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Discovery of coding regions in the human genome
by integrated proteogenomics analysis workflow
Yafeng Zhu1, Lukas M. Orre1, Henrik J. Johansson 1, Mikael Huss2, Jorrit Boekel3, Mattias Vesterlund 1,

Alejandro Fernandez-Woodbridge1, Rui M.M. Branca1 & Janne Lehtiö1

Proteogenomics enable the discovery of novel peptides (from unannotated genomic protein-

coding loci) and single amino acid variant peptides (derived from single-nucleotide poly-

morphisms and mutations). Increasing the reliability of these identifications is crucial to

ensure their usefulness for genome annotation and potential application as neoantigens in

cancer immunotherapy. We here present integrated proteogenomics analysis workflow

(IPAW), which combines peptide discovery, curation, and validation. IPAW includes the

SpectrumAI tool for automated inspection of MS/MS spectra, eliminating false identifications

of single-residue substitution peptides. We employ IPAW to analyze two proteomics data

sets acquired from A431 cells and five normal human tissues using extended (pH range,

3–10) high-resolution isoelectric focusing (HiRIEF) pre-fractionation and TMT-based peptide

quantitation. The IPAW results provide evidence for the translation of pseudogenes,

lncRNAs, short ORFs, alternative ORFs, N-terminal extensions, and intronic sequences.

Moreover, our quantitative analysis indicates that protein production from certain pseudo-

genes and lncRNAs is tissue specific.
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The impact of genome-level aberrations on the proteome at
the systems level is still largely unstudied, especially in
organisms with large genomes such as humans. To facil-

itate such studies, robust methods and workflows that combine
sequence data from DNA and RNA analysis with protein-level
data are needed. Proteogenomics methods, which combine mass
spectrometry-based proteomics data with genomics and tran-
scriptomics data are currently emerging to fill this void1–3.
Moreover, proteogenomics can be utilized to discover unan-
notated protein-coding regions both in normal and disease
samples. Some coding regions are particularly difficult to anno-
tate correctly without protein-level data, such as translation
products from upstream translation initiation sites (TISs) and
short open reading frames (sORFs)4. Other annotation problems
arise when proteins are translated from transcripts that are not
expected to be protein-coding, e.g., long non-coding RNAs
(lncRNAs) and pseudogenes.

Efficient identification of unannotated coding regions and
sequence variants at protein level requires that such variant pep-
tides are included in the database used for mass spectrometry data
interpretation. This strategy often leads to a dramatic increase in
database size. As an example, a database containing peptides from
a six-frame translation (6FT) of the human reference genome is
almost 400 times bigger than the database derived from the
canonical coding region. A problematic issue in proteogenomics is
the accurate estimation of novel peptides’ false discovery rate
(FDR), especially when large databases are used. This problem is
further intensified by the imbalance in probability of correct
peptide-spectrum-matching in different search spaces (i.e., cano-
nical search space vs. novel peptide search space) composing the
database. In 6FT searches of higher eukaryotic genomes, hypo-
thetical peptides comprise the vast majority of the search space but
are actually present in the sample much less frequently than
peptides from canonical proteins. Such imbalance can lead to
underestimation of FDR with consequences for the sensitivity and
reliability of findings3, 5. Because of this, 6FT approaches have been
rare so far in higher eukaryotes, and instead a more popular
strategy has been to concatenate limited sets of putative coding
sequences with the canonical protein database. These customized
databases are obtained based on data from gene prediction algo-
rithms and other omics techniques, such as genomics, tran-
scriptomics, and ribosome profiling. Using such approach, a
number of peptides derived from missense variants (from muta-
tions and non-synonymous SNPs)6, pseudogenes7, alternative
protein N termini8, 9, unexpected exon boundaries10, short open
reading frames (ORFs)11, and alternative reading frame transla-
tions (AltORFs)12, 13 have been identified.

Recently, several bioinformatics tools, CustomProDB14,
Galaxy-P15, PGTools16, and JUMPg17, have been developed to
facilitate proteogenomics studies. However, these pipelines mostly
resolve issues on generating peptide databases from genomics and
transcriptomics data and facilitate visualization of peptide data in
the genome scale, not focusing on the curation and validation of
the novel findings. Notably, there is an increasing concern about
the reliability of reported novel proteins in large-scale proteoge-
nomics studies3, 18. In response to this, guidelines for reporting
proteogenomics findings have been recommended19. Among
these, of particular importance are the orthogonal validation by
independent methods (e.g., vertebrate conservation analysis,
transcriptomics, and ribosome profiling), the special caution that
must be devoted to “pseudogene” proteins (at least two high-
confidence peptides linked to an in-frame initiation codon
required) and the recommendation to discard all novel peptides
with single amino acid substitutions20. Unfortunately, this latter
point results in novel peptides with single substitution being
ignored, even though the proteins they originate from could play

important roles in cellular processes. The here presented inte-
grated proteogenomics analysis workflow (IPAW) aims to amend
this by offering a reliable solution that allows identification of
these single amino acid substituted novel peptides while simul-
taneously ensuring high confidence of findings by rigorous
curation and orthogonal validation.

In this study, we show a proteogenomics workflow integrating
discovery, curation, and validation for detecting novel peptides and
single amino acid variant (SAAV) peptides. This workflow pro-
vides extensive curation steps and allows validation of putative
novel peptides by searching for external evidence in orthogonal
data. Of particular importance in IPAW is SpectrumAI (Auto-
mated Inspection), a tool that curates single amino acid substituted
peptides by requiring ions to directly support the residue sub-
stitutions in MS/MS spectra. Using a cancer cell line (A431) and
five histologically normal human tissues, we generated in-depth
proteomics data acquired from an upgraded HiRIEF method1,
which now enables extensive peptide pre-fractionation without bias
toward a specific pI range. Applying IPAW to analyze the two data
sets, we identify 426 and 155 novel peptides in A431 cells and
normal tissues, respectively. Among them, 110 of 117 selected
novel peptides are confirmed by synthetic peptide validation. These
novel peptides are encoded from a range of supposedly non-coding
regions, including pseudogenes, 5′ or 3′ untranslated regions
(UTR) of mRNAs, antisense transcripts, dual-coding transcripts,
lncRNAs, intergenic, and intronic sequences. Moreover, our
quantitative approach with isobaric tags (TMT10plex) shows that
several pseudogenes and lncRNAs are translated with tissue spe-
cificity; and that several upstream ORF translation products
(AltORF and N-terminal extended proteins) differed from the
respective canonical protein products in their regulation pattern
upon treatment of A431 cells with an EGFR inhibitor (gefitinib).
Finally, we find a significantly larger number of novel protein
products in A431 cancer cells than in the normal tissues and we
note that two types of novel events (retained intron and AltORF
proteins) predominantly found in A431 could potentially have
stronger immunogenicity due to their distinct long stretches of
polypeptide sequence. We demonstrate that the here presented
workflow can provide robust data in many proteogenomics
applications such as discovery of unannotated coding regions in
normal tissues and of mutant peptides specific to cancer cells.

Results
Development of full pI range HiRIEF LC-MS. To increase the
potential for discovery of unannotated coding regions in a pro-
teogenomics experiment, in-depth analysis of the proteome is
needed. We employed immobilized pH gradient (IPG) strips that
cover the full peptide pI range to enable the exploration of the
entire tryptic peptidome (Fig. 1a). As a model system, we used the
A431 cell line (TMT10-plex labeled peptides of a time course
treatment with an EGFR inhibitor, Supplementary Figure 1). The
previously established1 pI range 3.7–4.9 allowed the identification
of 93,318 unique peptides when searching against the canonical
database. The newly employed pI range 3–10 added 75,825
unique peptides to the results, and further addition of pI ranges
6–9 and 6–11, an additional 34,497 unique peptides (Supple-
mentary Figure 2). Since the combination of pI ranges 3.7–4.9
and 3–10 achieved the bulk of the analytical depth, we applied
only these two strips in a subsequent analysis of the normal tissue
samples (Supplementary Figure 1). A total of 203,640 and 169,471
peptides were identified (peptide level FDR 1%) from the A431
and normal tissues experiments, respectively, corresponding to
10,166 and 10,889 genes (protein-level FDR 1%) (Table 1).
Combining peptides identified from the two experiments, we
covered half of the fully tryptic human peptides existing in the
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PeptideAtlas repository (release 2017–01) and added 21,619
human peptides not present in that repository (Fig. 1b).

To benchmark our data, we compared these results to those
from corresponding tissues (placenta, kidney, liver, tonsil, and
testis) in the Wilhelm et al. draft proteome work21 by re-
analyzing their raw data with the same search pipeline (MSGF+,
Percolator, with peptide and protein-level FDR 1%) as employed
for our data set. We identified 56% more peptides (169,471 vs.
108,402) and 24% more genes with protein products (10,889 vs.
8796), and consequently, protein identifications were generally
backed up by larger numbers of unique peptides (i.e., 90 vs. 75%
of protein identifications supported by at least 2 peptides)
(Supplementary Figure 3, which includes MS run time compar-
ison). Additionally, we performed a simple test and verified that
not a single peptide from olfactory receptor proteins could be
found in either of our data sets22.

The obtained experimental peptide pI data permitted the
upgrade of the PredpI algorithm1 with updated pK constants

(available in Supplementary Data 1) now valid for the full pI
range. Applying PredpI prediction to peptide sequences from an
in silico tryptic digestion of the Ensembl75 human protein
database enabled the alignment of the theoretical tryptic peptide
distribution over the full pI range with the experimental one
(Fig. 1a). The low experimental yield of peptides with pI ~8.5
could perhaps be explained by polyacrylamide gel instability in
the most alkaline range23. For the experimental distribution, only
tightly focused peptides (i.e., present in only one or two
consecutive fractions, on average 80% of all peptides in the used
IPG ranges, Supplementary Figure 4) were considered. This
tryptic-peptide pI distribution appears to be ubiquitous to all
organisms (Supplementary Figure 5) and based on the acid-base
chemistry of amino acid residues and the similar distribution of
amino acid frequencies in all species24. Peptide fractionation was
reproducible across samples and IPG ranges (Supplementary
Figure 6) and the unique peptide yield of pI fractions was
characteristic to each IPG strip used (Supplementary Figure 7).
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Fig. 1 Full pI range (3–10) HiRIEF provides broad peptidome and proteome coverage. a The top panel shows the comparison between experimental and
theoretical pI distributions of TMT-labeled peptides from the A431 cell line data set. The six major peaks in the theoretical pI distribution represent groups
of peptides with characteristic amino acid compositions. For example, peptides with a higher number of Asp (D) and Glu (E) residues than the total number
of Lys (K), Arg (R), and His (H) will have a pI between 3.5 and 5. The middle panel shows the accuracy of pI prediction by the PredpI algorithm1 across the
full pI range. The bottom panel shows the experimental pI ranges of the four IPG strips employed in this study. Nominal pH ranges are indicated on the left
side with actual pH ranges next to the bars. See Supplementary Figures 4, 6, and 7 for pI fraction resolution, reproducibility and yield. b Overlap of identified
fully tryptic human peptides (at protein level FDR 1%) between the A431 cells data set, the normal tissues data set and the public peptide repository
PeptideAtlas (release 2017-01)
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A three-stage proteogenomics workflow. To tackle the high rate
of false discoveries in proteogenomics findings while taking into
account the recent recommendations in the field3, 19, we devel-
oped IPAW, a proteogenomics workflow to identify and curate
novel peptides from undiscovered protein-coding loci as well as
variant peptides coded by nsSNPs and mutations (Fig. 2). The
workflow contains three major stages: discovery, curation, and
validation. To illustrate the discovery stage, we carried out two
types of proteogenomics searches, the VarDB concatenated
database search (a customized database search strategy applicable
for any high-resolution LC-MS/MS data) (type 1 search in Fig. 2)
and the 6FT search, which uses peptide pI values to restrict
database size (applicable if pI-based fractionation is used)1, 25

(type 2 search in Fig. 2). It is also possible to use any customized
databases generated by external tools14–17. All MS/MS spectra
were searched by MS-GF+26, and post processed with Perco-
lator27 under the Galaxy platform using a separate target-decoy
strategy. The human VarDB consists of peptides originating from
previously annotated nsSNPs, somatic mutations, pseudogenes,
and long non-coding RNAs, forming a supplementary set of
peptides to the canonical proteome. Customized database sear-
ches have the advantage over 6FT searches in that they allow
detection of splice-junction-spanning novel peptides and have a
relatively smaller search space, while the 6FT searches allow
unbiased screening of protein-coding sequences in the whole
genome. The discovery stage outputs a list of candidate novel and
SAAV peptides with 1% class-specific FDR3.

At the curation stage, some of the candidate novel peptides are
removed. First, peptides are processed through BLASTP28 to
remove exact matches to the known protein database, which
combined known human proteins from the Uniprot reference
proteome (UP000005640), Ensembl 83, Refseq, and Gencode v24.
Thereafter, the subset of novel and SAAV peptides with single
amino acid changes compared to known peptides are curated by a
tool, SpectrumAI, which only keeps those peptides whose
MS2 spectrum contains product ions directly flanking both sides
of the substituted residue. We then use BLAT29 to remove peptides
mapping to multiple locations in the genome. Even though these

peptides are as experimentally valid as other peptides, we decided
not to prioritize them because of the increased difficulty in
assigning orthogonal support and in drawing biological conclu-
sions from proteins with uncertain genomic locations.

In the validation stage, curated novel peptides are assessed by
distribution plots of intrinsic properties such as delta pI (pI
difference between experimental and predicted pI values),
precursor mass error, and match score. Finally, the curated novel
peptides are examined in the context of their genomic positions by
cross validation against multiple levels of orthogonal data. These
levels include: (i) RNA-seq acquired from the same samples, (ii)
public domain Ribo-seq for support of alternative translation
initiation sites (TIS)30, 31, (iii) public domain CAGE data for
evidence of transcription start sites (TSS)32, (iv) vertebrate
conservation (PhyloP)33, (v) codon substitution frequency (Phy-
loCSF)34, which predicts coding potential of DNA sequences based
on codon composition and substitution frequency by comparative
genomic analysis, and (vi) MS data from the two draft proteome
publications21, 35. It should be noted that the validation stage does
not use any of these orthogonal data as filtering criteria to discard
proteogenomic findings, but only provides a means for users to
rank candidate novel peptides based on orthogonal support.

SpectrumAI verifies single amino acid substitutions. Novel and
SAAV peptides were output by 1% class-specific FDR3, which is
essential but insufficient to guarantee a de facto 1% false dis-
covery rate. In practice, unexpected isobaric modifications or
amino acids reshuffles in known peptides could be mistakenly
identified as single-substitution peptides, since the identification
of peptide sequence is a pattern matching process, where the
search engine only guarantees the best sequence match available
in the database. Due to this uncertainty, novel peptides with
single substitution were discarded in a recent proteogenomics
study20. Nonetheless, manual inspection of MS/MS spectra
should allow for distinction between correct and incorrect
assignments. However, this is a laborious process and therefore
inapplicable to large data sets. A previously published tool,
CAMV36, allows computer-aided manual inspection on peptide
spectra matches. Although it reduces workload of manual vali-
dation, it still needs a mass spectrometry expert to make the final
call to accept or reject. CAMV is more suitable to validate a
limited list of peptides. For peptides with single amino acid
changes, we developed a tool, SpectrumAI, which automatically
eliminates incorrect peptides by inspecting MS/MS spectra for
flanking product ions supporting the amino acid substitution. We
demonstrated the ability of SpectrumAI to eliminate incorrect
single substitution peptide identifications via (i) analysis of the
distribution of precursor mass error, (ii) orthogonal evidence at
DNA and RNA level, and (iii) validation using the corresponding
synthetic peptides.

In the A431 data set, 4492 SAAV peptides were identified at 1%
class-specific FDR. Of these, 1332 have MS/MS ions flanking the
substitution and thus passed SpectrumAI curation (Supplemen-
tary Data 2). Comparing the distribution of precursor mass
errors, curated peptides showed a distribution similar to that of
identified known peptides, whereas discarded peptides did not
(Fig. 3a). Importantly, our observation that search engine score
(SpecEvalue) distributions of curated peptides and discarded
peptides were similar and indicates the need for independent
evidence in addition to strict FDR control, which itself depends
primarily on search engine score (Supplementary Figure 8).
Further, we validated the SAAV peptides using genomics and
transcriptomics data. About 44% of peptides passing SpectrumAI
curation were supported either at RNA or DNA level, whereas
only 3% of discarded peptides had such support (Fig. 3b). We

Table 1 Identification statistics from the standard proteome
search

PSMs Unique
peptides

Proteins Gene
symbols

(1% FDR) (1% FDR) (1% FDR) (1% FDR)

A431 data set
IPG3–10 367,570 141,071 9816 9425
IPG37–49 314,305 93,329 9679 9236
IPG6–9 318,446 72,511 8584 8561
IPG6–11 263,653 76,326 9056 9134
Total 1,263,974 203,640 11,171 10,166
Normal tissues data set
set1 IPG3–10 374,966 118,929 10,096 9621
set1
IPG37–49

228,675 63,990 9025 8817

set1 total 603,641 137,134 10,339 9869
set2 IPG3–10 476,966 110,783 9660 9289
set2
IPG37–49

188,988 74,981 9903 9700

set2 total 665,954 135,987 10,519 10,167
Total 1,269,595 169,471 11,471 10,889

Numbers of gene symbols (with protein products), proteins, peptides, and PSMs identified from
all the IPG-strip ranges employed on A431 cells and normal tissues (placenta, liver, kidney,
tonsil, liver, and testis) by searching the human Ensembl75 proteome database. See
Supplementary Fig. 1 for sample layout in the two data sets and overlap in identification between
IPG ranges
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compared the frequency of amino acid changes of the 735 curated
SAAVs lacking orthogonal support with that of the 426 supported
both at DNA and RNA level, and observed that certain types of
amino acid changes (the top one being glutamine to glutamic
acid) were over-represented (Supplementary Figure 9). A
plausible explanation could be that some curated SAAV peptides
are chemical artifacts, arising by, e.g., deamidation.

Finally, we selected 30 peptides with single amino acid
substitution from the discovery stage (of which 19 passed
SpectrumAI curation, whereas 11 did not), and purchased the
corresponding synthetic peptides for validation. Manual inspec-
tion of the mirror plots (Fig. 3c and Supplementary Data 3, pp.
1–30) confirmed the 19 SpectrumAI curated peptides to be
correct, and the 11 discarded ones to be incorrect.

MS spectra
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Novel peptides from unannotated protein-coding loci. IPAW
was applied to discover unannotated protein-coding loci in the
human genome using both the A431 cells data set and the normal
tissues data set. The combined result of 6FT and VarDB searches
(Supplementary Figure 10), at the discovery stage, yielded 710 and
295 novel peptides (class-specific FDR 1%) in A431 cells and
normal tissues, respectively, of which 426 and 155 passed the
curation stage (Supplementary Figure 11 and Supplementary Data 4
and 5). Precursor mass error, SpecEvalue and delta pI distributions
of these curated peptides were assessed in comparison to those of
known canonical peptides (Supplementary Figures 12–14). Novel
peptides within genomic proximity of 10 kb were grouped and
considered to belong to the same locus. Thus, we identified 374 and
140 unknown protein-coding genomic loci in A431 cells and nor-
mal tissues, respectively, of which 42 and 13 were supported by two
or more peptides (Fig. 4a and Supplementary Figure 15a). Novel
peptides were categorized into eight different classes: pseudogene, 5′
un-translated region (UTR), intronic, AltORF, ncRNA, exon
extension, intergenic, and 3′ UTR (Fig. 4b and Supplementary
Figure 15b) and were found in all chromosomes across the genome
(Fig. 4c and Supplementary Figure 15c).

The largest group of novel peptides identified belonged to
pseudogenes, which, given the previous observation of thousands
of pseudogenes found expressed at RNA level in cancer37, is maybe
to be expected, particularly in cancer cell lines such as A431. There
were 30 novel peptides identified from sORFs (the majority being
AltORFs) in known coding transcripts after examination of the
genomic context. A mass spectrometry study performed by Slavoff
et al. identified 90 sORF-encoded peptides in human cells11. Four
peptides were common between our list and their study despite the
fact that they used a different cell line (human leukemia cell line
K562) and workflow. In our present study, regarding protein N-
terminal extensions, 45 out of 50 cases used non-AUG near-
cognate translation start codons, the majority (30 cases) of which
was within a strong Kozak motif (Supplementary Data 4). A non-
AUG TIS within a strong (or occasionally moderate) but not
optimal Kozak sequence may be characteristic of protein N-
terminal extensions. The usage of non-AUG start codons is
corroborated by the work of Fritsch et al., a ribosomal footprinting-
based study, which reported that only 1% of protein N-terminal
extensions used canonical AUG start codons30. Novel peptides
belonging to AltORFs and protein N-terminal extensions showed
stronger support from orthogonal data compared to novel peptides
from other groups (Fig. 4d and Supplementary Figure 15d).
Although most peptides mapping to pseudogenes in the current
study lacked RNA-seq read coverage, external evidence from
ribosome profiling and CAGE was more supportive. Moreover,
conservation scores of pseudogenes/non-coding RNAs with novel
peptides identified were significantly higher than those of 1000
randomly selected pseudogenes/non-coding RNAs (Fig. 4e).

Since signal peptides are usually located in the N termini of
proteins, we tested the hypothesis of whether an N-terminal
extension could alter protein subcellular localization38 by using
the TargetP algorithm (v1.1)39 to predict subcellular localization.
Three of the discovered protein N-terminal extensions, in genes

CDK16 (identified by 2 peptides), NPLOC4 (2 peptides), and
THOP1 (2 peptides), showed a high likelihood of being targeted
to the mitochondria while the respective canonical proteins have
cytosolic or nuclear location (Supplementary Data 6). This result
suggests that, for certain genes, the existence of an upstream TIS
in the same reading frame as the canonical AUG start site may be
used to submit the subcellular location of the protein products to
control at the translation level.

Other types of events found include protein products of exon
extensions and intron retentions. Interesting examples of the
latter are the translations of alternatively spliced (or miss-spliced)
mRNAs from EGFR (identified by 2 peptides) and AP1S1
(2 peptides). The resulting polypeptide products contain part of
the canonical N terminus followed by a completely new intron-
derived C-terminal sequence, 181 and 42 amino acids long for
EGFR and AP1S1, respectively. It is unclear whether such
observations are errors of splicing machinery or a functional
cellular response to stress conditions.

Finally, to further validate the novel peptides, 100 synthetic
peptides in addition to the 30 mentioned above were purchased
and analyzed. Out of these 100 synthetic peptides, 2 failed to
generate good fragmentation spectra, 7 demonstrated their
endogenous counterparts to be incorrect identifications upon
manual inspection, and the remaining 91 novel peptides were
successfully validated (Supplementary Data 3, pp. 31–128). The
significant number (7 out of 98) of incorrect novel peptides
highlights the need for further efforts into curation/validation of
findings in the proteogenomics field.

For submission to UniProt, 40 unannotated coding loci with
multiple peptides that could be linked to in-frame initiation start
codons were included (Supplementary Data 7, with selected
examples showing each event type in Fig. 5).

TMT-based quantitative proteogenomics analysis. Tissue spe-
cificity or regulation upon stimuli can hint at functional roles of
the discovered proteins. Some pseudogene proteins (e.g., those
with GAPDH gene ancestry) showed broad tissue expression
similarly to that of their parental gene (Supplementary Data 8).
Others showed protein expression prevalent to particular tissues.
For example, pseudogene proteins TATDN2P1 (identified and
quantified by 2 peptides, 3 PSMs) and UBE2L5P (2 peptides, 6
PSMs) were specific to testis, whereas their parental gene proteins
UBE2L3 and TATDN2 were broadly expressed on all measured
tissues (Fig. 6 and Supplementary Data 8), suggesting indepen-
dent functions for these two “pseudogenes” in testis. RNA-seq
reads for both these pseudogenes support their testis specificity
(Fig. 6d and Supplementary Data 5). Additionally, several novel
peptides with placenta specificity were found from two lncRNAs,
i.e., TINCR (also known as PLAC2 - placenta specific 2, which was
identified by 1 peptide, 1 PSM) and CTD-2620I22.3
(ENSG00000267943, 4 peptides, 5 PSMs) (Figs. 5b and 6a, and
Supplementary Data 8), both also showing placenta specificity at
transcript level (Supplementary Figure 16). TINCR is thought to
regulate differentiation in epidermal tissue, and our present result

Fig. 2 A proteogenomics workflow to discover, curate, and validate novel and SAAV peptides. The pipeline consists of three major stages: discovery, curation,
and validation. The discovery stage is performed with MS-GF+ using two database strategies. Type 1 search was performed against a single database
consisting of known peptides concatenated with variant peptides. Type 2 search is enabled by HiRIEF peptide fractionation and was performed against pI-
restricted databases of tryptic peptides generated from a six-frame translation (6FT) of the human genome. The discovery stage outputs 1% class-specific
FDR for novel and SAAV peptides. In the curation stage, candidate SAAV peptides are curated by SpectrumAI. The novelty of candidate novel peptides from
the discovery stage is ensured by BLASTP analysis against known protein databases including Uniprot reference proteome (with isoforms), Ensembl human
protein database v83, RefSeq and Gencode v24, and the subset of novel peptides with single amino acid substitution are also curated by SpectrumAI. In the
validation stage, quality control plots such as delta pI, precursor mass error, and search engine score distribution are made. In addition, curated novel peptides
are evaluated for orthogonal data support in, e.g., RNA-seq data, ribosome profiling and CAGE data, conservation and coding potential prediction

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03311-y

6 NATURE COMMUNICATIONS |  (2018) 9:903 | DOI: 10.1038/s41467-018-03311-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


suggests that such molecular function is not restricted to the RNA
product of the gene but may extend also to the protein product.

Upon EGFR inhibition of A431 cells, some of the discovered
pseudogene proteins, e.g., RBBP4P1 (identified and quantified
with 3 peptides, 8 PSMs), followed the same quantitative pattern
as the parent gene proteins (Supplementary Data 8). There were
also examples of pseudogenes, such as HSPA8P1 (3 peptides, 10
PSMs) and ANAPC1P1 (1 peptide, 2 PSMs, out of only two
unique theoretical tryptic peptides differing from the canonical
parent ANAPC1), showing very distinct quantitative patterns
from their parent genes, suggesting that, in these latter cases, the
pseudogenes possess an independent transcriptional control. We
investigated whether, in general, protein-level regulation between
pseudogenes and the respective parent genes correlated. Out of
242 pseudogene-parent gene pairs (median correlation coefficient
0.26), 20 correlated significantly (test of association, p value
<0.01), 16 were positively correlated (mean Pearson correlation
0.88), and 4 were negatively correlated (mean Pearson correlation
−0.79) (Supplementary Figure 17).

Some AltORF proteins such as Alt-HNRNPUL2 (identified and
quantified with 3 peptides, 7 PSMs) and Alt-DRAP1 (4 peptides, 14

PSMs), resulting from upstream translation were found in the
A431 data set to be downregulated 24 h after treatment, whereas
their canonical counterparts showed slight upregulation
(HNRNPUL2) or no clear regulation (DRAP1) (Fig. 5c and
Supplementary Data 8). Similarly, N-terminal extended proteins
resulting from in-frame upstream TIS such as those from RAB12 (2
peptides, 2 PSMs) and WDR26 (1 peptide, 4 PSMs, from a UTR
region which accommodates only one theoretical tryptic peptide of
MS-amenable size) showed downregulation after treatment while
their respective canonical proteins remained constant. Transla-
tional competition between upstream TIS and canonical TISs has
been observed previously, in accordance to the “leaky scanning”
model of translation38. Here, we observed four cases of usage of
upstream TIS decreased by the EGFR inhibition treatment.

Discussion
The majority of proteomics studies still neglects sequence variants
and proteins arising from unannotated coding regions because
only reference proteome databases are searched. The emerging
field of proteogenomics allows the identification of previously
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unknown proteins and protein variants, a process which should
ultimately lead to complete genome annotation and improved
understanding of proteome biology. In this context, we extended
the HiRIEF method to enable detection of peptides across the full
pI range of the tryptic peptidome, eliminating the previous bias to
acidic peptides. Moreover, a proteogenomics workflow, IPAW, was
developed to make use of the improved HiRIEF MS data in the
6FT search strategy. IPAW is also applicable to widely used con-
catenated database search strategies and focuses on curation and
validation of putative novel peptides using multiple independent
lines of evidence to achieve higher sensitivity and reliability.

One important application of proteogenomics is to identify
protein variants derived from cancer-specific mutations40–42.
Despite recent efforts, this area has been troublesome due to a
high risk of false-positive identifications. Class-specific FDR3

based on search engine scores is required to control error rates in
novel peptide findings but, as we show here, it is by itself insuf-
ficient because some high-scoring identifications with apparently
good matching fragmentation spectra actually turned out to be
incorrect (Fig. 3c and Supplementary Data 3). Addressing this
problem, SpectrumAI was shown here to be capable of efficiently
eliminating incorrectly identified single substituted peptides with
high accuracy. Compared to a previous computer-aided spectrum
inspection program, CAMV36, SpectrumAI was specifically

designed to curate single substitution peptides with high accuracy
without the need for manual inspection. Although it is possible to
reduce the risk of false positives by including in the search space
only variant peptides from nsSNPs or mutations identified by
genomics or transcriptomics, incorrectly called SNPs or muta-
tions from sequencing data could propagate into false peptide
identifications and, conversely, false negatives due to low RNAseq
read counts are also possible. The problem could worsen when
generating a database by combining a large list of non-
synonymous variants from multiple sequenced samples. Addi-
tonally, SpectrumAI can be used to curate proteomics data and
provide false-positive control on single substitution peptide
identifications for studies that lack corresponding sequencing
data. SpectrumAI is limited to validate peptides with single amino
acid changes, and not designed for peptides with inserted or
deleted amino acids. With that said, we believe it will become
particularly useful in proteogenomics studies aiming to develop
immunotherapy against cancer in which identification of cancer-
specific mutations at protein level is crucial to discover potential
neoantigens43.

Further, we here provide the proteogenomics tools (see “Data
and Software availability” in the “Methods” section) to assist users
in validation of findings by orthogonal data. Four major types of
data (RNA-seq, conservation, Ribo-seq, and CAGE) can be useful
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to prioritize the mass spectrometry findings. These data should be
used with caution and considered under appropriate context. For
instance, Ribo-seq data are particularly useful to validate discovered
upstream translation initiation events, but it is not conclusive

translation evidence for non-coding transcripts or intergenic
sequences. Conservation between species is useful to evaluate novel
peptides found in intergenic regions, but not for peptides over-
lapping with the CDS region. CAGE data only indicates
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transcription start sites. Finally, RNA-seq data can provide addi-
tional transcriptional expression evidence for translation of inter-
genic or intronic sequences, but not for protein N-terminal
extensions or AltORF proteins overlapping with known coding
regions.

IPAW enabled confident discovery of proteins from suppo-
sedly non-coding genomic regions such as ncRNAs (pseudo-
genes and lncRNAs) and UTRs. Recently, a bioinformatic study
which re-analyzed ribosome profiling data indicated that ~40%
of lncRNAs and pseudogenes are translated, and that ~35% of
mRNAs are translated upstream of the primary protein-coding
region (uORFs)44. Ribosomal binding is indicative of translation
initiation but not ultimate evidence of encoded peptides. In fact,
Guttman et al. stated that ribosomal occupancy is not necessarily
equivalent to translation and that the majority of lncRNAs do
not encode proteins45. Similarly, Banfai et al. analyzed MS and
transcriptomics data in two human cell lines and showed that
long non-coding RNAs were rarely translated46. This may explain
why we identified relatively few peptides encoded from lncRNAs.
Some pseudogenes have been shown to play an active role in
cancer development and progression, though in most cases, only
RNA transcripts have been considered active molecules37, 47, 48.
Evidence pointing to translation of pseudogenes (Figs. 4 and 6)
suggests that, at least for some of them, molecular function could
actually be carried out by their protein products, which in fact has
been previously shown for the NANOGP8 pseudogene49. It was
somewhat surprising that a significantly higher number of pseu-
dogene peptides was found in A431 cells than in normal tissues
(266 vs. 104 peptides, respectively), and that a similar situation
occurs for AltORF and N-terminal extension peptides (29 vs. 0 and
56 vs. 13 peptides, respectively) (Supplementary Data 4 and 5), all
the while considering that the analytical depth of the two data sets
was similar (Fig. 1b). This may suggest that cancer cells are more
prone to produce these unusual proteins, but further studies are
needed to ascertain this hypothesis.

There is emerging evidence for the translation of short open
reading frames (sORFs)4, many of them upstream ORFs. Fritsch
et al. used ribosomal footprinting to probe the genome for
undiscovered uORFs and N-terminal protein extensions, and
identified ~3000 previously unannotated uORFs, 546 N-terminal
protein extensions, and more than 1000 AltORFs30. In our pre-
sent study, 56 peptides were identified from N-terminal protein
extensions and 29 peptides from AltORF proteins in A431 cells
(Supplementary Data 4). A common observation between these
proteomics studies and ribosome profiling studies is that N-
terminal protein extensions and AltORF proteins are mostly
originating from non-AUG near-cognate start codons. Moreover,
our results indicate that most of them are within a strong Kozak
sequence, suggesting that a near-cognate translation initiation site
(TIS) within a strong Kozak sequence may be prerequisite for
uORF translation. Observation of these events by MS is less fre-
quent than by ribosome profiling. The reason for this could be
that either the ribosome skips over these non-AUG near-cognate
start sites or the translation does occur but with low efficiency,
leading to low abundant polypeptides difficult to detect by MS. It
should be noted that, since AltORF proteins and N-terminally
extended proteins arise from the same transcript as their canonical

counterparts, transcriptomics technologies are blind to both, and
therefore these events can only be discovered by proteogenomics.

“Retained intron” proteins were yet another type of interesting
findings. These result from alternative splicing of pre-mRNAs,
possibly even splicing abnormalities due to some form of spliceo-
some impairment. The resulting polypeptide typically kept the
native protein’s N-terminal segment and combined it with a com-
pletely new C terminus derived from the intron. How “retained
intron” proteins such as the ones found here for the EGFR and
AP1S1 genes (Fig. 5e and Supplementary Data 7, pp. 18) escape
mRNA surveillance mechanisms such as nonsense-mediated mRNA
decay (NMD) remains to be investigated. Nonetheless, because of
their intron-derived C terminus with rather unusual amino acid
sequence, these proteins, if proved to be cancer specific events, could
perhaps elicit stronger immunogenic response than neoantigens
from single amino acid changes. In this respect, proteins from
retained introns are theoretically on par with AltORF proteins
derived from non-canonical reading frame translations50–52.

In summary, we have developed IPAW, a comprehensive
proteogenomics workflow able to curate and validate various
types of novel peptides, and we have applied it to two in-depth
proteomics data sets acquired from an extended HiRIEF method.
The curation and validation workflow is compatible with any
search strategies such as pI-restricted 6FT searches, or con-
catenated database searches using VarDB or databases derived
from sequencing data. Moreover, SpectrumAI is provided to
curate single substitution peptides by automatic examination of
MS2 spectra. And further, with a focus on validation, we provide
a set of tools for users to search orthogonal support of putative
novel peptides in conservation data, RNA-seq data, CAGE, or
ribosome profiling data. The here described methods should
assist the proteogenomics field to reliably integrate protein-level
information into genome annotation and furthermore should be
particularly useful in understanding the cancer proteome and
may lead to the discovery of therapeutic targets against cancer.

Methods
Uppsala University normal tissue samples ethical permits. Human tissue
samples were collected under individual informed consent and handled in accor-
dance with Swedish laws, and obtained from the Department of Pathology,
Uppsala University Hospital, Uppsala, Sweden, as part of the sample collection
governed by the Uppsala Biobank (http://www.uppsalabiobank.uu.se/en/). All
human tissue samples were anonymized and used in accordance with approval and
advisory report from the Uppsala Ethical Review Board (Reference #2002-577,
2005-338 and 2007-159 (protein) and #2011-473 (RNA)).

Cell lysis, protein extraction, digestion, and TMT labeling. The A431 cells
(DSMZ #ACC-91, tested for, and found free of, Mycoplasma contamination) and
normal tissues were lysed in SDS-lysis buffer (4% (w/v) SDS, 25 mM HEPES pH
7.6, 1 mM DTT). Lysates were then heated at 95 °C for 5 min in a thermomixer,
and were sonicated with a probe sonicator (Bandelin Sonopuls, Buch and Holm)
twice using 50% duty cycle, 50% power for 15 s, in order to shear DNA. Samples
were centrifuged at 14,000 × g to remove cell debris, the supernatant was collected
and protein concentration estimated by the DC-protein assay (BioRad) following
the manufacturer’s instructions. From each sample, 250 µg of total protein were
taken and processed according to the FASP (Filter aided sample preparation53)
protocol with slight modifications. Briefly, the filter units (Nanosep Centrifugal
Devices with Omega Membrane, 10 K, blue, P/N OD010C34, from Pall Corpora-
tion) were first washed with 200 µl of Milli-Q water (Millipore Corporation) by
centrifugation at 14,000 × g for 15 min, after which the sample, previously diluted
in 200 µl of urea buffer (8M urea, 1 mM dithiothreitol, in 25 mM HEPES pH 7.6),

Fig. 5 Examples of unannotated protein-coding regions discovered. Gray lines indicate introns, black thick lines are UTRs, colored boxes are coding regions
(color indicates reading frame). Novel peptides are shown as red boxes unless they are in different reading frames. a Pseudogene TATDN2P1 protein
identified with two novel peptides linked in the same open reading frame. b LncRNA ENSG00000267943 protein identified with four novel peptides. c An
alternative reading frame protein of the DRAP1 gene was identified with four novel peptides. The color of exons and novel peptides indicates reading frame.
Exons and peptides in same colors (darker shade for peptides) are in the same reading frame. d Alternative protein N terminus for gene C1orf122 was
identified with two novel peptides. e Two novel peptides serving as evidence for the existence of “retained intron” translation for the EGFR gene. f Extended
exon protein variant of gene MPRIP was identified with three novel peptides
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was loaded. After centrifugation and discarding of the flow through, there followed
a wash with 200 µl of urea buffer. Urea buffer with 25 mM iodoacetamide instead
of dithiothreitol was then added and the filter units were incubated with shaking
for 10 min at room temperature. After centrifugation and flow-through discard,
two washes were done with 200 µl of diluted urea buffer (4M urea in 25 mM
HEPES pH 7.6). After discarding the flow-through once more, 100 µl of Lys-C
buffer (0.5 M urea, 50 mM HEPES, Lys-C protease from Thermo Pierce at enzyme
to protein ratio 1:50 in mass) was added and the filter units were incubated with
mild shaking at 37 °C for 3 h. Without centrifuging, 100 µl of trypsin buffer (50
mM HEPES, trypsin from Thermo Pierce at enzyme to protein ratio 1:50 in mass)
was added on to the filter units and incubation proceeded with mild shaking at 37 °
C for 16 h. Normal tissues were only digested with trypsin (not with Lys-C)
overnight. The peptides were collected by centrifugation in two steps (50 µl of
Milli-Q water being added before the second centrifugation) to improve yield.
Peptide mixtures were transferred to fresh tubes and concentrations were estimated
by the DC-protein assay (BioRad). From each sample, 100 µg of peptides were
labeled with TMT10plex (Thermo Fisher Scientific) according to the manu-
facturer’s instructions.

High-resolution isoelectric focusing (HiRIEF) separation. After pooling the
samples that belonged together into each TMT set, each TMT set was cleaned by
strong cation exchange solid phase extraction (SCX-SPE, Phenomenex Strata-X-C,
P/N 8B-S029-TAK). After drying in a SpeedVac (Thermo SPD111V with refri-
gerated vapor trap RVT400), the equivalent to 400 µg of peptides of each sample
was dissolved in 250 µl of 8 M urea, 1% pharmalyte (broad range pH 3–10, GE
Healthcare, P/N 17-0456-01), and this solution was used to rehydrate the IPG dry
strip (linear pH 3–10, 24 cm, GE Healthcare, P/N 17-6002-44) overnight. Focusing
in IPG strips 6–9 and 6–11 was done in similar manner. For focusing in the 3.7–4.9
IPG strip, a sample bridge (with pH 3.7) was employed. In this case, 400 µg of
peptides of each sample were dissolved in 150 µl of 8 M urea, and this solution was
used to rehydrate the sample gel bridge overnight. The prototype narrow IPG strip
3.7–4.9 was rehydrated in 250 µl of 8 M urea, 1% pharmalyte (2.5–5 pH range, GE
Healthcare, P/N 17–0451–01). Focusing was done on an Ettan IPGphor 3 system
(GE Healthcare) ramping up the voltage to 500 V in 1 h, then to 2000 V in two

more hours, and finally to 8000 V in six more hours, after which voltage was held at
8000 V for additional 20 h or until 150 kVh were reached. After focusing was
complete, a well former with 72 wells was applied onto each strip, and liquid-
handling robotics (slightly modified Ettan Digester from GE Healthcare, which in
turn is a modified Gilson liquid handler 215), using three rounds of different
solvents (i. milliQ water, ii. 35% acetonitrile, and iii. 35% acetonitrile, 0.1% formic
acid), added 50 µl of solvent to each well and transferred the 72 fractions into a
microtiter plate (96 wells, PP, V-bottom, Greiner P/N 651201), which was then
dried in a SpeedVac.

LC-MS/MS analysis. For each LC-MS run of a HiRIEF fraction, the auto sampler
(Ultimate 3000 RSLC system, Thermo Scientific Dionex) dispensed 15 µl of mobile
phase A (95% water, 5% dimethylsulfoxide (DMSO), 0.1% formic acid) into the
corresponding well of the microtiter plate (96 well V-bottom, polypropylene,
Greiner), mixed by aspirating/dispensing 10 µl ten times, and finally injected 7 µl
into a C18 guard desalting column (Acclaim pepmap 100, 75 µm × 2 cm, nano-
Viper, Thermo). After 5 min of flow at 5 µl min−1 with the loading pump, the 10-
port valve switched to analysis mode in which the NC pump provided a flow of
250 nL min−1 through the guard column. The slightly concave curved gradient
(curve 6 in the Chromeleon software) then proceeded from 3% mobile phase B
(90% acetonitrile, 5% DMSO, 5% water, 0.1% formic acid) to 45% B in 50 min (65
min for normal tissues) followed by wash at 99% B and re-equilibration. Total LC-
MS run time was 74 min (89 min for normal tissues). We used a nano-EASY-Spray
column (pepmap RSLC, C18, 2 µm bead size, 100 Å, 75 µm internal diameter, 50
cm long, Thermo) on the nano electrospray ionization (NSI) EASY-Spray source
(Thermo) at 60 °C. Online LC-MS was performed using a hybrid Q-Exactive mass
spectrometer (Thermo Scientific). FTMS master scans with 70,000 resolution (and
mass range 300–1700 m/z) were followed by data-dependent MS/MS (35,000
resolution) on the top 5 ions using higher energy collision dissociation (HCD) at
30% normalized collision energy. Precursors were isolated with a 2 m/z window.
Automatic gain control (AGC) targets were 1e6 for MS1 and 1e5 for MS2. Max-
imum injection times were 100 ms for MS1 and 150 ms for MS2. The entire duty
cycle lasted ~1.5 s. Dynamic exclusion was used with 60 s duration. Precursors with
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unassigned charge state or charge state 1 were excluded. An underfill ratio of 1%
was used.

Standard proteomics reference database search. All MS/MS spectra were
searched by MSGF+26, and post processed with Percolator27 under the Galaxy
platform using a separate target-decoy strategy. Tools have been used from or
made available to the galaxy toolshed repository of the Galaxy-P project (https://
github.com/galaxyproteomics/tools-galaxyp). The reference databases used were
the human protein database of Ensembl 75. We set the precursor mass tolerance to
10 ppm; carbamidomethylation on cysteine and TMT-10plex on lysine and N
terminus as fixed modifications; and oxidation of methionine as variable mod-
ification. Quantitation of TMT-10plex reporter ions was done using an integration
window tolerance of 10 ppm. PSMs and peptides were filtered at 1% FDR (peptide
level) and additionally proteins and gene protein products were filtered at 1% FDR
(protein level) using the “picked” protein FDR method54.

Conversion of HiRIEF fraction numbers to experimental pI. The IPG3–10 strip
was calibrated using fluorescently labeled pI markers. Thereby IPG3–10 fraction
numbers can be converted to experimental pI (exppi) values using the linear
equation

IPG3�10 : y ¼ 0:0676x þ 3:5478 ð1Þ

(where y is exppi and x is the IPG3-10 fraction number).
Similarly, linear equations were derived for the other HiRIEF ranges employed

in this study, as follows:

IPG3:7�4:9 : y ¼ 0:0174x þ 3:5959 ð2Þ

IPG6�9 : y ¼ 0:0336x þ 6:1159 ð3Þ

IPG6�11 : y ¼ �0:0762x þ 10:3936 ð4Þ

Note that IPG6–11 exceptionally has the lower fraction numbers at the alkaline
end, whereas all other ranges have lower fraction numbers at the acidic end of the
strip.

PredpI algorithm updated to perform on the full pI range. A random subset of
tightly focused peptides (10,000 taken from the A431 data set, all with Percolator
PEP—posterior error probability—of less than 0.001) was used to train the PredpI
algorithm in the full pI range. After testing the performance of prediction with the
new sets of pK constants using a test set (20,000 tightly focused peptides, different
peptides than those in the training set but also with PEP < 0.001 and also from the
A431 data set) the updated PredpI was employed in the creation of pI-restricted
databases for the 6FT proteogenomics. The updated pK constants are supplied as
Supplementary Data 1 and can be used with the PredpI algorithm previously
published in Branca et al.1.

pI-restricted databases from 6FT of the human genome. Human genome
sequences build 37 (hg19) were downloaded from UCSC genome browser.
Nucleotide sequences for each chromosome were in silico translated in six reading
frames and in silico digested into peptides following trypsin rules (zero missed
cleavages allowed, no cleaving on N-terminal side of proline residues). The python
script (sixframetranslation.py) is available online at https://github.com/yafeng/
proteogenomics_python. Peptide matches to known proteins were removed and
unique peptides with length 8 aa to 30 aa were stored with their chromosome
positions. The pI prediction algorithm, PredpI (now extended to the pH 3–10
range) was used to predict isoelectric points of all 6FT theoretical peptides, which
were divided into pI-restricted databases with specific pI intervals corresponding to
the experimental fractions of IPG strips. Due to both strip manufacturing and strip
alignment variations during the process of extraction to 96-well micro-titer plate,
the centers of pI intervals may shift slightly run-to-run and were therefore adjusted
so that the median value of delta pI (experimental pI minus predicted pI) is equal
to 0 for each individual IPG strip (the peptides used to calculate the delta pI shift
were unique peptides identified with 0% FDR from the standard proteomics
search). The pI interval of each pI-restricted database was extended on both sides
of the experimental interval with the prediction error margin of ±0.11, which
corresponds to the 95% confidence interval. Finally, each pI-restricted mini data-
base was appended with Ensembl human protein database.

Customized peptide database – human VarDB. Human VarDB contains peptide
sequences from pseudogenes, lncRNAs, nsSNPs, somatic mutations, and is con-
catenated with human known tryptic peptides (Supplementary Figure 18). Pseu-
dogenes were downloaded from GENCODE55 release 19 including also consensus
pseudogenes predicted by the Yale and UCSC pipelines. Long non-coding RNAs
were downloaded from both GENCODE release 1956 and LNCipedia.org v 3.157.
These transcripts were translated in three reading frames and digested in silico into
peptides (trypsin rules without missed cleavages). Redundant sequences matched

to known peptides were discarded. nsSNPs and somatic mutations were down-
loaded from CanProVar 2.058 and COSMIC release 7159. Proteins with substituted
amino acid sequences were in silico digested to fully tryptic peptides (detailed steps
of merging variant peptides from CanProVar and COSMIC are described in
Supplementary Figure 19). The position of substituted amino acid in peptides was
noted in order to run SpectrumAI.

Proteogenomics search and class-specific FDR. Peptide spectra were searched in
two different databases in parallel: pI-restricted 6FT databases and VarDB. A
separate target-decoy search strategy was used. Decoy peptides were generated
from the peptides of corresponding target databases in reversed tryptic manner
(i.e., C-terminal residue is maintained, whereas the rest of the target amino acid
sequence is reversed). The VarDB search does not require knowledge of peptide pI
and therefore can be broadly applied to any shotgun proteomics data set. A class-
specific FDR3 was estimated separately for novel and single amino acid variant
(SAAV) peptides. Novel peptides are defined as sequences specifically from
pseudogenes, lncRNA, or six-frame translations. SAAV peptides are defined as
sequences specifically from CanProVar and COSMIC databases. First, target and
decoy matches to known tryptic peptides were discarded (as well as deamidations
of asparagine to aspartic acid and also considering that isoleucine=leucine). The
FDR of novel/SAAV peptides was calculated as the number of decoy novel/SAAV
peptides divided by the number of target novel/SAAV peptides above the score
threshold. For the quantitative TMT analysis, novel peptide TMT reporter ion
ratios were normalized per TMT channel using normalization factors based on
median ratio centering calculated from the canonical protein tables of the standard
proteomics searches.

Mapping novel and SAAV peptides back to the genome. The genomics coor-
dinates of novel peptides identified from 6FT search were stored as peptide’s ID at
the six reading-frame translation step. It exempts the need to mapping them back
to genome later. Novel peptides identified from VarDB search were mapped back
to genome using genomic coordinates of their parent transcripts. The python script
(map_novelpeptide2genome.py) to do this is posted online at https://github.com/
yafeng/proteogenomics_python. SAAV peptides were mapped back to genome
using coordinates annotated in dbSNP and COSMIC database. The python script
(map_cosmic_snp_hg19.cor.py) is available at the above github address.

SpectrumAI—automated spectral inspection. The subset of novel and SAAV
peptides with single amino acid substitution identified at 1% class-specific FDR
were curated by SpectrumAI, which requires the peptides to fulfill two criteria.
First, at least one of the peptide’s MS2 spectra must contain ions flanking both
sides of the substituted amino acid. For example, if a 12-amino-acid peptide is
identified with single substitution at eighth residue, in order to pass SpectrumAI, it
must have matched MS2 peaks (within 10 ppm fragment ion mass tolerance) from
at least one of the following groups: b7 and b8, y4 and y5, y4 and b7, or y5 and b8.
Second, the sum intensity of the supporting flanking MS2 ions must be larger than
the median intensity of all fragmentation ions. An exception to these criteria is
made when the substituted amino acid has a proline residue to its N-terminal side.
Because CID/HCD fragmentation at the C-terminal side of a proline residue is
thermodynamically unfavored, SpectrumAI only demands the presence of any b or
y ions on the right (C-terminal) side of the substituted position. SpectrumAI is
written in R and requires R libraries mzR60 and MSnbase61. SpectrumAI and the R
scripts used to generate MS2 spectrum mirror images (mirror plots) are deposited
at: https://github.com/yafeng/SpectrumAI

Comparisons with RNA-sequencing data. RNA extraction and sequencing were
done as part of and are detailed in Branca et al.1 and Uhlen et al.62. Briefly, total
RNA was prepared using the RNeasy Mini kit (Qiagen) according to the manu-
facturer’s instructions. The experion automated electrophoresis system (Bio-Rad)
was used to assess RNA quality. Sequencing was performed on HiSeq2000 (Illu-
mina) with the standard Illumina RNA-seq protocol. RNA-sequencing data can
provide complementary mRNA-level evidence for the expression of a putative
novel peptide. We consider an aligned RNA sequencing read to be a match to a
genomic region corresponding to a detected peptide if the read: (1) is uniquely
aligned to the locus (or part of the locus), (2) has at-most one mismatch to the
reference in the peptide region itself, and (3) is properly paired in cases where
paired-end sequencing was performed. Reads flagged as multi-mapping would thus
not count as mRNA evidence for the peptide; neither would spliced alignments that
contain genomic regions adjacent to the peptide locus but not the locus itself. We
developed a Python script for counting, from a set of BAM files and a GFF3 format
file of identified peptides, how many mapped RNA-seq reads fulfilling the above
criteria overlapped each peptide. The criteria are adjustable in the script. The script
is available at: https://github.com/yafeng/proteogenomics_python/scam_bams.py

To generate BAM files as input to this script, we used STAR63 to align samples
from the A431 cell line and four human tissues (we did not have RNAseq data for
the placenta samples) to the hg19 version of the human genome assembly.

Variant analysis. Whole genome sequencing data on A431 cells from Akan et al.64

was downloaded (available in SRA ERP001947). FASTQ files were mapped to
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GRCh38 using bwa mem65 (version 0.7.13-r1126). The resulting sam file was
converted to bam, sorted, and indexed using samtools66 (Version 1.3.1). A431
RNA-seq data (uploaded to ArrayExpress with ID E-MTAB-5285) were mapped
against GRCh38 using STAR63 (Version STAR_2.5.2a). Resulting bam files were
treated with sambamba67 to expand intron gaps and fed to FreeBayes, version
v1.0.2: https://arxiv.org/abs/1207.3907

Variants in the resulting index/sorted bam file were called using FreeBayes
(version v1.0.2, option –C 5, the rest were default). All tools and reference data
were downloaded and compiled/configured using bcbio. The coordinates of
missense variants were converted to hg19 coordinates to compare with those of
missense variants identified at peptide level.

Evolutionary conservation. We assessed the evolutionary conservation of the
genomic regions encoding the peptides by calculating mean scores for each region
based on the PhastCons68 100-way vertebrate multiple alignment tracks available
from: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons100way/
hg19.100way.phastCons.bw

The calculations were done using a python script and posted at:
https://github.com/yafeng/proteogenomics_python/calculate_phastcons.py
The distribution of mean conservations scores for the peptide regions were

compared with randomly selected sets of pseudogenes from the pseudogene.org
database and to a high-confidence set of lncRNAs from lncipedia.org. Links here:

http://www.pseudogenes.org/psidr/data/gencode.v7.pseudogene.txt
http://www.lncipedia.org/downloads/lncipedia_3_1_hc.gtf

Protein-coding potential based on conservation. We used PhyloCSF34 results to
determine the protein-coding potential of the putative novel peptides. A Python
script was used to parse the PhyloCSF bigWig files (https://data.broadinstitute.org/
compbio1/PhyloCSFtracks/hg19/latest/PhyloCSF) in order to classify each peptide
region as “coding”, “non-coding”, or “no-call” based on the PhyloCSF coding
potential scores for each region (in all six reading frames). Finally, peptides that
had been classified as “coding” in at least one reading frame were selected as
putative protein coding. The python script is posted at:

https://github.com/yafeng/proteogenomics_python/calculate_phylocsf.py

Transcription and translation evidence for new coding loci. To find additional
levels of evidence for the discovered coding loci, we searched for evidence in
previously published ribosome profiling studies and transcriptional gene expres-
sion profile by CAGE (Cap Analysis Gene Expression) data. The former indicates
evidence for translation initiation sites (TIS), the latter for transcription start sites
(TSS). Bigwig tracks of ribosome profiles of THP-1 cell lines published by Fritsch
et al.30 and mapped CAGE reads across a panel of biological samples published in
Forrest et al.32 were downloaded from UCSC genome browser. 10000 random
genomic intervals (with same length distribution as that of our novel peptides)
were generated to estimate how many CAGE and Ribo-seq reads randomly map to
genomic loci by chance (Supplementary Figure 20).

Code availability. The automated IPAW pipeline and user manual is available at:
https://github.com/lehtiolab/proteogenomics-analysis-workflow
Individual python scripts used in the proteogenomics workflow are deposited

in:
https://github.com/yafeng/proteogenomics_python
SpectrumAI R code is deposited in:
https://github.com/yafeng/SpectrumAI

Data availability. The proteomics data of A431 cells and normal tissues have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository
with the data set identifier PXD006291 (https://www.ebi.ac.uk/pride/archive/
projects/PXD006291).

RNA-seq data of A431 cells after gefitinib treatment is available at ArrayExpress
with accession ID E-MTAB-5285 (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-5285/). RNA-seq data of normal tissues (kidney, liver,
tonsil, testis but not placenta) was originally collected for the work of Uhlen et al.62

and is available via the ID E-MTAB-2836 at ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-2836/).

All other data supporting the findings of this study are available from the
corresponding authors on reasonable request.
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