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Abstract

We present the discovery of an optical transient (OT) in Messier51, designated M51OT2019-1 (also
ZTF 19aadyppr, AT 2019abn, ATLAS19bzl), by the Zwicky Transient Facility (ZTF). The OT rose over 15days
to an observed luminosity of Mr=−13 (νLν=9×106 Le), in the luminosity gap between novae and typical
supernovae (SNe). Spectra during the outburst show a red continuum, Balmer emission with a velocity width of
≈400 km s−1, Ca II and [Ca II] emission, and absorption features characteristic of an F-type supergiant. The spectra
and multiband light curves are similar to the so-called “SN impostors” and intermediate-luminosity red transients
(ILRTs). We directly identify the likely progenitor in archival Spitzer Space Telescope imaging with a 4.5 μm
luminosity of M[4.5]≈−12.2 mag and a [3.6]–[4.5] color redder than 0.74 mag, similar to those of the prototype
ILRTs SN 2008S and NGC 300OT2008-1. Intensive monitoring of M51 with Spitzer further reveals evidence for
variability of the progenitor candidate at [4.5] in the years before the OT. The progenitor is not detected in pre-
outburst Hubble Space Telescope optical and near-IR images. The optical colors during outburst combined with
spectroscopic temperature constraints imply a higher reddening of E(B−V )≈0.7 mag and higher intrinsic
luminosity of Mr≈−14.9 mag (νLν=5.3×107 Le) near peak than seen in previous ILRT candidates.
Moreover, the extinction estimate is higher on the rise than on the plateau, suggestive of an extended phase of
circumstellar dust destruction. These results, enabled by the early discovery of M51OT2019-1 and extensive pre-
outburst archival coverage, offer new clues about the debated origins of ILRTs and may challenge the hypothesis
that they arise from the electron-capture induced collapse of extreme asymptotic giant branch stars.

Key words: circumstellar matter – galaxies: individual (M51) – stars: evolution – stars: variables: general – stars:
winds, outflows – supernovae: individual (M51 OT2019-1)
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1. Introduction

Searches for transients in the nearby universe have
uncovered a diverse array of hydrogen-rich stellar events
occupying the luminosity range between that of novae and
supernovae (SNe). As more well-characterized events have
been found, some defined classes are beginning to emerge.
Distinguishing among these classes, however, can be challen-
ging as there is significant overlap in their observed properties.
These include events often associated with luminous blue
variables (LBVs; Humphreys & Davidson 1994; Smith &
Owocki 2006) variably referred to as “SN impostors,”
“ηCarinae variables,” or “giant eruptions” (Humphreys et al.
1999; Van Dyk et al. 2000; Pastorello et al. 2010; Smith et al.
2010; Smith 2014). The “luminous red novae” (LRNe) are
believed to be associated with stellar mergers or common-
envelope ejections, including the 1–3Me contact-binary
merger V1309 Sco (Tylenda et al. 2011) and the B-type stellar
merger V838 Mon (Bond et al. 2003; Sparks et al. 2008).
Several extragalactic events are also suggested to be members
of this class, e.g., M31 RV (Rich et al. 1989; Bond &
Siegel 2006; Bond 2011), M85OT2006-1 (Kulkarni et al.
2007), NGC 4490OT2011-1 (Smith et al. 2016), and M101
OT2015-1 (Blagorodnova et al. 2017).

We adopt the term “intermediate-luminosity red transient”
(ILRT), originally suggested by Bond et al. (2009), to refer to
the class of SN impostors similar to two well-characterized
prototypes: SN 2008S (Prieto et al. 2008; Botticella et al. 2009;
Smith et al. 2009) and the 2008 optical transient (OT) in
NGC 300 (NGC 300 OT2008-1; Berger et al. 2009; Bond et al.
2009; Humphreys et al. 2011). As the name suggests, these
events reach peak luminosities (Mr/R≈−13 to −14) fainter
than those of typical core-collapse SNe, but comparable to
those of other impostors. The peak is followed by the
monotonic decline of their optical light curves, and they also
show reddened spectra suggestive of strong internal extinction
from the immediate circumburst environment. Their spectra are
similar to some LBV-related transients and LRNe, showing
strong H, Ca II, and rare [Ca II] emission features superimposed
on an absorption spectrum characteristic of an F-type super-
giant. The intermediate-width H features indicate relatively low
ejection velocities of a few×100 km s−1. Both NGC300
OT2008-1 and SN2008S had densely self-obscured progenitor
stars detected in archival imaging with the Spitzer Space
Telescope, whose luminosities and inferred masses (M≈
9–15Me; Prieto 2008; Prieto et al. 2008; Thompson et al.
2009; Kochanek 2011) are lower than those of classical LBVs.
Both events have now faded below their pre-explosion
luminosities in the IR (Adams et al. 2016), suggesting that
the explosions may have been terminal. Other proposed
members of this class discovered in the past decade include
PTF 10fqs (Kasliwal et al. 2011), SN2010dn (Smith et al.
2011), and AT 2017be (Cai et al. 2018), although their larger
distances prevented the direct identification of progenitors.

Here, we present the discovery by the Zwicky Transient
Facility (ZTF; Bellm et al. 2019b; Graham et al. 2019) of an
OT in M51 with similar properties to those of previously
observed ILRTs and other SN impostors. At a distance of only
8.6 Mpc (McQuinn et al. 2016, 2017), this is the closest such
event in over a decade, allowing us to identify and characterize
a candidate progenitor star in archival Spitzer images. In this
Letter, we describe the discovery and early observations
(Section 2), our analysis of available archival imaging and

identification of the likely progenitor (Section 3.1), the early
photometric evolution (Section 3.2), and spectroscopic proper-
ties (Section 3.3). In Section 4, we discuss the properties of the
OT and its progenitor in the context of similar transients, and
suggest it is a member of the ILRT class offering new insights
on their origins.

2. Discovery and Data Collection

2.1. Discovery in M51

On UT 2019 January 22.6 (MJD=58505.6), ZTF
19aadyppr was detected as a new OT source in the nearby
galaxy M51 by ZTF with the 48 inch Samuel Oschin Telescope
(P48) at Palomar Observatory as part of the public ZTF 3 day
cadence survey of the visible Northern Sky. The detection
passed significance (Masci et al. 2019) and machine-learning
thresholds (Tachibana & Miller 2018; Mahabal et al. 2019),
and was released as a public alert (Patterson et al. 2019). We
refer to the phase, t, as the number of days since the first ZTF
detection throughout this work. Located at an R.A. and decl. of
13h29m42 41, +47°11′16 6 (J2000.0), the source had an r-
band AB magnitude at first detection of 19.6±0.2. The source
was not detected in an earlier image taken on 2019 January
19.6, to a limiting magnitude of r>20.5, at t=−3 days.
After a second detection on 2019 January 25.5
(MJD=58508.5), ZTF 19aadyppr was autonomously selected
as a high-quality transient by the AMPEL analysis framework
(Nordin et al. 2019b). The discovery was submitted to the
Transient Name Server and provided the IAU designation
AT 2019abn (Nordin et al. 2019a). The source passed several
ZTF science-program filters and was saved by human scanners
for follow-up on the GROWTH Marshal (Kasliwal et al. 2019).
Early spectroscopic observations reported by De et al. (2019)
on 2019 January 26 were characterized by a red continuum and
strong, intermediate-width (≈600 km s−1) Hα emission, con-
sistent with a classification of SN impostor or young ILRT. An
independent detection was reported to TNS on 2019 January 26
by the the ATLAS survey (Tonry et al. 2018), and the Las
Cumbres Observatory (LCO) Global SN Project reported an
additional spectrum taken on 2019 March 2 (Burke et al. 2019)
and ILRT classification. We use the name M51OT2019-1 for
this event hereafter.
As shown in Figure 1, the transient was located in a star-

forming spiral arm of M51, 108 2 from the galaxy’s center.
There is a prominent dust lane at the site, indicating the source
may be subject to significant host extinction. Notably, M51 has
a high rate of core-collapse SNe, with three known events
discovered in the last 25 yr: SN 1994I (type Ic; Schmidt et al.
1994), SN 2005cs (type II; Modjaz et al. 2005), and SN 2011dh
(type IIb; Silverman et al. 2011). The NASA/IPAC
Extragalactic Database27 (NED) lists 50 individual distance
measurements to M51, with a median value in distance
modulus of 29.5 mag and a large standard deviation of
0.9 mag. Throughout this work we assume a distance modulus
for M51 from McQuinn et al. (2016, 2017) of m−M=
29.67±0.02 (statistical) ±0.07 (systematic; Rizzi et al.
2007)mag based on the luminosity of the tip of the red giant
branch (TRGB) method, and that the systematic uncertainties
associated with calibrating this method dominate over the

27
NED is operated by the Jet Propulsion Laboratory, California Institute of

Technology, under contract with the National Aeronautics and Space
Administration.
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statistical measurement uncertainties. We adopt the value from
NED for the Galactic extinction toward M51 of E(B−V )=
0.03 mag, based on the Schlafly & Finkbeiner (2011)
recalibration of Schlegel et al. (1998), and assuming a standard
(Fitzpatrick 1999) reddening law with RV=3.1.

2.2. Imaging Observations

The field containing M51OT2019-1 was regularly observed
at many epochs with the ZTF camera on P48 in the g, r, and i
bands. The P48 images were reduced with the ZTF Science
Data System pipelines (Masci et al. 2019), which perform-
image subtraction based on the Zackay et al. (2016) algorithm
and point-spread-function (PSF) photometry on the reference-
subtracted images. We utilize this photometry for data from the
public ZTF survey taken after 2019 January 1. For images
taken as part of the ZTF Collaboration surveys and the
Caltech surveys (Bellm et al. 2019a),and images taken prior
to 2019 January 1 from the first ZTF Public Data Release28

(ZTF-DR1), we subsequently performed forced PSF-fitting
photometry at the location of M51OT2019-1, adopting a linear
model for pixel values in the difference images as a function of
the normalized PSF-model image values and use a Markov
Chain Monte Carlo simulation to estimate the photometric
uncertainties (Y. Yao et al. 2019, in preparation). Measurements
for a given filter taken the same night were then averaged.
Follow-up images in the g′, r′, i′, and Y bands were

obtained with the Sinistro cameras on the Las Cumbres
Observatory (LCO; Brown et al. 2013) 1 m telescopes under
the program NOAO2019A-011 (PI: N. Blagorodnova). The
data were reduced at LCO using the Beautiful Algorithms to
Normalize Zillions of Astronomical Images (BANZAI) pipe-
line (McCully et al. 2018). Photometry from the LCO g′r′i′-
band images were computed with the image-subtraction
pipeline described in Fremling et al. (2016), with template
images from the Sloan Digital Sky Survey (SDSS; Ahn et al.
2014). The pipeline performs PSF-fitting photometry cali-
brated against several SDSS stars in the field. We performed
aperture photometry on M51OT2019-1 in the LCO Y-band,
with the aperture radius set by the typical full width at half

Figure 1. Pre-explosion HST and Spitzer imaging of M51OT2019-1. In the leftmost panel, we show the color-composite HST ACS/WFC mosaics of the M51 system
from 2005 in three filters (F435W in blue, F555W in green, and F814W in red; PID: GO-10451; PI: S. Beckwith). The location of M51OT2019-1 in a prominent dust
lane along a spiral arm is indicated by the white cross-hairs and shown in more detail in the 30″×30″ bottom center zoom-in panel. Above in the center column, we
show the archival HST coverage of the site in 2015 with ACS/WFC in F814W (center row) and in 2012 with WFC3/IR in F110W (top row). The 3σ error ellipses on the
precise position of the transient from new HST/WFC3 (solid) and Keck/NIRC2 (dashed) imaging are shown in white at the center of these panels. The nearest star-like
object in the F814W image, labeled S1 in blue, is firmly outside the HST error ellipse. In the rightmost column, we show the Spitzer/IRAC archival [4.5] Super Mosaic
(top), the most recent pre-explosion [4.5] image (center), and the subtraction of the two (bottom), clearly showing the variability of the coincident IR precursor source.

28
https://www.ztf.caltech.edu/page/dr1
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maximum (FWHM) of stars in the images, calibrated against
several stars in the Pan-STARRS1 (PS1; Chambers et al.
2016) DR2 catalog (Flewelling et al. 2016).

Additional ground-based follow-up images were obtained in
the optical and near-IR at several epochs using the Astro-
physical Research Consortium Telescope Imaging Camera
(ARCTIC; Huehnerhoff et al. 2016) and Near-Infrared Camera
and Fabry–Perot Spectrometer (NICFPS; Vincent et al. 2003)
on the Astrophysical Research Consortium (ARC) 3.5 m
Telescope at Apache Point Observatory (APO), and the Wide
Field Infrared Camera (WIRC; Wilson et al. 2003) on the
200 inch Hale Telescope (P200) at Palomar Observatory.
Imaging of M51 at APO was obtained as part of a program
to monitor 24 galaxies in the SPitzer Infrared Intensive
Transients Survey (SPIRITS; PI: M. Kasliwal; PIDs 10136,
11063, 13053). Optical g′r′i′ images were reduced in the
standard fashion using bias, dark, and twilight flat-field frames.
Our near-IR JHKs imaging employed large dithers alternating
between the target and a blank sky field approximately every
minute to allow for accurate subtraction of the bright near-IR
sky background, and individual frames were flat-fielded,
background-subtracted, astrometrically aligned with a catalog
of Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006)
sources, and stacked. We performed aperture photometry at the
location of the transient, and used the g′r′i′ or JHKs magnitudes
of several isolated stars in SDSS or 2MASS to measure the
photometric zero-points in the optical and near-IR images,
respectively.

We also present photometry from CCD images obtained by
F. Sims, R. Buchheim, W. Green, M. Hanson, and S. Watson,
in the V and R bands, and by K. Quin and M. Kendurkar in the
Astrodon LRGB filters.29 For the LRGB frames, we performed
aperture photometry on the OT calibrated to standard
magnitudes in R, R, V, and B, respectively, using SDSS
stars in the field and adopting the conversions of Jordi et al.
(2006).

Observations were obtained in the 3.6 and 4.5 μm imaging
channels, [3.6] and [4.5], of the Infrared Array Camera (IRAC;
Fazio et al. 2004) on board Spitzer (Werner et al. 2004; Gehrz
et al. 2007) on 2019 April 7.6 as part of regular monitoring of
M51 as part of SPIRITS. We performed image subtraction and
aperture photometry as described in more detail for the archival
Spitzer/IRAC imaging in Section 3.1.2.

Our photometry of M51OT2019-1 is shown in Figure 2 on
the AB magnitude system, corrected for Galactic extinction.
Where appropriate we have converted VRIJHKs magnitudes on
the Vega system to AB magnitudes using the conversions of
Blanton & Roweis (2007).

We also obtained high-resolution, adaptive-optics J-band
imaging of the transient on 2019 February 16.6, using the near-
IR camera (NIRC2; PI: K. Matthews) on the 10 m KeckII
Telescope on Maunakea. Further high-resolution imaging was
obtained on 2019 March 5.0 with the Hubble Space Telescope
(HST) WFC3 camera in the F275W, F336W, and F814W filters
as the first target in a test program proposing a new method of
HST observing (PI: A. Fruchter; PID SNAP-15675). This new
method, called “Rolling Snapshots,” allows fairly rapid
response by updating a list of snapshot targets weekly;
however, due to present limitations in the Astronomer’s
Proposal Tool (APT), the observing is done in a custom

subarray mode. Data were reduced using the standard pipelines at
STScI, adding a charge-transfer-efficiency (CTE) correction (which
was not done by the pipeline due to the use of the custom
subarray). CTE-corrected frames were then combined into image
mosaics for each filter using AstroDrizzle within PyRAF to attempt
to flag cosmic-ray hits. We performed PSF-fitting photometry for
the transient using DOLPHOT (Dolphin 2000, 2016) and obtained
23.32±0.17, 20.47±0.03, and 15.754±0.002mag (Vega
scale) for F275W, F336W, and F814W, respectively.

2.3. Spectroscopic Observations

We obtained a sequence of optical spectra of M51OT2019-
1 using several instruments covering phases from t=4
to111days. This includes four spectra with the Alhambra
Faint Object Spectrograph and Camera (ALFOSC) on the
2.56 m Nordic Optical Telescope (NOT) at the Spanish
Observatorio del Roque de los Muchachos on La Palma,
including two low-resolution spectra with the 300lines mm−1

grism (Gr4) and an epoch of intermediate-resolution spectra
using two 600lines mm−1 grisms (Gr7 and Gr8), five spectra
with the Double Beam Spectrograph (DBSP; Oke &
Gunn 1982) on P200, one spectrum with the Gemini Multi-
Object Spectrograph (GMOS; Hook et al. 2004) on the Gemini
North Telescope through our Target of Opportunity program
(PI: A. Miller; PID GN-2018B-Q-132), one spectrum with the
Spectral Energy Distribution Machine (SEDM; Blagorodnova
et al. 2018) on the Palomar 60 inch Telescope (P60), and one
spectrum with the Low Resolution Imaging Spectrometer
(LRIS; Goodrich & Cohen 2003) on the Keck I Telescope. The
spectra were reduced using standard techniques including
wavelength calibration with arc-lamp spectra and flux calibra-
tion using spectrophotometric standard stars. In particular, we
made use of a custom PyRAF-based reduction pipeline30

(Bellm & Sesar 2016) for DBSP spectra, the IDL-based
reduction and pipeline LPipe31 (Perley 2019) for the LRIS
spectrum, the fully automated Python-based reduction pipeline
pysedm32

(Rigault et al. 2019) for the SEDM spectra, and
standard tasks in Gemini IRAF package33 for the GMOS
spectrum following procedures provided in the GMOS Data
Reduction Cookbook.34

We also obtained an epoch of near-IR spectroscopy of
M51OT2019-1 with the TripleSpec spectrograph (Herter et al.
2008) on P200. We obtained four exposures of the transient
(300 s each) while nodding the transient along the slit between
exposures to allow sky subtraction. The data were reduced with
a modified version of the IDL-based data reduction package
Spextool35 (Cushing et al. 2004) for P200/TripleSpec.
Corrections for the strong near-IR telluric absorption features
and flux calibrations were performed with observations of the
A0 V standard star HIP61471, using the method developed by
Vacca et al. (2003) implemented in the IDL tool xtellcor as part
of Spextool.
A complete log of our spectroscopic observations is

provided in Table 1, and a representative set of our spectral

29
Astrodon filter information is available here:https://astrodon.com/

products/astrodon-lrgb-gen2-i-series-tru-balance-filters/.

30
https://github.com/ebellm/pyraf-dbsp

31
http://www.astro.caltech.edu/~dperley/programs/lpipe.html

32
https://github.com/MickaelRigault/pysedm

33
http://www.gemini.edu/sciops/data-and-results/processing-software

34
http://ast.noao.edu/sites/default/files/GMOS_Cookbook/

35
http://irtfweb.ifa.hawaii.edu/~cushing/spextool.html
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sequence is shown in Figure 3. All of our spectra will be made
publicly available at the Weizmann Interactive Supernova Data
Repository36 (WISeREP; Yaron & Gal-Yam 2012).

3. Analysis

3.1. Archival Imaging and Progenitor Constraints

3.1.1. Progenitor Candidate Identification

We searched for the presence of a progenitor star in archival

imaging taken with HST and Spitzer/IRAC. To determine the

Figure 2. Left: multiband light curves of M51OT2019-1 are shown as large filled symbols, and unfilled points with downward arrows represent upper limits from
nondetections. Time on the x- axis is measured in days since the first detection by ZTF on 2019 January 22.6. We also show the VRI measurements reported by Pessev
et al. (2019). Measurements have been corrected for Galactic extinction to M51 only, and VRIJHKs measurements have been converted from Johnson–Cousins/
2MASS Vega magnitudes to AB magnitudes adopting the conversions of Blanton & Roweis (2007). Absolute magnitudes at the assumed distance to M51 and
assuming no host extinction are given on the y-axis to the right. For comparison, we show gri light curves of PTF10fqs (solid lines; Kasliwal et al. 2011), and the VRI
light curves of SN 2008S (dotted lines; Botticella et al. 2009) and NGC300OT2008-1 (dashed–dotted lines; Humphreys et al. 2011). The comparison light curves
have been corrected for Galactic extinction to their respective hosts from NED, then reddened to match the g−r or V−R colors of M51OT2019-1 on the plateau
and offset in absolute magnitude by the ΔM values indicated on the figure to match the vertical level of the M51OT2019-1 light curves. Right: r-band light curves of
M51 OT2019-1 are shown as the black stars, and corrected for our estimate of the total host/CSM extinction near peak with E(B−V )=0.7 mag as lighter gray
stars. The r or R light curves of the comparison ILRTs are shown as yellow squares, also corrected with an estimate for the total extinction near peak as described in
the text. We compare to the r- or R-band light curves of other hydrogen-rich transients including the Type IIP SN2004et (Maguire et al. 2010), low-luminosity Type
IIP SN2005cs (Pastorello et al. 2006), and the LRN M101OT2015-1 (Blagorodnova et al. 2017).

(The data used to create this figure are available).

Table 1

Log of Spectroscopic Observations

UT Date MJD Phase Tel./Instr. Range Resolution

(days) (Å) (λ/δλ)

2019 Jan 26 58509 4 NOT/ALFOSC 4000–9000 280

2019 Jan 26 58509 4 P200/DBSP 3500–10000 700

2019 Jan 27 58510 5 Gemini N/GMOS 5000–10000 1000

2019 Feb 6 58520 15 NOT/ALFOSC 3650–7110 500

2019 Feb 6 58520 15 NOT/ALFOSC 5680–8580 700

2019 Feb 8 58522 17 P60/SEDM 3650–10000 100

2019 Feb 12 58526 21 P200/DBSP 3500–10000 1000

2019 Feb 20 58534 29 P200/TripleSpec 10000–24000 2600

2019 Feb 23 58537 32 NOT/ALFOSC 3200–9600 280

2019 Mar 7 58549 44 Keck I/LRIS 3500–10300 600/1000a

2019 Mar 16 58558 53 P200/DBSP 3500–10000 1000

2019 Apr 13 58586 81 P200/DBSP 3500–10000 1000

2019 May 13 58616 111 P200/DBSP 3500–10000 1000

Note.
a
Values given for the blue and red sides of LRIS, respectively.

36
https://wiserep.weizmann.ac.il
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precise position of the transient in the archival HST imaging,
we registered the NIRC2 J-band image of the transient with the
2015 ACS/WFC F814W image (PID: GO-13804; PI: K.
McQuinn) and 2012 WFC3/IR F110W image (PID: 12490; PI:
J. Koda). Using several stars and compact background galaxies
in common between the new and archival frames, we achieved
rms astrometric uncertainties on the position of the transient of
0.44 ACS pixels (0 022) in the F814W image and 0.12
WFC3/IR pixels (0 015) in the F110W image. We identified
an apparent point source at the edge of our 3σ error circle in the
F814W image (object S1 in Figure 1), but the precision of our
registration was insufficient to establish or rule out coincidence
with the transient. We thus triggered the new HST observations
with WFC3/UVIS, described above in Section 2.2, in order to
obtain a more precise position.

We repeated the registrations as above, now using the new
WFC3/UVIS F814W image and obtained improved rms
astrometric uncertainties on the (x, y) position of the transient
of (0.13, 0.20) ACS pixels or (0 007, 0 01) in the archival
F814W image and 0.1 WFC3/IR pixels (0 01) in the F110W

image. We show the 3σ error ellipses on the position of the
transient in each of these images in Figure 1. We performed
PSF-fitting photometry on the archival HST images used for
registration using DOLPHOT. The nearest star detected in the
2015 F814W frame (object S1; 0 06 from the transient
location) is firmly outside the 3σ error ellipse. We note that
there is an apparent source at the location of the transient in the
archival F110W images, but it appears spatially extended and
was not detected by DOLPHOT. Furthermore, the precise
position of the transient is offset from the apparent centroid of
this source. We thus find it is unlikely that the emission at the
location is primarily due to the progenitor, and is more likely a
blend of nearby, contaminating sources.
We then used DOLPHOT to obtain limits on the progenitor

flux in the extensive archival coverage of the site with HST,
including the images from 2005 with ACS/WFC in F435W,
F555W, F814W, and F658N (PID: GO-10452; PI: S. Beck-
with), 2012 with WFC3/UVIS in F689M and F673N (PID:
GO-12762; PI: K. Kuntz), 2012 with WFC3/IR in F110W and
F128N (PID: GO-12490; PI: J. Koda), 2014 with WFC3/UVIS

Figure 3. In the left panel, we show the optical spectral evolution of M51OT2019-1 in black with the phase of each spectrum indicated along the right side of the
panel. We show spectra of other ILRTs in yellow (SN 2008S from Botticella et al. 2009 andNGC300 OT2008-1 from Bond et al. 2009), the M101 LRN
(Blagorodnova et al. 2017) in green, and the 2008 LBV outburst in NGC 3432 (Pastorello et al. 2010) in blue for comparison. Each spectrum has been normalized to

the continuum flux level around 7000 Å, and shifted vertically by an arbitrary constant for clarity. In the top right panel, we show the near-IR spectrum of

M51OT2019-1 from t=29 days normalized to the continuum level around 16000 Å. We indicate the locations of several spectral features with gray, dashed vertical
lines as labeled along the top of each panel. In the bottom right panel, we show the continuum-subtracted Hα velocity profiles for several epochs in the early evolution
of the transient. The apparent absorption component in the t=5 days spectrum is an artifact of the background subtraction.
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in F275W and F336W (PID: GO-13340; PI: S. van Dyk), and

2015 with ACS/WFC in F606W and F814W (PID: GO-13804,

PI: K. McQuinn). We adopt 5σ limiting magnitudes based

on the detection significance of the faintest sources from

DOLPHOT within a 100 pixel radius of the transient position.

Our full set limits on the progenitor from HST are shown in

Figure 4, converted to band luminosities (νLν) at the assumed

distance to M51 and correcting for Galactic extinction.
Utilizing the extensive archival coverage in the four imaging

channels of Spitzer/IRAC, we created deep stacks of all

available images and registered them to the new HST imaging

with an astrometric rms of 0 4. A source consistent with the

position of M51OT2019-1 (0 6 away) is clearly detected in the

[4.5] stack. We do not see a clear point source at the location in

the other channel stacks. Based on aperture photometry the

source has a [4.5] flux of 0.0177±0.0048mJy and 3σ limiting

fluxes of <0.014, <0.073, and <0.31mJy in [3.6], [5.8], and
[8.0], respectively.Given the high degree of crowding/blending
with nearby emission at [4.5], our measurement of the flux of the

putative progenitor may suffer contamination, but as we argue in

more detail below and in Section 3.1.2, the majority of the flux is

likely attributable to a single source.

We also examined archival imaging coverage of the site with
the Multiband Imaging Photometer for Spitzer (MIPS) includ-
ing 24 μm Super Mosaic (2004–2008 stack), and the 70 and
160 μm images from 2004 (PID: 159; PI: R. Kennicutt). We
derive 3σ limiting fluxes from aperture photometry of <2.4,
<49.0, and 350.0 mJy in the three MIPS imaging bands,
respectively. Similarly, we derived limits on the flux of the
progenitor from the available imaging coverage with the Wide-
field Infrared Survey Explorer (WISE; Wright et al. 2010) from
the AllWISE Image Atlas37 at 3.4, 4.6, 12, and 22 μm. Our
limits of 0.20, 0.41, 0.91, and 1.4 mJy in the four WISE
channels, respectively, are typically less constraining than the
corresponding limits from Spitzer largely due to the coarser
spatial resolution in WISE imaging.
Using zero-magnitude fluxes (Vega system) given in the

Spitzer/IRAC Handbook,38 we find the precursor source to
haveM[4.5]=−12.2 mag and [3.6]–[4.5]>0.74 mag.Sources
with these IR properties are exceptionally rare (Thompson
et al. 2009; Khan et al. 2010), indicating that the [4.5] emission

Figure 4. SEDs from photometry are shown in black for the M51 OT2019-1 progenitor (diamonds), and at multiple phases in the evolution of the transient (t=−6, 6,
29, 41, and75 days as crosses, squares, circles, plusses, andstars, respectively). Upper limits from nondetections are indicated with downward arrows.Lower limits
on the progenitor SED from image subtraction are also indicated by upward arrows in black. Blackbody approximations to the data are shown for the progenitor
(dashed curve), t=6 days SED on the rise (dotted) and t=29 days SED on the plateau with radii and temperatures given in the legend. For post-discovery SEDs of
the transient, the curves shown have been reddened by the amount listed. The corresponding dereddened data and blackbody curves are shown in gray. For
comparison, the progenitor SED data are shown for NGC 300OT2008-1 (open blue diamonds; Prieto 2008) and SN 2008S (open orange diamonds; Prieto
et al. 2008).

(The data used to create this figure are available).

37
Images are available here:https://irsa.ipac.caltech.edu/applications/wise/.

38
https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/iracinstrumenthand

book/
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is likely associated with a single star, and furthermore the
spatial coincidence with M51OT2019-1 strongly suggests a
physical association.The spectral energy distribution (SED) is
markedly similar to those of the self-obscured progenitors
of SN 2008S and NGC 300OT2008-1 (see Figure 4). The
best-fit blackbody, incorporating the [4.5] detection and [3.6],
[5.8], and [8.0] limits, has a temperature of T≈510 K
and luminosity of L≈6.3×104 Le, though there is signifi-
cant uncertainty in these parameters.Our constraints at
wavelengths >10 μm are also relatively weak. Thus, we are
unable to rule out emission from cooler circumstellar dust that
would indicate a more luminous (and hence more massive)
progenitor.

3.1.2. Pre-explosion Variability

We examined the considerable coverage of the location with
Spitzer/IRAC at [3.6] and [4.5] for historical variability of the
progenitor, including regular monitoring since 2014 as part of
SPIRITS. The post-basic calibrated data level images were
downloaded from the Spitzer Heritage Archive39 and Spitzer
Early Release Data Service40 and processed through an
automated image-subtraction pipeline (for details see Kasliwal
et al. 2017). For reference images, we used the Super
Mosaics41 consisting of stacks of images obtained between
2004 May 18 and 2006 January 29.In addition to the single
epoch images, we performed image subtraction using the same
references on our deep [3.6] and [4.5] stacks of all available
pre-explosion imaging (described above in Section 3.1.1).

Aperture photometry was performed at the location of
M51OT2019-1 in the difference images, and our resulting
differential light curves are shown in Figure 5, converted to
band luminosities in νLν. During the years 2006–2008
(≈3900–4400 days before discovery), our measurements are
consistent with no change compared to the reference level
within ∣ ( )∣ nD n L L104 . In 2012 (≈2400 days before
discovery), we detect a significant, 4σ-level increase of
Δ(νLν)=(3.2±0.8)×104 Le. Following this, in the time
between 2014 and 2017 (≈1600–500 days before discovery),
we note a consistently elevated [4.5] flux at the location at
Δ(νLν)≈1.3×104 Le. In the final two epochs of Spitzer
coverage, we detect a significant pre-explosion brightening
starting sometime between ≈500 and 300days before
discovery, and rising to the level of Δ(νLν)=(3.7±0.7)×
104 Le at t=−162.3 days. At [3.6], the same trends in pre-
explosion variability are evident, but at a lower level of
significance.In the subtraction of our deep stacks, we detect
significant excess flux compared to the reference level
of Δ(νLν)=(6.5±1.3)×103 Le at [3.6] and Δ(νLν)=
(1.8±0.4)×104 Le at [4.5], shown as the dashed–dotted
lines and shaded regions in Figure 5.

While the [4.5] flux of the coincident precursor source
measured in our deep pre-explosion stack may contain
contamination from nearby sources (Section 3.1.1), the variable
fluxes detected with image subtraction can be unambiguously
attributed to a single source. Associating the variable precursor
with the OT, these measurements are thus robust lower limits

on the average, pre-explosion flux of the progenitor at [3.6] and
[4.5] since 2004. We add these constraints on the progenitor
SED to Figure 4.
We obtained constraints on pre-explosion optical variability

at the location using the available coverage by the Palomar
Transient Factory (Law et al. 2009; Rau et al. 2009) and its
successor, the intermediate Palomar Transient Factory, (i)PTF
(Cao et al. 2016), and ZTF on P48. For (i)PTF g and Mould-R
band data taken between 2009 and 2016, we utilized forced
PSF-fitting photometry at the transient location on the
reference-subtracted difference images (Masci et al. 2017).
The same procedure as described in Section 2.2 was used to
obtain photometry from ZTF difference images for the entire
set of g- and r-band images covering the site from the publicly
available ZTF-DR1, and the Caltech and Partnership surveys
since the start of full operations in 2018 March. To obtain
deeper limits, we stacked our measurements from (i)PTF and
ZTF within 10 day windows, and show the resulting differ-
ential optical light curves along with the IR measurements in
Figure 5. We see no evidence for significant optical variability
at the location in any of the archival P48 coverage at the level
of ∣ ( )∣n nD ´L 2 104 and 3×104 Le in the R or r and g
bands, respectively, including during the 2012 and 2017–2018
[4.5] brightening episodes.

3.2. Photometric Properties

The multiband optical and near-IR light curves of M51
OT2019-1 are shown in Figure 2. We observe a rise in the optical
light curves over a time of ≈15 days after the first detection by
ZTF, after which the source exhibits a relatively flat plateau in the
g, r, i, and Y bands to at least t=40 days.By t≈50 days, the
light curves begin to decline, particularly noticeable in the g band.
In the r band, the source is observed to peak at Mr=−13.0
(Galactic extinction correction only). The optical colors are
remarkably red, with values on the rise of g− r=1.3±0.2,
g− i=1.9±0.2, and g−Y= 2.6±0.2mag at t=5.9 days.
On the plateau at t=25.9 days, we observe bluer optical colors of
g− r=0.97±0.05, g− i=1.53±0.06, and g−Y=1.8±
0.1mag. In the near-IR, the source was detected 6.5days before
the earliest ZTF detection at Ks=18.2±0.3, before rising to
Ks=15.66±0.06 at t=28.9 days.
Given its red optical colors and location in a dark dust lane,

it is likely that M51OT2019-1 is subject to significant
extinction. High amounts of optical extinction have also been
inferred for similar transients of the ILRT class, but even
among these, M51OT2019-1 is exceptionally red. As shown
in Figure 2, we estimate the excess reddening present in
M51OT2019-1 by comparing its optical light curves to those
of the well-studied ILRTs SN 2008S (Botticella et al. 2009),
NGC 300OT2008-1 (Humphreys et al. 2011), PTF 10fqs
(Kasliwal et al. 2011), and AT 2017be (Cai et al. 2018). After
correcting the light curves for Galactic extinction, we require
excess reddening of E(B−V )≈0.7, 0.5, 0.4, and 0.6 mag for
each of those objects, respectively, to match the optical colors
of M51OT2019-1 near peak on the plateau.
The total extinction to M51OT2019-1 at a given phase is

likely due to a combination of attenuation by foreground dust in
the host interstellar medium (ISM) as well as internal extinction
by dust in the circumstellar medium (CSM). For NGC 300
OT2008-1, Humphreys et al. (2011) estimated the total
extinction near the peak of the transient as E(B−V )≈0.4 mag
based on comparing its optical colors to those expected for a

39
https://sha.ipac.caltech.edu/applications/Spitzer/SHA/

40
http://ssc.spitzer.caltech.edu/warmmission/sus/mlist/archive/2015/

msg007.txt
41

Super Mosaics are available as Spitzer Enhanced Imaging Products through
the NASA/IPAC Infrared Science Archive:https://irsa.ipac.caltech.edu/
data/SPITZER/Enhanced/SEIP/overview.html.
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temperature T≈7500K inferred from the presence of F-type
absorption features in the spectrum. A similar argument was
made by Smith et al. (2009) to estimate a total host/CSM
extinction to SN 2008S of E(B−V )=0.28mag.

As described below in Section 3.3, we observe similar
absorption features in the spectra of M51OT2019-1 through-
out its evolution, and thus infer a similar temperature for the
continuum emission. Our analysis of the SED derived from
photometry at several phases in the evolution of the transient is
shown in Figure 4. We observed an early brightening at t=−6
days in the near-IR Ks band to νLν≈4×105 Le with a
constraining r-band nondetection a few days later that suggests
the explosion is heavily obscured at early times. At t=6 days
as the transient rises in the optical, comparing the SED to a
reddened blackbody spectrum with T=7500 K provides a
good approximation to the data and suggests E(B−V )=
1.0 magand a blackbody radius of R≈2.7×1014 cm. Near

the optical peak on the plateau at t=29 days, the SED appears
less reddened, and can be approximated by T=7500 K with
E(B−V )=0.7 magand R≈3.8×1014 cm. The inferred
expansion velocity from the evolution of the blackbody radius
of ≈550 km s−1 is notably similar to the observed velocities
widths of the Hα emission lines (≈400 km s−1; Section 3.3).
While some amount of extinction can likely be attributed to
foreground host extinction, the variable extinction estimate
from evolution of the SED indicates a significant contribution
from internal CSM dust. In particular, we suggest the color
evolution of the SED from rise to peak may be attributed to the
continued destruction of CSM dust as the explosion emerges
from the dense obscuring wind of the progenitor.
The luminosity of the corresponding unreddened blackbody

is L=8.3×107 Le, which we adopt as a crude estimate of the
intrinsic bolometric luminosity of the explosion at peak. In
comparison, the most luminous classical novae reached peak

Figure 5. Constraints on pre-explosion variability based on image subtraction at the location of the transient in the IR with Spitzer/IRAC and optical with (i)PTF and
ZTF. From top to bottom we show the differential light curves at the [4.5], [3.6], R or r, and g bands. The darker, solid black points in the [4.5] light curve highlight
individual epochs where we detect variability of the progenitor at >3σ significance. The dashed lines indicate the zero level, and dotted lines in each panel show the
standard deviations of our measurements for the first four epochs of Spitzer imaging, and for the entire sets of (i)PTF and ZTF imaging.The dashed–dotted lines and
shaded regions in the top two panels show the “average” differential luminosities and corresponding 1σ uncertainties measured in the subtraction of the reference
Super Mosaic images from our deep stacks of all available pre-explosion Spitzer/IRAC [3.6] and [4.5] imaging.

(The data used to create this figure are available).
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luminosities from ≈3–8×105 Le (Gallagher & Ney 1976;
Gehrz et al. 2015), while typical CCSNe reach 5×108 to
1010 Le (e.g., Valenti et al. 2016). We note, however, the
reddened blackbody model significantly overpredicts the
observed Y-band flux at this epoch.We also see evidence for
an IR excess in the near-IR Ks-band measurement at t=29
days and the later [3.6] and [4.5] measurements from Spitzer at
t=75 days, suggesting emission from dust is an important
component of the SED. Finally, in the SED at t=41 days from
our HST observations (plus symbols in Figure 4), the
measurement in F814W lies near the expectation from the
reddened blackbody approximation to the t=29 day SED,
consistent with the flat evolution of the i′-band light curves
between these epochs; however, the F336W and F275W points
are significantly below this expectation, suggesting that there
may be additional suppression of the flux in the blue and UV
(e.g., line blanketing and/or Balmer continuum absorption)
and/or that the assumed Fitzpatrick (1999) RV=3.1 extinction
law for the diffuse Milky Way ISM may not applicable for
heavy internal extinction by circumstellar dust, especially at
bluer wavelengths.Additional longer wavelength measure-
ments from ongoing monitoring with Spitzer and self-
consistent modeling of the time evolution of the SED will be
necessary to better constrain the intrinsic properties of the
explosion and the CSM dust.

In the right panel of Figure 2, we compare the r-band light
curve of M51OT2019-1 to other hydrogen-rich transients. For
the sample of ILRTs, we correct for an estimate of the total
extinction based on the SED near peak as described above.
Assuming E(B−V )=0.7 mag for M51OT2019-1, the peak
absolute magnitude is Mr≈−15. This is notably more
luminous than the other proposed members of this class, which
fall between Mr/R≈−13 to −14, and is near the range more
typical of TypeII core-collapse SNe. In fact, with our assumed
extinction, M51OT2019-1 is even more luminous than some
low-luminosity Type IIP SNe, e.g., SN2005cs (Pastorello
et al. 2006).

3.3. Spectroscopic Properties

Our spectroscopic observations of M51OT2019-1 from
t=4 to111days are shown in Figure 3.Here, we briefly
describe the important spectral properties and features observed
in this event, but reserve a detailed analysis of their evolution to
future, more comprehensive studies. The spectra are character-
ized by a very red continuum, and display prominent Hα
emission along with emission features of the Ca II IR triplet
(λλ 8498, 8542, 8662) and [Ca II] (λλ 7291, 7324). We detect
the Ca II H and K lines (λλ 3968, 3934), the Na I D doublet
(λλ 5889, 5895), and a strong O I blend near 7773Å in
absorption. Superimposed on the broader emission features, we
also detect a narrower absorption component for each of the
lines of the Ca II triplet. In the near-IR spectrum at t=29 days
(top right panel of Figure 3), we see additional recombination
lines of H in emission including Paβ and weaker Paγ.In our
latest spectrum at t=111 days, the continuum has grown
notably redder, and the Ca II triplet features have transitioned to
predominantly narrower emission features.

These features indicate a wide range of densities in the gas
producing the spectrum—reminiscent of a wind or ejected
envelope with large inhomogeneities. The observed [Ca II] λλ
7291, 7324 lines have a critical density of ncr∼10

7 cm−3

(Ferland & Persson 1989) and are strongly suppressed at higher

densities. On the other hand, the O Iλ7773 transition, a quintet
frequently observed in transients, is normally populated by
collisional transfer from the O I 3p 3P level, which is itself
strongly excited by a wavelength coincidence between the H I

Lyβ and O Iλ1026 transitions (Bowen 1947). The triplet-to-
quintet collisional transfer is only effective at densities
n1011 cm−3 (Williams 2012), thus demonstrating a wide
range of densities in the gas ejected by the outburst.
Furthermore, as discussed by Humphreys et al. (2011) for

NGC300OT2008-1, the Ca II and [Ca II] emission lines are
sensitive to conditions in the ejecta and clearly evolve with
time. The triplet emission lines are formed in the ejecta by
radiative de-excitation of electrons in upper levels of the Ca II
H and K absorption transitions, leaving the electrons in the
upper levels of the [Ca II] lines (Ferland & Persson 1989).
Typically, these electrons are collisionally de-excited to the
ground state, unless the densities are low enough. Following
Humphreys et al. (2011, 2013), we can estimate the fraction of
photons that are radiatively de-excited from the ratio of the
equivalent widths of the [Ca II] lines to the Ca II triplet, times
the ratio of the expected fluxes for the continuum emission at
the corresponding wavelengths of 7300 and 8600Å. Assuming
a 7500K blackbody for the continuum, we estimate photon
fractions of ≈0.25 and 0.3 in our t=5 and 44day spectra,
respectively, but find a lower value of ≈0.1 at t=111 days.
This is remarkably similar to the evolution for NGC
300OT2008-1. As suggested by Humphreys et al. (2011), the
decline in the photon ratio at later times may indicate an increase
in the density where the [Ca II] lines are formed in the ejecta.
The Hα velocity profiles (bottom right panel of Figure 3)

appear symmetric about their peaks, which are consistent
with zero velocity in the rest frame of M51. The profiles
are characterized by a FWHM velocity of ≈400 km s−1,much
lower than typical velocities observed in CCSNe of
∼10,000 km s−1, with broader Thomson-scattering wings
extending to ≈2000 km s−1, similar to those seen in
NGC300OT2008-1 (Humphreys et al. 2011). The t=5 days
GMOS spectrum shows an apparent absorption feature near
≈−180 km s−1, but we attribute this to a data reduction artifact
from oversubtraction of unrelated, background Hα emission
and difficultly in finding a suitably clean region for background
subtraction along the slit. We do not see any evidence for
significant evolution in the line profile shape or width for the
duration of the observations presented here.
The observed absorption spectrum is reminiscent of an

F-supergiant. This is expected for an eruption that produces an
extended, optically thick wind (Davidson 1987), and is seen in
LBVs/SDoradus variables in their cool, outburst state at
maximum (Humphreys & Davidson 1994), some SN impostors
and LBV giant eruptions (e.g., Smith et al. 2011), and is very
similar to that of NGC300OT2008-1 (Bond et al. 2009;
Humphreys et al. 2011) and SN 2008S (Smith et al. 2009). This
suggests a temperature of ≈7500 K. The red continuum is
therefore suggestive of significant extinction, and we apply this
temperature estimate to our SED analysis in Section 3.2 to
obtain E(B−V )=0.7 mag near the peak at t=29 days.
Overall, the spectral features described above are generally
similar to some previously observed SN impostors and ILRTs.

4. Discussion and Conclusions

From our early observations of M51OT2019-1, we find that
the transient is characterized by a ≈15 day rise in the optical to
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an observed plateau luminosity of Mr=−13 (Galactic
extinction correction only). Its spectrum shows strong Hα
emission with FWHM velocities of ≈400 km s−1. These basic
properties are similar to those of multiple classes of transients
with luminosities intermediate between those of novae and
supernovae, including ILRTs, LRNe, and giant eruptions of
LBVs. The photometric evolution of M51OT2019-1 has
transitioned smoothly from the rise to a plateauand subsequent
smooth decline after t≈50 days, consistent with ILRTs and
also similar to some SN impostors. It is more dissimilar to
LRNe whose light curves are typically irregular and multi-
peaked (Sparks et al. 2008; Smith et al. 2016; Blagorodnova
et al. 2017) and some other LBV eruptions that may show
multiple outbursts or erratic variability (Pastorello et al. 2010;
Smith et al. 2010). Our optical spectra show several additional
features, including Ca II and [Ca II] in emission, F-type
absorption features indicating the light is escaping an optically
thick wind at ≈7500 K, and a red continuum indicative of
significant extinction. These features are characteristic of
ILRTs, but may also be seen in LRNe and giant LBV
eruptions. For example, while some LBV eruptions show bluer
continua and H lines with strong P Cygni profiles (e.g.,
NGC 3432 OT; Pastorello et al. 2010), others are indistinguish-
able from ILRTs (Smith et al. 2010, 2011; Rest et al. 2012;
Prieto et al. 2014). We identify a likely progenitor star in
archival Spitzer imaging with M[4.5]=−12.2 mag and [3.6]–
[4.5]>0.74 mag, but there is no detected optical counterpart
in archival HST imaging. This is reminiscent of properties of
the obscured progenitors of SN 2008S and NGC 300OT2008-
1. We thus suggest M51OT2019-1 is an ILRT, but with only
weak archival constraints at longer wavelengths, we cannot rule
out that the progenitor of M51OT2019-1 is more luminous
and massive than the 9–15Me stars inferred for the ILRT
prototypes.

The nature of ILRTs, the mechanism behind their outbursts,
and their relation to other impostors and LBV-related transients
are debated. One proposed physical scenario involves a weak
explosion, possibly the electron-capture-induced collapse of an
extreme asymptotic giant branch (AGB) star. In this scenario,
an initial flash rapidly destroys the enshrouding circumstellar
dust, which later reforms and re-obscures the optical transient
(Thompson et al. 2009; Kochanek 2011; Szczygiełet al. 2012).
Thanks to the early discovery of M512019OT-1, we find
evidence for continued dust destruction during the rise of
the transient as our estimate of the reddening evolves from
E(B−V )=1.0 to 0.7 mag between t=6 and 29days,
posing a challenge to such interpretations for this event.
Alternatively, Humphreys et al. (2011) suggested that the
progenitors of NGC300OT2008-1 and, by extension,
SN 2008S may have been post-AGB stars in transition
to warmer temperatures, thus near their Eddington limits
and subject to a range of instabilities. Adopting E

(B−V )=0.7 mag at peak for M51OT2019-1, the intrinsic
luminosity is Mr=−15 mag, higher than previously observed
ILRTs, though not unusual for some LBV-related SN
impostors (Smith et al. 2011), possibly suggesting that these
events may represent a continuum of related, explosive
phenomena arising from evolved progenitors spanning a wide
range of masses. Finally, the observed IR variability of the
likely progenitormay be consistent with a long-period (∼2000
days), thermally pulsing super-AGB (see the candidate super-
AGB MSX SMC 055; Groenewegen et al. 2009), or may hint at

eruptive, self-obscuring episodes occurring in the years before
the explosion. A complete picture of the event awaits continued
monitoring, includingongoing Spitzer observations, to char-
acterize the full SED, dust properties, and energetics. Longer-
term, mid-IR spectroscopic observations with the James Webb

Space Telescope will disentangle the chemistry, and late-time
imaging after the explosion fades away will provide definitive
evidence on whether the explosion was terminal.
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