large T antigen) and three putative
‘‘late’’ (VP1, VP2, VP3) genes were identified. The TSV large T antigen contains several domains (e.g. J-domain) and motifs
(e.g. HPDKGG, pRb family-binding, zinc finger) described for other polyomaviruses and potentially involved in cellular
transformation. Phylogenetic analysis revealed a close relationship of TSV with the Bornean orangutan polyomavirus and,
more distantly, the Merkel cell polyomavirus that is found integrated in Merkel cell carcinomas of the skin. The presence of
TSV in the affected patient’s skin was confirmed by newly designed quantitative TSV-specific PCR, indicative of a viral load of
105 copies per cell. After topical cidofovir treatment, the lesions largely resolved coinciding with a reduction in TSV load.
PCR screening demonstrated a 4% prevalence of TSV in an unrelated group of immunosuppressed transplant recipients
without apparent disease. In conclusion, a new human polyomavirus was discovered and identified as the possible cause of
trichodysplasia spinulosa in immunocompromized patients. The presence of TSV also in clinically unaffected individuals
suggests frequent virus transmission causing subclinical, probably latent infections. Further studies have to reveal the
impact of TSV infection in relation to other populations and diseases.

Citation: van der Meijden E, Janssens RWA, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, et al. (2010) Discovery of a New Human Polyomavirus Associated with
Trichodysplasia Spinulosa in an Immunocompromized Patient. PLoS Pathog 6(7): e1001024. doi:10.1371/journal.ppat.1001024

Editor: Michael J. Imperiale, University of Michigan, United States of America

Received March 19, 2010; Accepted June 30, 2010; Published July 29, 2010

Copyright: � 2010 van der Meijden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Alexander E. Gorbalenya was partially supported by the Netherlands Bioinformatics Center BioRange SP 3.2.2 grant (http://www.nbic.nl/research/
biorange/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.c.w.feltkamp@lumc.nl

Introduction

Members of the polyomavirus family (Polyomaviridae) infect

mammals (rodents, bovines, primates) and birds (fowl, psitta-

cines), and can affect various organs. So far five human

polyomaviruses have been described. Two of these, JC-poly-

omavirus (JCPyV or JCV) and BK-polyomavirus (BKPyV or

BKV), are established pathogens in immunocompromized hosts

causing progressive multifocal leukoencephalopathy in AIDS

patients and nephropathy in renal transplant recipients, respec-

tively. In 2007, two additional human polyomaviruses were

described, KI-polyomavirus (KIPyV or KIV) and WU-polyoma-

virus (WUPyV or WUV) [1,2], which were isolated from the

respiratory tract and whose pathogenicity is still unclear. The

most recently discovered human species concerns the Merkel cell

polyomavirus (MCPyV or MCV) found to be integrated in a large

proportion of Merkel cell carcinomas of the skin [3], but detected

in apparently healthy skin, plucked eyebrow hairs and other

cutaneous carcinomas as well [4]. The transforming, oncogenic

potential of polyomaviruses was recognized long ago in rodents

following natural infection, and after experimental infections with

JCV or BKV causing tumors in newborn hamsters [5,6]. Here we

describe the identification of a new human polyomavirus that

combines specific properties of other human polyomaviruses, as it

infects the skin and seems to cause disease only in immunocom-

promized patients probably as the result of unrestricted virus and

host cell proliferation, possibly the inner root sheath cells of hair

follicles.

Trichodysplasia spinulosa (TS), also known as pilomatrix

dysplasia, cyclosporine-induced folliculodystrofy or virus-associat-

ed trichodysplasia, is a rare skin disease characterized by the

development of follicular papules and keratin spines known as

spicules [7,8,9,10,11,12,13,14]. The lesions are most striking in the

face, especially on the nose, eyebrows and auricles, but other parts

of the body can be affected as well. The disease is accompanied by

thickening of the skin and alopecia of eyebrows, sometimes also of

lashes and scalp hairs, in some cases leading to distortion of facial

features and a leonine appearance [8]. Histologically, TS is
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characterized by distended and abnormally maturated hair

follicles with high numbers of inner root sheath cells containing

excessive amounts of trichohyalin [7,8,9,10,11,12,13,14]. From

these aberrant follicles the keratin spicules originate that become

1–3 mm in length.

TS is exclusively found in immunocompromized patients, such

as solid organ transplant recipients and acute lymphocytic

leukemia patients [7,8,9,10,11,12,13,14]. Initially, the condition

was described as a side-effect of cyclosporine treatment, but later it

was also observed in patients treated with other immunosuppres-

sive or chemotherapeutic drugs. In analogy with other diseases

exclusively occurring in immunocompromized patients, an

infectious etiology was suspected. In 1999, Haycox and coworkers

for the first time by transmission electron microscopy (TEM)

demonstrated the intracellular presence of virus particles probably

belonging to the papovavirus family [8]. Since 2000 the

papovaviruses are classified in separate families, the Papillomaviridae

and Polyomaviridae. In subsequent TS case reports, the presence of

crystalloid arranged clusters of 40-nm virus particles preferentially

in the nuclei of inner root sheath cells was confirmed [11,13,14].

Shape, size and localization suggested the presence of a small, non-

enveloped DNA virus, likely a polyomavirus, but attempts to

culture or detect the virus using PCR methods based on

polyomavirus or papillomavirus-specific primer sets failed

[8,13,14].

Here we describe a new case of TS and report the amplification,

cloning and identification of a new human polyomavirus isolated

from TS spicules. This virus was provisionally called TS-associated

polyomavirus (TSPyV or TSV) and phylogenetic analysis was

performed to determine its evolutionary position among the other

known polyomaviruses. To investigate the putative causal

relationship between TSV infection and TS, the clinical response

after treatment with the anti-viral drug cidofovir was monitored,

and TSV-specific quantitative PCR was developed to measure the

TSV load in clinical samples before and after antiviral treatment.

With this new PCR we also estimated the TSV prevalence in a

group of unaffected immunosuppressed patients and provide

evidence for TSV circulation outside TS patients as well.

Results

Case description
In the late spring of 2009, a 15 years old Caucasian male heart

transplant patient was seen in the Dermatology outpatient clinic of

the Jeroen Bosch Hospital because of spots and spines in the face.

One and a half year prior to presentation, a year after

transplantation and start of immune suppressive treatment, his

skin condition had started to develop with desquamation of the

eyebrows, gradually followed by the development of follicular,

skin-colored, indurated papules on the eyebrows, nose, ears,

malar-region and forehead (Figure 1A). Subsequent symptoms

were loss of eyebrow hairs and partially of the eyelashes. From the

enlarged follicular orifices, small hyperkeratotic white-yellowish

spicules started to protrude on the eyebrows, nose and ears

(Figure 1B). Comparable solitary hyperkeratotic papules and

spicules also developed on the legs. Over a period of one year, as

skin of his ears, eyebrows and nose had thickened, his overall facial

appearance had changed dramatically.

In the end of 2006 he had been transplanted elsewhere for

dilated cardiomyopathy of unknown cause and was placed on

immunosuppressive treatment. Transplantation was complicated

by a cerebrovascular event and epilepsy due to embolization from

the left ventricle. A year after transplantation he was treated for

an EBV-positive large B-cell lymphoma with rituximab and

lowering of the immunosuppressive treatment. At presentation in

2009, apart from the immunosuppressive regimen (tacrolimus 2.0

and 1.5 mg daily; mycophenolate mofetil 750 mg 2 dd;

methylprednisolone 10 mg 1 dd), he was also using amplodipine

(calcium-antagonist), pravastatine (statin) and levetiracetam

(anti-epilepticum).

As the patient refused the taking of biopsies, an hematoxylin-

eosin (HE)-stained section was retrieved, prepared from a biopsy

taken previously of a hyperkeratotic papule from the eyebrow

region, as well as a snap-frozen fragment thereof. The HE section

showed substantially distended and enlarged hair follicles

(Figure 1C). Some hair bulbs were hyperplastic and bulbous,

encroaching on hair papillae that were diminished in size. Some

hair follicles showed presence of poorly formed hairs. Attempts to

demonstrate the presence of TSV particles by TEM in the biopsy

fragment failed because of poor sample quality.

The constellation of findings was diagnostic of viral-associated

TS in an immunosuppressed patient. Based on this diagnosis and

the assumption that a polyomavirus was causing the disease, the

patient was started on topical cidofovir 1% cream treatment twice

a day. Gradually over the first three months the patient’s condition

improved considerably with diminution of the follicular spines,

regrowth of eyebrow hair and reduction of the thickened skin of

the ears and nose (Figure 1D), supporting the original diagnosis.

Isolation, cloning and sequencing of the viral genome
Combined with what has been described in the literature, the

above observations indicated that the patient could carry a

polyomavirus causing TS. To identify this virus, spicules collected

from the nose were dissolved in lysis buffer and subjected to

nucleic acid extraction. The extracted material was used as a

template for rolling-circle amplification (RCA) [15]. Instead of taq-

polymerase used in conventional PCR, the RCA-method employs

the DNA-dependent w29-polymerase, a proofreading enzyme that

preferentially amplifies circular DNA while using random primers.

The RCA product was cut with restriction enzymes and analyzed

on gel revealing a number of bands (Figure 2). Based on the size

of these fragments, the amplicon was estimated about 5000 base

pairs (bp) in length. This size is typical for polyomavirus genomes;

Author Summary

Diseases that occur exclusively in immunocompromized
patients are often of an infectious nature. Trichodysplasia
spinulosa (TS) is such a disease characterized by develop-
ment of papules, spines and alopecia in the face.
Fortunately this disease is rare, because facial features
can change dramatically, as in the case of an adolescent TS
patient who was on immunosuppressive drugs because of
heart-transplantation. A viral cause of TS was suspected
already for some time because virus particles had been
seen in TS lesions. In pursuit of this unknown virus, we
isolated DNA from collected TS spines and could detect a
unique small circular DNA suggestive of a polyomavirus
genome. Additional experiments confirmed the presence
in these samples of a new polyomavirus that we
tentatively called TS-associated polyomavirus (TSPyV or
TSV). TSV shares several properties with other polyoma-
viruses, such as genome organization and proteome
composition, association with disease in immunosup-
pressed patients and occurence in individuals without
overt disease. The latter indicates that TSV circulates in the
human population. Future studies have to show how this
newly identified polyomavirus spreads, how it causes
disease and if it is related to other (skin) conditions as well.

Trichodysplasia Spinulosa-Associated Polyomavirus
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papillomavirus commonly have larger genomes of around

8000 bp. The presence and location of the specific enzyme

restriction sites was later confirmed when the viral sequence was

elucidated.

The 3600 and 1600-bp RCA fragments, obtained after EcoRI

digestion (Figure 2), were ligated and cloned into plasmid pUC19.

Sequencing of each fragment was started from primers located up

and downstream of the pUC19 multiple cloning site. Sequential

sequence reactions were performed on the cloned RCA fragments,

each time using newly designed primers based on the previously

obtained sequence. A list of primers used for this ‘‘primer walking’’

is shown in Table S1. Finally, all obtained sequences were

assembled into one continuous (circular) DNA contig of 5232

nucleotides. With the use of the newly designed primers, the

resolved sequence was verified and confirmed in the original RCA

product by direct sequencing.

TSV genome analysis
Blast-mediated GenBank searches using the obtained 5232-bp

circular DNA sequence as query consistently identified polyoma-

viruses as having most similar sequences. Analysis of this putative

new viral genome revealed the presence of several open reading

frames (ORFs) located on both strands. The orientation and

relative size of these ORFs, as well as the presence of a non-coding

control region (NCCR) in between, were similar to those of known

polyomaviruses (Figure 3). Downstream of the NCCR that

contains the origin of replication (ori), three putative late genes,

VP1, VP2 and VP3, could be identified. Upstream of the NCCR,

on the opposite strand, reside the candidate genes encoding the

viral T antigens.

In the NCCR, a total of ten putative large T-binding sites could

be identified, seven and three respectively on each strand

(Figure 4). An A/T-rich domain, probably harboring the TATA

Figure 1. Clinical appearance and histology of the trichodysplasia spinulosa patient. Facial appearance at presentation is shown in panel
A. Note the thickened skin, particularly on the nose and in the eyebrow region accompanied by central alopecia. Apart from the eyebrows and nose,
papules are seen on the cheeks, chin, forehead and ears. Especially on the nose, but occasionally also in cheeks and chin, keratotic spicules protruded
from the enlarged follicular orifices. Panel B shows a close-up of the nose at presentation with numerous papules and spicules. In panel C is shown a
section of a formalin-fixed, paraffin-embedded biopsy of a hyperkeratotic follicular papule from the forehead. The epidermis reveals enlarged,
hyperplastic hair bulbs and hypercornification within a distended follicular infundibulum (HE stain, 106). Panel D shows a detail of the nose 3 months
after topical cidofovir treatment. Papules and spicules have largely resolved and hairs have regained growth.
doi:10.1371/journal.ppat.1001024.g001

Trichodysplasia Spinulosa-Associated Polyomavirus
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box, is located downstream of the last large T-binding site. By

analogy with most other human polyomaviruses and SV40,

nucleotide position 1 of the genome was chosen within the NCCR,

in large T-binding region.

Because of obvious similarities in genome length, organization

and sequence, we propose to group this newly identified TS-

associated virus among the polyomaviruses. Nucleotide positions,

length and estimated mass of all putative viral genes and proteins,

respectively, are listed in Table 1. The level of protein sequence

similarity with other known (human) polyomaviruses in shown in

Table 2. The TSV genome and putative gene sequences, as well

as the putative protein amino acid sequences have been submitted

to GenBank (accession number GU989205).

TSV T antigen analysis
Like in all other polyomaviruses, the putative TSV small and

large T antigens are expressed from a common primary transcript

subject to alternative splicing [16,17] (Figure 3), and share their N-

terminal part of 80 amino acids in length. The most likely large T

splice products were compared to the large T amino acid

sequences of other known polyomaviruses producing two possible

versions of the TSV large T antigen that differ only 6 amino acids

in size. Version 1 was used for further analyses (Tables 1 and 2).

The putative TSV large T antigen contains characteristic

sequence motifs in different domains, such as the J-domain, the ori

DNA-binding domain and an ATPase/helicase domain

(Figure 5). Within the N-terminal J-domain the highly conserved

HPDKGG amino acid sequence is located, important for efficient

polyomavirus DNA replication, transformation and virion assem-

bly [18,19]. Other characteristic polyomavirus large T sequence

signatures are the pRb family-binding motif and a nuclear

localization signal downstream of the J-domain [18]. In the

ATPase/helicase domain, a zinc finger motif is recognized, two

NTPase/helicase ‘‘Walker’’ motifs and an SF3 motif [20]. A

sequence putatively involved in p53 complex formation that

matches the p53-binding motif described by Pipas and coworkers

(GPX1X2X3GKT [18]), overlaps with the ‘‘Walker’’ A motif

located within the ATPase/helicase region shown in Figure 5

[19,21]. In addition to the N-terminal J-domain shared with the

large T antigen and similar to other known polyomaviruses, the

putative TSV small T antigen contains protein phosphatase 2A

subunit-binding motifs (not shown) [19,21].

Phylogenetic analysis
Complete sequences of 20 polyomavirus genomes were selected

to represent the Polyomaviridae family in the RefSeq database [22].

They include 5 human, 4 avian and 11 non-human mammalian

polyomavirus species. Except for the hamster polyomavirus

(sequence incomplete) and Simian agent 12 (almost identical to

simian virus 12), all of these plus the genome of the recently

sequenced Sumatran orangutan polyomavirus [23] species were

included in our analysis. We produced multiple sequence

alignments and conducted phylogenetic analyses to determine

the evolutionary position of TSV with respect to other members of

the family (Figure 6).

The phylogenetic analysis involving VP1, VP2 and large T

antigen, as well as a merged set of these proteins, recognized seven

clades among polyomaviruses (colored triangles in Figure 6). In all

trees analyzed, TSV was found to form a tight monophyletic

cluster with the Bornean orangutan polyomavirus (OraPyV1)

(violet clade in Figure 6). The distances separating these two

closely related viruses resemble those found between JCV, BKV,

SV40 and SV12 that form another compact monophyletic cluster

(dark green clade in Figure 6). These findings support the

classification of TSV as a new polyomavirus species rather than

a strain of any of the known species.

In trees based on the VP2, large T antigen or the combination

of VP1, VP2 and large T proteins, TSV and OraPyV1 are found

within a monophyletic group formed by MCV, Sumatran

orangutan polyomavirus, murine polyomavirus and African green

monkey polyomavirus (yellow clade in Figure 6). The position of

the TSV/OraPyV1 branch within this clade somewhat varies

Figure 2. Restriction analysis of the RCA product. EcoRV and XbaI
digestion revealed one band of around 5000 bp. EcoRI digestion
produced two bands of around 3600 and 1600 bp. After HindIII
digestion 3 bands were visible of around 3000, 1500 and 400 bp.
Sequence analysis later showed that HindIII digestion in fact produced
four fragments of which the smallest, 378 and 364 bp, coincided on gel.
doi:10.1371/journal.ppat.1001024.g002

Figure 3. Genomemap of TSV. Indicated are the five identified ORFs
representing the putative ‘‘early’’ genes encoding small and large T
antigen, and the putative ‘‘late’’ genes encoding VP1, VP2 and VP3. The
NCCR is placed on top and contains the putative ori. Nucleotide
position 1 was chosen within the NCCR in the large T binding region.
For a detailed view of the NCCR, see Figure 4A.
doi:10.1371/journal.ppat.1001024.g003

Trichodysplasia Spinulosa-Associated Polyomavirus
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between trees, but consistently splits off the cluster trunk after the

basal African green monkey polyomavirus lineage. In the VP1

tree, TSV and OraPyV1 form a separate clade, although this

separation should be viewed with some caution since VP1 is the

least conserved protein and the lineage branching in the yellow

cluster is poorly resolved (Figure 6).

TSV prevalence
The rare occurrence of TS suggests the (sub-clinical) circulation

of TSV in larger populations outside this patient cohort. To

investigate this possibility we developed three TSV-targeted

quantitative PCR assays. Primers and probes were chosen in the

VP1 and Large T genes, and in the NCCR, respectively, and listed

in Table S2. As expected on the basis of chosen primer and probe

sequences, none of the TSV PCRs recognized any of the other

human polyomaviruses when performed on JCV-positive cere-

brospinal fluids (n = 5), BKV-positive blood plasmas (n = 20), KIV

or WUV-positive respiratory samples (n = 20) and MCV-positive

plucked eyebrow hairs (n = 30)(data not shown). In contrast, each

TSV PCR detected the presence of TSV DNA in the patient’s

biopsy fragment and in the plucked spicules from the nose.

Calculation of the viral load in both samples revealed a mean TSV

copy number of 26105 per cell.

To estimate the prevalence of TSV in immunosuppressed hosts,

we analyzed a set of plucked eyebrows from long-term

immunosuppressed renal transplant patients. Three out of 69

transplant patients (4%) were TSV-positive. The viral copy

numbers detected in the plucked hairs of three of these patients

were below one TSV copy per cell and, therefore, much lower

than those detected in the patient’s biopsy and spicules. Analysis of

the patient’s plucked eyebrow hairs collected six months after

cidofovir treatment revealed a TSV load of 104 copies per cell in

all three PCRs. Spicules collected from untreated solitary lesions

located on the legs contained amounts of TSV comparable to

those detected in the spicules from the patient’s nose before

treatment, 36105 copies/cell.

Discussion

With the discovery of TSV the total number of described

human polyomaviruses is brought to six. Pathogenicity profiles

have been established for JCV and BKV, to some extent for

MCV, but not yet for KIV and WUV [24,25]. Although not

definitive, the evidence presented for TSV with regard to the

clinical entity of TS can be considered reasonably strong.

Previously, electron micrographs have shown the presence of a

polyoma-like virus in nuclei of inner root sheath cells [8,11,13,14].

These cells lay at the base of the distended and enlarged hair

follicles that give rise to papule and spicule formation, the clinical

hallmarks of the disease. From these spicules we could isolate the

TSV genome and detect large amounts of the virus.

The rapid response of clinical signs to cidofovir treatment, also

suggested a causal relationship between TSV and disease.

Concomitantly a reduction in viral load was observed, but not

as pronounced as expected based on the clinical response. To what

extent TSV loads measured in plucked hairs and in spicules can be

compared, and whether the difference in load measured between

the two reflect the actual reduction in TSV load is unclear at the

moment. Whether a threshold exists in TSV load, above which the

clinical signs of TSV infection start to develop, is not known.

Detection of TSV in high copy numbers in samples from earlier

Figure 4. Detail of the TSV non-coding control region. Indicated are the putative large T-bindings sites located on both strands (gray-shaded
boxes), the putative ori and putative TATA box (A/T-rich elements). Downstream of this area another two TSV putative large T-bindings sites are
located, as well as one from KIV [1]. Nucleotide positions 1 are shown in white and underlined, except for MCV where the position 1 is shown in bold
and underlined. For MCV two isolates are shown, MCV 339 and MCV350 [3].
doi:10.1371/journal.ppat.1001024.g004

Table 1. Overview of putative TSV genes and proteins.

TSV

Coding

region (nt #)

GC

content (%)

Amino acid

number (n)

Calculated

mass (kDa)

VP1 1311-2438 43,0 376 41,6

VP2 407-1345 43,0 313 34,9

VP3 761-1345 43,2 195 22,9

Small t 5034-4438 35,3 199 23,7

Large T 1 5034-4795, 4363-2528 37,0 692 79,7

Large T 2 5034-4795, 4381-2528 37,0 698 80,3

For each of the putative TSV genes the coding region and GC-content is shown.
For the putative TSV proteins the amino acid number and the estimated mass
are shown.
doi:10.1371/journal.ppat.1001024.t001

Table 2. Amino acid sequence similarities between putative
TSV proteins and those of other polyomaviruses.

TSV protein Amino acid sequence similarity (%)

JCV BKV KIV WUV MCV SV40 OPyV1

VP1 50,7 52,5 21,9 24,1 50,6 52,9 77,7

VP2 33,0 33,0 13,9 13,0 30,0 32,0 88,3

VP3 32,8 32,2 12,4 11,4 22,9 31,1 88,7

Small t 34,0 33,2 32,0 30,4 34,7 33,7 70,9

Large T 1 42,6 41,1 44,0 43,9 42,0 39,6 87,7

Large T 2 42,3 40,8 43,6 43,7 43,0 39,3 88,4

For each of the putative TSV proteins, the amino acid sequence similarity is
shown in comparison to the proteins of other known human polyomaviruses,
SV40 and the Bornean orangutan polyomavirus (OPV1).
doi:10.1371/journal.ppat.1001024.t002

Trichodysplasia Spinulosa-Associated Polyomavirus
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reported TS cases should provide further evidence for the

pathogenicity of TSV.

Over the last years, different and often highly sophisticated

methods for the detection of previously unknown viruses have

been developed. RCA is a rather simple technique that takes

advantage of the property of w29-polymerase to preferentially

amplify circular DNA while using random primers [15]. By strand

displacement synthesis, a high molecular-weight DNA is produced

containing multiple linear copies of the circular genome. The

validity of this approach was demonstrated by the discovery of a

number of newly identified papilloma and polyomaviruses

[26,27,28,29,30]. Limitations of this method with respect to the

minimal excess amount of viral over genomic DNA or maximum

length of the viral genome are not exactly known. The absence of

background smears or bands in our preparation shown in Figure 2

suggested a relative excess of circular (viral) DNA within the RCA

product preparation, which was confirmed by qPCR on the

spicules.

Analysis of the TSV genome revealed five putative genes

probably encoding the VP1, VP2 and VP3 capsid antigens and the

small and large T antigens. For the latter we have identified two

putative splice variants, large T antigen 1 and 2. We found no

ORF upstream of the TSV VP2 gene, indicating the absence of an

LP1/Agno protein. Also the presence of alternative T proteins,

such as middle T, seems unlikely. TSV lacks a third ORF within

the T-antigen coding region as found in rodent polyomaviruses

that encodes a middle T antigen, and no corresponding splice

junctions were found. Further experimental investigation of TSV

transcription is required to elucidate which (additional) TSV genes

are expressed and how this is regulated.

Within the TSV large T protein several characteristic motifs

could be located, including those required for binding the tumor-

suppressor proteins pRb and p53. As shown for other well

characterized polyomaviruses and also for papillomaviruses,

binding and inactivation of these proteins promote cell transfor-

mation [19,21,31], a property that to some extent is shared by

these small DNA (tumor) viruses. For high-risk human papillo-

maviruses oncogenicity has been established in the development of

anogenital carcinomas. Integration of MCV probably plays a role

in Merkel-cell carcinoma development [3]. If TSV possesses

transformational properties and may play a part in carcinogenesis

remains to be studied. In that respect, it is necessary to sort out

whether TSV is potentially involved in other (hyper)proliferative

(skin) diseases as well. For MCV for instance, observations have

been made supporting a role also in development of cutaneous

squamous-cell carcinomas [32].

Phylogenetic analysis of 20 fully sequenced polyomaviruses,

including TSV, suggests the existence of seven polyomavirus

clades. In all trees in Figure 6, substantial protein and virus-specific

differences in branch lengths representing evolutionary distances

were observed, e.g. between KI and WU polyomavirus in the VP1

and VP2 tree, and goose hemorrhagic, crow, finch and budgerigar

fledgling polyomavirus in the large T antigen tree. In combination

with some topological incongruence of the three protein-specific

trees, these observations are indicative of a complex evolutionary

history for most polyomaviruses.

OraPyV1 was isolated from blood of wild-caught and housed

Bornean orangutans. Potentially, the properties of this virus, which

remains poorly characterized beyond the genome sequence [23],

could be insightful for understanding TSV. The murine and

African green monkey polyomaviruses were isolated from

leukemic extracts [33] and lymphoblastoid cells [34], respectively,

also indicative of systemic infection. MCV was isolated from a

Merkel-cell carcinoma and has been detected in other samples as

well, including healthy skin biopsies, squamous-cell carcinomas,

plucked hairs, and recently in respiratory samples as well

Figure 5. Amino acid sequence of the TSV large T protein. Indicated are three major domains found in the large T amino acid sequence; the J-
domain (blue-shaded box), the ori DNA-binding domain (yellow-shaded box) and the helicase domain (green-shaded box). Within the J-domain the
putative locations of conserved region 1 and the HPDKGG motif are depicted. Downstream of the J-domain, a pRb family-binding motif and nuclear
localization signal are located. In the helicase domain, a zinc finger motif, NTPase-binding ‘Walker’ motifs A and B and an helicase SF3 (superfamily 3)
motif C are located.
doi:10.1371/journal.ppat.1001024.g005
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[4,32,35,36,37,38]. Initial attempts to detect TSV in other than

skin-derived materials, such as blood plasma or serum, urine,

cerebrospinal fluid failed. So far, we could detect TSV only in

trichodysplasia tissue, spicules and plucked eyebrow hairs

suggestive of a tropism specific for squamous epithelium, but

larger studies are needed to confirm this finding.

Although the occurrence of TS is limited to severely

immunocompromized patients, this implies that TSV would be

present in larger, probably immunocompetent populations as well.

By analogy with most human polyomaviruses, one could anticipate

that TSV is highly immunogenic and infects many people,

probably early in life without apparent disease [39,40]. Further

(sero)epidemiological studies have to reveal if this indeed is the

case and whether TSV causes low-level persistent (latent) infection,

as described for other polyomaviruses.

Although we have tested thus far only a limited number of

individuals, TSV was detected in another three unrelated

immunosuppressed patients without signs of trichodysplasia. This

would be compatible with occasional infections from an unknown

reservoir. In view of the lack of any epidemiological marker of the

disease, however, it seems more likely the virus is common among

humans but generally without causing disease, comparable to for

instance JCV and BKV. In that case, at least in adults and in

plucked eyebrow hairs, (latent) TSV loads may often be too low to

be detected by our current assays. Although the eyebrow region is

particularly affected in TS and eyebrow hairs were shown suitable

material to detect (polyoma)viruses [4,41], with 50% MCV-

positivity in this study (data not shown) comparable to what

Wieland and coworkers have found [4], it is not known at the

moment whether eyebrow hairs represent a suitable clinical

sample to detect low level TSV infections.

In conclusion, a new human polyomavirus was discovered and

identified as the possible cause of TS in an immunocompromized

patient. We provided evidence for the presence of TSV also

among unaffected patients suggestive of subclinical, possibly latent

infection. Additional studies in different populations and age

groups using different clinical materials are needed to establish the

(sero)prevalence and epidemiology of TSV infections, and its

possible relation to the occurrence of other (skin) diseases,

including cancer. For a general picture, these epidemiological

studies should be complemented with experimental studies on

TSV replication, transcription and transformation.

Figure 6. Phylogenetic analysis of known polyomaviruses and TSV. Bayesian posterior probability trees are shown for VP1 (A), VP2 (B), large
T antigen (C) and a concatenation of all three (D). Numbers at branch points represent posterior probability support values and the scale bar is given
in average number of substitutions per amino acid position. Major clades in the trees are highlighted using colored triangles. The following viruses
are shown: Simian virus 40 (SV40), Goose hemorrhagic polyomavirus (GHPyV), Simian virus 12 (SV12), Squirrel monkey polyomavirus (SquiPyV), Finch
polyomavirus (FPyV), Crow polyomavirus (CPyV), Bovine polyomavirus (BPyV), Merkel cell polyomavirus (MCPyV), WU Polyomavirus (WUPyV), KI
polyomavirus Stockholm 60 (KIPyV), Budgerigar fledgling polyomavirus (BFPyV), African green monkey polyomavirus (AGMPyV), JC polyomavirus
(JCPyV), BK polyomavirus (BKPyV), Murine polyomavirus (MPyV), Murine pneumotropic virus (MuPtV), Myotis polyomavirus VM-2008 (MyPyV),
Bornean orangutan polyomavirus isolate Bo (OraPyV1), Sumatran orangutan polyomavirus isolate Pi (OraPyV2) and Trichodysplasia spinulosa-
associated polyomavirus (TSPyV).
doi:10.1371/journal.ppat.1001024.g006
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Materials and Methods

Ethics statement
The TS patient and his mother gave oral consent to collect

spicules and eyebrow hairs for viral diagnosis and treatment

monitoring. The Medical Ethics Committee of the LUMC

declared in writing that no formal ethical approval was needed

to analyze these clinically obtained materials. Written consent

from the patient (minor) and his legal guardian (mother) was

obtained for publication of his case and for showing his pictures.

Plucked eyebrow hair samples from a population of renal

transplant patients visiting the Dermatology outpatient clinic of

the LUMC were obtained after informed oral consent from the

subjects, which was documented in the patient files. Subject’s

written approval was not collected for this purpose (plucking of

eyebrow hairs), as oral consent was considered appropriate in this

case by the Medical Ethics Committee of the LUMC who

approved of the study (Protocol P07.024: Risk factors for non-

melanoma skin cancer/Genetic and environmental risk factors for

the development of skin cancer in organ-transplant recipients).

Sample collection and DNA isolation
Ten spicules from the nose collected with sterile tweezers in a

sterile vial were shipped to the Leiden University Medical Center

(LUMC) at room temperature. Upon arrival the plugs were

dissolved in a proteinase K-containing lysis buffer for overnight

incubation at 56uC. Total DNA was isolated with the QIAamp

DNA Mini Kit (Qiagen) according to the QIAmp tissue protocol,

with some minor alterations [42]. In parallel, approximately

100 ng commercially available human genomic DNA (Promega)

was extracted as a negative isolation control.

Rolling circle amplification (RCA)
The TempliPhi 100 RCA Kit (GE Healthcare, UK Limited)

was used following manufacturer’s instructions with some slight

modifications. In brief, 1 ml, 1:100 of the isolated total DNA, was

diluted in 5 ml sample buffer, denatured at 95uC for 3 minutes and

cooled down slowly to 4uC to allow primer annealing. Meanwhile

a premix of 5 ml reaction buffer, 0.2 ml TempliPhi enzyme

(bacteriophage Q29 DNA polymerase) and an extra 450 mM of

each dNTP was prepared and added to the denatured DNA in

sample buffer. The RCA reaction was preformed at 30uC for

16 hours followed by inactivation of the enzyme at 65uC for

10 minutes. The RCA product was stored at 220uC.

Genomic sequencing, assembly and analysis
The RCA product was diluted 1:1 in miliQ H2O and 2 ml was

digested with EcoRV, HindIII, EcoRI or XbaI. The two fragments

of the EcoRI digestion were isolated from gel, ligated and cloned

into pUC19, and subsequently sequenced using M13 forward and

reverse primers. The resulting sequences were used as a template

to design new primers located at the end of the newly identified

sequences and listed in Table S1. Sequence reactions were carried

out with the BigDye Terminator kit (Applied Biosystems) and

analyzed on an ABI Prism 3130 Genetic Analyzer (Applied

Biosystems).

Contig sequence assembly was performed with ContigExpress,

included in the vector NTI software package program, that uses

CAP3 computations to drive the assembly process [43]. Putative

splice donor and acceptor sites were identified based on con-

sensus splice donor and acceptor sequences as published [44,45],

and automated splice-site predictions (http://zeus2.itb.cnr.it/

,webgene/wwwspliceview.html). Putative large T binding sites

within the NCCR were identified according to described motifs

[46].

Domain searches within the TSV large and small T antigen

sequences were performed against the domain profile database

SCOP [47] using the HHsearch software [48]. Hits against all 3

domains were strongly significant (E-values ,E-12).

Sequence alignments and phylogenetic analysis
Amino acid sequence similarities between the putative TSV

gene products and those of other polyomaviruses, as shown in

Table 2, were calculated with the AlignX program in vector NTI

version 11, which uses the ClustalW algorithm with default

alignment parameters.

For the phylogenic analyses all available polyomavirus genome

sequences present in the RefSeq database in December 2009 were

downloaded [22]. The Sumatran orangutan polyomavirus [23]

and the identified TSV genome sequences were added to this set.

The following genome sequences were included in the analysis:

Simian virus 40 (NC_001669), Goose hemorrhagic polyomavirus

(NC_004800), Simian virus 12 (NC_012122), Squirrel monkey

polyomavirus (NC_009951), Finch polyomavirus (NC_007923),

Crow polyomavirus (NC_007922), Bovine polyomavirus

(NC_001442), Merkel cell polyomavirus (NC_010277), WU

Polyomavirus (NC_009539), KI polyomavirus Stockholm 60

(NC_009238), Budgerigar fledgling polyomavirus (NC_004764),

African green monkey polyomavirus (NC_004763), JC polyoma-

virus (NC_001699), BK polyomavirus (NC_001538), Murine

polyomavirus (NC_001515), Murine pneumotropic virus

(NC_001505), Myotis polyomavirus VM-2008 (NC_011310),

Bornean orangutan polyomavirus isolate Bo (FN356900), Suma-

tran orangutan polyomavirus isolate Pi (FN356901) and Tricho-

dysplasia spinulosa-associated polyomavirus (GU989205).

Multiple amino acid alignments were compiled for VP1, VP2

and large T antigen using the Muscle program [49], followed by

manual inspection assisted by the Viralis software platform [50].

For VP2 and large T antigen, only partial alignments were used

covering, respectively, the part not overlapping with VP1

(positions 407 to 1307 in the TSV genome sequence) and the

large exon including the helicase domain (positions 4130 to 2600

in the TSV genome sequence). The three protein-specific

alignments and their concatenation were submitted to phyloge-

netic analyses.

Bayesian posterior probability trees were compiled utilizing the

BEAST software [51]. MCMC chains (two per dataset) were run

for 2 million steps (10% burn-in, sampled every 50 generations)

under the WAG amino acid substitution model [52], and rate

heterogeneity among sites (gamma distribution with 4 categories).

For each analysis three molecular clock models (strict, relaxed with

lognormal distribution, relaxed with exponential distribution) were

tested [53]. The more complex model, e.g. relaxed molecular

clock, was favored over the simpler model, e.g. strict molecular

clock, if the Bayes factor (ratio of tree likelihoods) was bigger than

five [54]. Convergence of runs was verified and Bayes factors

were estimated using Tracer software (http://beast.bio.ed.ac.uk/

Tracer).

PCR development and testing
For the detection of TSV DNA, three real-time quantitative

PCRs were developed with primers and Taqman probes located in

the NCCR, and the VP1 and Large T ORFs, respectively (Table

S2). Primers and probes were chosen with the help of Beacon

Designer software (Premier Biosoft). The VP1 39 primer had a

84% match with BKV, but none of the chosen TSV probes had

similarities with any of the other known polyomaviruses.
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The 50 ml PCR reactions consisted of 16 GeneAmp PCR

buffer (15 mM Tris-HCl [pH 8,0], 50 mM KCl, 3,6 mM MgCl,

0,3 mM of each dNTP, 15 pmol of each primer, 7,5 pmol probe

and 2 U of AmpliTaq Gold polymerase (Applied Biosystems).

Real-time PCR was performed in the iCycler (Biorad) and cycle

conditions are 99 at 95uC, followed by 50 cycles of amplification

(94uC for 1 min. and 65uC for 1 min.). TSV copy number was

calculated against a plasmid titration series of pUC19-TSV

included in each PCR assay that contains the full length TSV

genome cloned in XbaI. Cell number was calculated with a PCR

specific for the beta-actin gene, which was run in parallel on a

dilution series of human genomic DNA (Promega). The sensitivity

of each TSV PCR was found to be between 1–10 TSV genome

copies.

The cerebrospinal fluids, blood plasmas and respiratory samples

with proven JCV-, BKV-, KIV- or WUV-positivity used for

validation of the developed TSV-specific PCRs were selected from

clinical samples routinely send for viral diagnosis to the LUMC,

Dept of Medical Microbiology. The plucked eyebrow hair samples

were obtained with written permission from renal transplant

patients visiting the Dermatology outpatient clinic of the LUMC.

Supporting Information

Table S1 List of TSV primers used for primer-walking and

sequencing.

Found at: doi:10.1371/journal.ppat.1001024.s001 (0.49 MB TIF)

Table S2 List of TSV primers and probes used for quantitative

PCR.

Found at: doi:10.1371/journal.ppat.1001024.s002 (0.24 MB TIF)
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