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Abstract

Background: It has been observed that many transcription factors (TFs) can bind to different genomic loci depending
on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in
different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research
question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may
be possible to observe different combinations of TF motifs – a motif grammar – located at the TF binding sites in
different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF
binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build
a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract
meaningful cell-type specific motif grammars from this classifier model.

Results: We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type
specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets
of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are
indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory
rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar.

Conclusions: Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type
specific.
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Background
Transcription factors (TFs) are proteins which usually
bind to genomic DNA at specific DNA sequences (motifs)
[1]. The binding of different TFs to DNA is critical for the
regulation of gene expression in almost all important
biological processes, including embryogenesis [2–4],
cell cycle and development control [5–7], and response
to intercellular signals and environment [8, 9]. We
already know different TFs can be added as exogenous
reprogramming factors to convert somatic cells to

other cell types (e.g., fibroblasts to pluripotent cells)
[10]. One interesting observation is that many TFs bind
to genomic DNA at different loci depending on the
cell-type and biological context (such as signalling path-
way activation) in which the TF is expressed, even though
the TF binds to the same core motif across different cell
types and conditions. For example, Frietze et al. found that
the same TF (TCF7L2) can bind to different genomic loci
across different cell types [11]. One hypothesis is that any
particular TF requires the co-binding of different combi-
nations of cell-type specific TFs, such as master regulators
[12], in different cell-types [13]. If this is the case, it may
be possible to observe different combination of motifs – a
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motif grammar – being present in the binding sites of the
same TF across different cell types.
Several studies have attempted to explore this hypoth-

esis using a computational synthetic biology approach
[14, 15]. Furthermore, spatial co-occurrence patterns of
specific pairs of motifs have also been systematically in-
vestigated computationally [16]. Some other studies have
investigated the questions of cell-type specificity using a
combination of sequence features, chromatin structure
as well as histone modification marks [17, 18]. These works
all lend evidence to the assumption that a DNA motif
grammar – a set of rules based on combinations of TF
motifs – in cis-regulatory module exists, and is cell-
type specific.
To further test this motif grammar hypothesis, we wish

to explore the use of a machine learning classifier to pre-
dict the cell-type specificity of a TF binding site. Several
published studies have used a similar machine learning ap-
proach to explore cell-type specificity, including a SVM
classification model using k-mer sequences in TF ChIP-seq
peaks, histone modifications and DNase accessibility data
as features to train and predict cell-type specific TF binding
sites [19]; a computational approach that considers cell-
type specific histone H3K27ac DNA profiles around tran-
scription start sites with neural network to predict gene
expression in mouse embryonic stem cells [20]; and a deep
neural network approach to predict the sequence specific-
ities of DNA and RNA-binding proteins [21].
Nonetheless, we wish to explore a specific question

that more directly tests the motif grammar hypothesis –
can we build a multi-class machine learning classifier
based on combinations of sequence motifs alone? Further-
more, we note that many machine learning classifiers that
have good performance (e.g., SVM, deep neural network)
are hard to visualise and interpret. In other words, it is
often difficult to extract the rules – the grammar – from
these machine learning models. In this work, we propose
to address these issues by developing a Random Forest
(RF) based multi-class cell-type classifier based on TF
motif combinations alone, and use a recently developed
rule-mining approach to extract important discriminatory
rules from the trained RF classifier.
Random Forest, first published as random decision for-

ests [22], is a machine learning algorithm for classification
and regression. A RF consists of a collection of decision
trees, where each tree consists of a random subsample of
features [23]. Random Forest could measure feature im-
portance by calculating the ‘mean decrease accuracy’.
Compared to classification based on an individual decision
tree, a RF has been shown to be more robust against
the overfitting problem [24]. With the ability to perform
multi-class classification, and generally having superior
performance, RF is widely used in various fields of
biological and biomedical research [25–29]. One

short-coming of RF is that it is commonly considered
to be a ‘black box’ machine learning method, as it is
not easy to extract and visualise the decision rules that
lead to a particular prediction. Recently, some methods
have been developed to extract interpretable rules from a
RF [30], and software tools have been developed to ex-
tract, trim and prune importance rules in a RF [31].
In the following study, we use this RF approach to

analyse two published ChIP-seq TF datasets (TCF7L2
and MAX) from ENCODE [32]. Our finding reveals that
combinatorial DNA motifs can be cell-type specific, and
that we can extract biologically meaningful motif gram-
mars from a RF classifier.

Results
Identification of cell-type specific cis-regulatory elements
The TF ChIP-seq datasets we tested by RF were down-
loaded from the ENCODE project dataset [32] (see
Additional file 1). Data for TF proteins TCF7L2 (Tran-
scription factor 7-like 2) and MAX (myc-associated fac-
tor X) were chosen because they were systematically
profiled across a good number of cell-types (6 cell types
in TCF7L2 and 5 cell types in MAX). TCF7L2, which at
a downstream effector of the Wnt singling pathway, is
a TF that affects the transcription of a variety of genes
that affect a diverse set of biological functions [33, 34].
It is also linked to human diseases, including type 2
diabetes [35–37] and a variety of cancers [33, 38, 39].
MAX is a TF protein that is able to form homo-dimers
or hetero-dimers with other proteins, which include
MYC, MXL1 and MAD [40]; these dimers promote cell
differentiation and apoptosis [40]. Many reports also
showed that MAX is related to the small cell lung can-
cer (SCLC) [41–43].
For the TCF7L2 dataset, there are six human cell-lines,

including colon cancer cells (HCT116), embryonic kidney
cells (HEK293), cervical carcinoma cells (HeLa-S3), liver
cancer cells (HepG2), mammary gland adenocarcinoma
cells (MCF-7) and pancreatic cancer cells (PANC-1). For
the MAX dataset, the five human cell-lines are adeno-
carcinomic alveolar basal epithelial cells (A549), lym-
phoblastoid cells (GM12878), immortalised myelogenous
leukaemia cells (K562), HeLa-S3 and HepG2.
We extracted the 500 strongest unique ChIP-seq peaks

by p-value from each cell-line in both the TCF7L2 and
MAX datasets (see Additional file 2). We have developed
a pipeline to extract the DNA sequences at these ChIP-
seq peaks, and identified known motifs (based on a large
motif database from ENCODE [44]) in these sites using
a DNA motif annotation pipeline (see Methods). We
were able to extract the number of occurrences of each
motif in these sites. This becomes the training set for
our RF classifier. The predictive ability of our RF using
the TCF7L2 and MAX datasets is evaluated using cross-
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validation. Furthermore, the final trained RF classifier is
mined to extract meaningful rules. Figure 1 illustrates
the workflow of our DNA motif annotation and RF ana-
lysis pipeline.

Combinations of motifs are predictive of cell-types
We applied 10 times 10-fold Cross-Validation (CV) to
evaluate the ability of RF to classify TF sites from different
cell-types based on motif occurrence patterns. In order to
determine the optimal size of binding site in the two data-
sets, we first investigate the effect of varying the size of
the binding site from +/− 5 bp around the peak centre to
+/− 300 bp around the peak centre. We found that the
best prediction accuracy can be achieved when the TF
binding site is ~240 bp in length (120 bp up and down-
stream from the peak centre; see Additional file 3). There-
fore,we use 240 bp around the centre of ChIP-seq peaks
as our TF binding sites for all downstream analyses.
We then use 10 times 10-fold CV to evaluate the pre-

dictive ability of a RF classifiers trained on the TCF7L2
and the MAX datasets. Using the Area Under the Receiver
Operating Characteristic curve (AUROC) as a measure,
we found that our RF classifiers indeed has a clear ability
to discriminate among the 6 cell types profiled in the
TCF7L2 dataset, and among the 5 cell types profiled in
the MAX dataset (Fig. 2).
To further test if the RF algorithm can distinguish dif-

ferent cell types based on the combinations of motifs in
the 240 bp region of the ChIP-seq peaks from the same
antibody, we applied our pipeline on six additional TF

datasets, each consisting of TF binding sites from five to
seven cell lines (see Additional file 1). Cross-validation
analysis reveals that we can use motif combinations to
build a RF classifier with a reasonable sensitivity and
specificity (see Additional file 4), further supporting our
hypothesis that TF motif combinations are predictive of
cell-type specificity.

Meaningful cell-type specific motif grammars can be
extracted from a RF classifier
To identify the important features (motifs) in a trained
RF classifier, we extracted the mean decrease accuracies
(MDA [45]) values of all the motifs based on the RFs
trained using the TCF7L2 and the MAX datasets (Fig. 3).
The MDA, output by the randomForest package, informs
the overall importance of a motif in the RF model. More
specifically, the MDA value of a variable represents the
increase in out-of-bag error that is caused by removing
that variable. The MDA values reported in Fig. 3 is
scaled by the standard deviation of the MDA values of
all the variables. A positive MDA value indicates that in-
clusion of that variable is important in the RF classifier,
whereas a negative MDA value indicates that inclusion
of that variable negatively impact the accuracy of the RF
classifier. In both TF datasets, there are a small number
of motifs that have a high MDA values, suggesting that
most of the discriminatory power comes from a small
number of motifs (Fig. 3a and b). Using those motifs with
high scaled mean decrease accuracies (with scaled MDA
greater than 6), we can extract the list of motifs that are

a b

c d

Fig. 1 Our bioinformatics workflow for DNA motif annotation, Random Forest (RF) classifier training and motif grammar extraction. The workflow
consists of four steps. a Step 1: extraction of the genomic sequences from the cell-type specific TF binding sites. b Step 2: annotation of
these sequences using a large database of motifs. c Step 3: training of a RF classifier. d Step 4: Motif rule (grammar) extraction from the RF classifier
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cell-type specific in the two datasets (Fig. 3c and d). Only
about a dozen motifs have high MDA. This finding indi-
cates that although many motifs are present around the
+/− 120 bp region of a ChIP-seq peak centre, only a small
proportion of motifs show cell-type specificity. This distri-
bution also leads to our interest to extract motif grammar
rules from the RF classifiers.

Discovery of motif grammar rules from random forests
As RF has the ability to distinguish cell types based on
motif occurrence in TF binding sites, we next attempt to

extract interpretable rules from the trained RF classifiers.
In particular, we use a rule mining approach that is im-
plemented in an R package called inTrees [31], which
can extract, measure, prune and select rules from a RF.
The algorithm of inTrees is able to extract all the frequent
decision rules from all the trees in an RF, and select set of
most highly predictive and non-redundant rules based on
all the training data [31]. By using the inTrees package, a
number of cell-type specific rules were extracted from the
two RF classifiers (Tables 1 and 2). Most of these rules are
based on motifs with a high MDA value (e.g., NFE2 and

a b

Fig. 2 The Area Under the Receiver Operator Characteristics Curve (AUROC) of the RF classifiers based on Cross-Validation. a The TCF7L2 dataset.
b The MAX dataset. The error bars indicate standard deviations

a

c

b

d

Fig. 3 The mean decrease accuracies (MDA) of motif importance extracted from the trained RF classifiers. a The sorted MDA values extracted
from the TCF7L2 RF. b The sorted MDA values extracted from the MAX RF. c Heat map showing the MDA values of the top motifs in the TCF7L2
RF. d Heat map showing the MDA values of the top motifs in the MAX RF
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BACH1 in the TCF7L2 dataset; HNF4, AP1, LMO2 and
GATA in the MAX dataset), thus supporting that inTrees
are discovering important rules that are present in the RF.
We found that the majority of the TFs in the extracted
rule have reported cell-type or tissue-specific expression
specificities, such as IRF in lymphoblastoid cell-line
[46, 47], AP-1 in cervical cancer [48, 49], HNF4 in liver
and colon cells [50], LMO2 [51] and GATA in leukaemia
cells [52, 53]. For some other motifs in the table, their TF
proteins are considered as oncogenes or related to tumori-
genesis (e.g., JDP2 [54], BACH1 [55] and NFE2 [56, 57]).
The motif of GRHL1, whose TF is reported to interact
with estrogen receptor, is also found to be expressed in
mammary gland adenocarcinoma cells [58]. Our results
suggest that our rule mining approach can indeed discover
biologically meaningful motif rules from a RF classifier.

Discussion
Using two ENCODE TF ChIP-seq datasets, our study
shows that different combination of a small number of
motifs is sufficient to discriminate TF binding sites that

are used in different cell types. Also, we demonstrate how
we could use a Random Forest (RF) classifier for classifica-
tion and rule extraction, highlighting the power of open-
ing up a ‘black box’ machine learning model.
Our pipeline is unique as we are annotating TF binding

site sequences with >2000 known motifs. The use of such
as comprehensive TF motif database is important as the
goal is to test the hypothesis that motif combinations
alone can be predictive of cell-type-specific TF binding
sites (cis regulatory elements). Nonetheless, our study is
only the first step towards deciphering the DNA motif
grammar. Besides motif combinations, cell-type specificity
may also be affected by the spatial arrangement of the mo-
tifs, existing histone modifications and DNA accessibility
[13, 18, 19], and long range interactions [59]. Nonetheless,
our finding is an important step towards discovering a
cell-type specific TF motif grammar.

Conclusion
Our bioinformatics analysis supports the hypothesis that
combinatorial TF motif patterns are cell-type specific.

Table 1 DNA motif rules extracted from the RF classified trained on the TCF7L2 dataset

Rule Prediction Reference

NFE2 > =3 HCT-116 (colon cancer cells) [56, 57]

GSX1 < =35 & NFE2 > =2 NFE2 [56, 57]

BACH1 > =2 & FOXO3 < =2 & HOMEZ < =5 BACH1 [55]

BACH1 < =1 & E2F > =2 & HOXB13 > =3 HEK293 (embryonic kidney cells) E2F [63], HOXB13 [64]

CDX2 > =5 & GATA > =2 & MAF = 0 GATA [65, 66]

BACH1 < =1 & HNF4 < =6 & HOXA13 > =3 & OTX1 > =9 HOXB13 [64]

JDP2 > =2 & SOX21 > =37 HeLa-S3 (cervical carcinoma cells) JDP2 [54]

HNF4 > =2 HepG2 (liver cancer cells) [50]

HOXB13 < =3 & JDP2 < =1 & TCF7L2 > =5 TCF7L2 [67]

HNF4 > =1 & HOXC10 < =16 & SOX9 > =5 HNF4 [50], SOX9 [68]

GRHL1 > =4 MCF-7 (mammary gland adenocarcinoma cells) GRHL1 [58]

No rule identified PANC-1 (pancreatic cancer cells)

The numbers in the rules represent the motif frequency detected in the +/− 120 bp regions from the peak centre

Table 2 DNA motif rules extracted from the RF classified trained on the MAX dataset

Rule Prediction Reference

IRF > =1 GM12878 (lymphoblastoid cells) [46, 47]

JDP2 > =1 HeLa-S3 (cervical carcinoma cells) [54]

AP1 > =9 & HESX1 > =2 & LMO2 > =2 AP1 [48, 49]

EMX1 < =11 & ETS < =12 & HNF4 > =1 HepG2 (liver cancer cells) HNF4 [50], ETS [69]

HNF4 > =1 & IRF4 < =4 & RUNX2 < =4 & TAL1 < =4 HNF4 [50]

ALX3 < =26 & EVX1 > =6 & GATA > =2 & LMO2 > =2 K562 (immortalised myelogenous leukaemia cells) GATA [52, 53], LMO2 [51]

GATA > = 4 & HNF4 = 0 & POU4F3 < =4 GATA [52, 53]

No rule identified A549 (adenocarcinomic alveolar basal epithelial cells)

The numbers in the rules represent the motif frequency detected in the +/− 120 bp regions from the peak centre
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Methods
Datasets
We downloaded ChIP-seq peak files of two TFs TCF7L2
and MAX from the ENCODE ChIP-seq Experiment
Matrix [60]. To maintain consistency across datasets, we
only used the ChIP-seq peaks from ENCODE/SYDH
standard (mapped to hg19 reference genome) by peak
caller “PeakSeq1.0”. For multiple entries in the ENCODE
database, only IgG normalised ChIP-seq peaks were
chosen.

Motif annotation and random Forest implementation
We used the R package randomForest [61] for the imple-
mentation of RF. We systematically evaluated how many
trees are needed to train a good RF based on our two
datasets. The default tree number 500 is adequate for
stabilising the out of bag (OOB) error (see Additional file 5).
Therefore 500 trees were used in all our analyses. The input
features for the Random Forest are the top 500 strongest
unique ChIP-seq peaks by p-value for each of the six cell-
lines in the TCF7L2 and each of the five cell-lines in MAX
datasets. Therefore, the input for each RF is a matrix of
number of occurrence of 2067 motifs in 3000 (or 2500)
cell-type specific TF binding sites in the TCF7L2 dataset (or
the MAX dataset). Our motif database consists of 2065
motifs from ENCODE [44], as well as two de novo TCF7L2
motifs identified by Frietze et al. [11]. The motif database
was then converted to the HOMER motif database format.

Evaluation of classifier performance
We have assessed the performance of the RF classifier
through several methods, namely cross validation, out of
bag errors and ROC curves. Cross-validations were used
to estimate the classifier errors. We have performed 10-
fold cross-validations ten times on Amazon AWS using
the R packages foreach, doMC and caret. Out of bag er-
rors make use of the unselected samples in each tree in
the forest to estimate the classifier errors, and have been
shown accurate empirically [62]. Besides estimating
classifier errors, we have also calculated AUROC values
to assess the performance of the RF classifiers. More
specifically, a binary classifier for each cell-line can be
obtained as follows: for each sample, the RF classifier
outputs the percentage of decision trees that predict
each cell-line, and this percentage is used as the dis-
crimination threshold of a binary classifier for the cell-
line. The AUROC values for each of these binary classi-
fiers are shown in Fig. 2.

Identification of cell-type discriminatory motifs in a RF
classifier
Two independent methods were used to identify cell-
type discriminatory motifs. Firstly, the mean decrease ac-
curacy (MDA), output by the randomForest package,

informs the overall importance of a motif in the RF
model. Specifically, the RF training was performed in
two rounds. In the first round, features with negative
MDAs were removed so that these irrelevant features
were not present in the final random forest. Then, we
optimised the number of features in each decision tree
using the ‘tuneRF’ function in the randomForest package
by minimizing the out-of-bag errors. More specifically,
through out-of-bag error estimation, it estimates the loss
of accuracy after randomly permuting the values of each
motif. We then plot the MDA of all the motifs in Fig. 3.
A second method is to extract frequent and important

rules present in the decision trees in an RF, using the R
package inTrees. For this procedure, we used RFs trained
from the two whole datasets as the inputs. Rules were
extracted and pruned using the ‘getRuleMetric’ and ‘pru-
neRule’ functions respectively. Then a set of relevant
and non-redundant rules were selected using regularised
RFs through the ‘selectRuleRRF’ function, after which
the rules were further selected based on the frequency
and error – rules with a frequency below 8% or error
above 0.7 were eliminated. The resulting selected rules
are included in Tables 1 and 2.

Additional files

Additional file 1: Table S1. Datasets used in this study. The ENCODE
data we used in this study with the information of TFs, cell-lines, reference
genome, peak caller information and the GEO Accession ID. (XLS 42 kb)

Additional file 2: Figure S1. –log10 p-value distribution of the peaks
on the TCF7L2 and the MAX datasets. The positions of the 500th peak in
each plot ranked by p-value were highlighted in red lines. (PDF 343 kb)

Additional file 3: Figure S2. – Cross validation of RF classifiers trained
on the TCF7L2 and the MAX datasets. We employed F1 score (F1 = 2 *
precision * recall / (precision + recall)) to measure the performance of
the RF classifier for each cell line. We evaluated the discriminatory power
of TF binding sites that are +/− 5 bp to +/− 300 bp from the centre of
each of the TF ChIP-seq peak. (PDF 29 kb)

Additional file 4: Figure S3. – The Area Under the Receiver Operator
Characteristics Curve (AUROC) of the RF classifiers based on cross-validation.
(A) The CEBPB dataset. (B) The CHD2 dataset. (C) The EP300 dataset. (D) The
JUND dataset. (E) The MXI1 dataset. (F) The RAD21 dataset. Error bars indicate
standard deviations. (PDF 157 kb)

Additional file 5: Figure S4. – Out of Bag (OOB) curves of the RF of
TCF7L2 dataset and MAX dataset. From the curve of the OOB error rate
against the number of trees, we find that 500 trees are sufficient to
minimise errors, and increasing the number of trees would not help the
RF classifier to perform better. We used 500 trees in our downstream
analyses. (PDF 18 kb)
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