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Abstract 

The main objective of machine discovery is the 
determination of relations between data and of 
data models. In the paper we describe a method 
for discovery of data models represented by con- 
current systems from experimental tables. The 
basic step consists in a determination of roles 
which yield a decomposition of experimental data 
tables; the components are then used to define 
fragments of the global system corresponding to 
a table. The method has been applied for auto- 
matic data models discovery from experimental 
tables with Petri nets as models for concurrency. 
Key words: data mining, system decomposi- 
tion, rough sets, concurrent models 

Introduction 
The aim of this paper is to present an approach to the 
decomposition of information systems. Our approach 
can be applied to the discovery of data models in the 
form of concurrent systems. 

Decomposition of large experimental data tables can 
be treated as one of the fundamental tools in data min- 
ing. It is usually imposed by the high computational 
complexity of the search for relations between data on 
one hand and/or the structure of the process of data 
models discovery on the other (see e.g. (iytkow 1991), 
(Piatetsky-Shapiro & Frawley 1991), (Shrager & Lan- 
gley 1990), (Kodratoff & Michalski 1990)). 

Our approach is based on rough set theory (Pawlak 
1991) and boolean reasoning (Brown 1990). It consists 
of three levels. First we show how experimental data 
tables are represented by information systems (Pawlak 
1991). Next we discuss how any information system S 
can be decomposed (with respect to any of its reduct) 
into components linked by some connections which al- 
low to preserve some constraints. Any component rep 
resents in a sense the strongest functional module of 
the system. The connections between components rep 
resent constraints which must be satisfied when these 
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functional modules coexist in the system. The compo- 
nents together with the connections define a so called 
covering of S. Finally, we use the coverings of the in- 
formation system S to construct its concurrent model 
in the form of a marked Petri net (Ns, MS) (Skowron 
& Suraj 1994) with the following property: the reach- 
ability set R(Ns, iVs) is in one-to-one correspondence 
with the set of all global states consistent with all de- 
cision rules valid in S (and having examples in S) . 

In the paper we investigate the decomposition prob- 
lems which can now be roughly defined as follows: 

Component Extracting Problem: 
Input: An information system S. 
Output: All components of S. 
Covering Problem: 
Input: An information system S. 
Output: The set of all coverings of S. 

Our approach can be applied for automatic feature 
extraction and for control design of systems repre- 
sented by experiment al tables. 

Information Systems 
In the paper we represent experimental data by infor- 
mation systems (Pawlak 1991). 

An information system is a pair S = (V, A), where U 
is a nonempty finite set of objects, called the universe, 
A is a nonempty finite set of attributes, i.e. a : U + Va 
for a E A, where Va is called the value set of a. 

The set V = UaEA V, is said to be the domain of A. 
If S = (U,A), then the system S’ = (U’, A’) such 

that U C U’, A’ = {a’ : a E A}, u’(u) = a(u) for u E U 
and Va = Val for a E A will be called a U/-extension 
of S (or an extension of S, in short). S is also called a 
restriction of S’. If S = (U, A) then S’ = (U, B) such 
that A E B will be referred to a~ a B-extension of S. 

EXAMPLE 1 (Pawlak 1992). Let us consider 
an information system S = (U, A) such that U = 
(~1, ~2, ~3, ~4, us), A = {a, b, c,d,e} and the values of 
the attributes are defined as in Table 1. 0 
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Table 1. An example of an information system 

LetS=(U,A)b e an information system. With any 
subset of attributes B C A we associate a binary re- 
lation ind( B), called indiscernibility relation, which is 
defined by: ind(B) = {(u, u’) E U x U : for every a E 
B, u(u) = a(~‘)}. 

Any information system S = (U, A) determines an 
information function, InfA : U + P(A x V) de- 
fined by InfA (u) = {(a, u(u)) : a E A}, where 
v = UaEA Va and P(X) denotes the powerset of X. 
The set {In fA (u) : u E U} will be denoted by INF(S). 

Hence, u ind(A)u’ iff InfA(u) = InfA(u’). 
The values of an information function will be some- 

times represented by vectors of the form (VI, . . . , urn) 
with vi E Vai for i = 1,. . . , m, where m = IAI. Such 
vectors are called information vectors (over V and A). 

Let S = (U,A) b e an information system, where 
A = {al, . . . . a,}. Pairs (a,~) with a E A, v E V are 
called descriptors. Instead of (a, V) we also write a = v 
or a,. 

The set of terms over A and V is the least set 
containing descriptors (over A and V) and closed 
with respect to the classical propositional connectives: 
1, V, A. The meaning 11 r 11~ (or in short II r 11) of a 
term r in S is defined inductively as follows: 

11 (a, v) II= {u E U : u(u) = v) for a E A and v E Va; 
II T v 7’ II=11 r II IJ II 7’ II; II r A 7’ II=11 7- II fl II T’ II; 

II lT II= u- II r II * 
Decision Rules 

Decision rules express some of the relationships be- 
tween attributes of information systems. - 

Let S = (U,A) b e an information system and let 
B,C E A. We say that the set C depends on B in 
S in degree Ic(0 5 Ic 5 1) , symbolically B sTk C, if 
k=v, where POSB(C) is the B-positive 
region of C in S (Pawlak 1991). 

If k = 1 we write B 2 C instead of B zk C. In this 
case B ‘;t C means that ind(B) C ind(C). If the right 
hand side of a dependency con&ts of one attribute 
only, we say the dependency is elementary. 

A decision rule over A and V is any expression of the 
following form: (1) Ui, = Vi, A. . .AUii = Vi, * UP = VP, 
where UP, uij E A, up, vij E Vaij for 1 5 j 5 r. 

A decision rule of the form (1) is called trivial if 
UP = up also appears on the left hand side of the rule. 
It is true in S if II ai, = vi1 A . . . A ai, = vi, 11~11 ap = 
up 11, which is denoted by (2) ai, = vi, A . . . A ai, = 
Vi, z up = vp. A rule of type (2) has an example in 

S if II ai, = vi, A . . . A ai, = vi,. lls# 8. By D(S) 
we denote the set of all true decision rules which have 
examples in S. 
Let R C D(S). A n information vector v = (vl, . . ., 
vm) is consistent with R iff for any decision rule ai, = 
vi1 A . . . A Ui, = Vi, =P UP = vp in R if vii = vii for 
j = 1, . . . , ‘P then up = vp. The set of all information 
vectors consistent with R is denoted by CON(R). 

Let S’ = (U’, A’) b e a U/-extension of S = (U, A). 
We say that St is a consistent extension of S iff D(S) C 
D(S’). S’ is a maximal consistent extension of S iff 
S’ is a consistent extension of S and any consistent 
extension S” of S is a restriction of S’. 

Reduction of Attributes 
Let S = (U, A) be an information system. A subset 
B C A is a reduct of S (Pawlak 1991) iff ind(B) = 
ind(A) and ind(B’) # ind(A) for any B’ c B. The set 
of all reducts in S is denoted by RED(S). 

Let S = (U,A) b e an information system and let us 
assume that U = {ui, . . . , un}, and A = (al, . . . , a,}. 
By M(S) we denote an n x n matrix (cij), called the 
discernibility matrix of S, such that cij = {u E A : 
c$&)) # u(uj)} for i, j = 1, . . . , n (Skowron & Rauszer 

With any discernibility matrix M(S) we can asso- 
ciate a discernibility function fM(q. The discerni- 
bility function fM(q for an information system S 
is a boolean function of m propositional variables 
al,...dh (where ai E A for i = l,...,m) defined as 
the conjunction of all expressions V cij, where V cij 
is the disjunction of all the elements of cij = {a : 
u E cij}, where 1 5 j < i 5 n and cij # 0. In the 
sequel we write a instead of a when no confusion can 
arise. 

PROPOSITION 1 (Skowron & Rauszer 1992). 
Lets= (U,A) b e an information system and let fM(s) 
be a discernibility function for S. Then all prime implz- 
cants (Wegner 1987) of the function fM(s) correspond 
to all reducts of S. 

In order to construct a concurrent model for a given 
information system all reducts of the system have to 
be computed first (Skowron & Rauszer 1992). 

PROCEDURE for computing RED(S): 
Step 1. Compute the discernibility matrix for the 

system S. 
Step 2. Compute the discernibility function fM(s) 

associated with the discernibility matrix M(S). 
Step 3. Compute the minimal disjunctive normal 

form of the discernibility function fiM(~). (The normal 
form of the function yields all reducts). 

EXAMPLE ,% Applying the above procedure to the 
system in Example 1, we obtain two reducts: RI = 
{a, b, c} and R2 = {a, b, e} of the system. 0 
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PROPOSITION 2 (Pawlak 1992). Let S = (U, A) 
be an information system, R E RED(S), and R c A. 
Let f~(s’) be a relative discernibility function for the 
system S’ = (U, R U {a*}), where a* E A - R. Then 
all prime implicants of the function fM(p) correspond 
to all (a’) - reducts of S’. 

The next example illustrates how to find all depen- 
dencies among attributes. 

EXAMPLE S. Let us consider again the system 
S from Example 1. We have {a, b,c} 2 {d, e} and 
W,4 2 {c,4, so WV) 2 VII, WV) 2 kl, 
{a, b, e) 2 (c}, {a, b,e} 2 {d). The set of rules cor- 
responding to all nontrivial dependencies within the 
reduct Ra has the form: al V a2 V bl 2 eo, a0 V a2 V 
el V e2 s bo, el V e2 $J ao, bl s al, while the set 
of decision rules corresponding to all nontrivial de- 
pendencies of R2 with c, d has the following form: 
alVa2VblVeoVe2 s ~2, el s cl, alVa2VblVeo s dl, 
a0 V el V e2 2 d2. These rules can be generated by ap- 
plying the method presented in (Skowron 1993). 0 

Decomposition of Information Systems 
This section introduces concepts and notation related 
to the decomposition of information systems as well as 
a method for constructing components and coverings of 
a given information system with respect to its reducts. 

Let S = (U,A) b e an information system. An in- 
formation system S is said to be covered with con- 
straints C (or C-covered, in short) by information sys- 
tems 271 = (Ul,Al), . . . , SI, = (Uk,Ak) if 1NF(S’) = 
{InfA, (ul) u . . . u InfA,(uk) : InfA, (u1) u . . . u 
Inf&.(uk) E CON(C) and ui E ui for i = 1,. . . , k}, 
where S’ is a maximal consistent extension of S and C 
is a set of decision rules. The pair ({ S1, . . . , Sk } , C) is 
called a C-covering of S (or a covering of S, in short). 
Thesets Sl,..., Sk are its components and C is the set 
of constraints (connections). - 

EXAMPLE 4. Let us consider the information sys- 
tem S from Example 1. It is easy to see that the in- 
formation systems Si = (Ul , Al), S2 = (U2, A2) and 
5’3=(U3,A) P 3 re resented by Tables 2, 3 and 4, respec- 
tively, and the set of constraints C containing decision 
rules al V a2 2 eo, el V e2 s ao, a0 V a2 2 bo, bl s al, 
bl % ee, and el V e2 2 bo yield a C-covering of S. 

Table 2. The information system Si 

Table 3. The information system S2 

Table 4. The information system S’s 
0 

PROPOSITION 3. Every information system has 
at least one covering. 

If S = (U,A), then the system S = (U’, A’) such 
that U’ 5 U, A’ = (a’ : a E B E A), a’(u) = a(u) for 
u E U’ and V,’ = VQ for a E A is said to be a subsystem 
of s. 

EXAMPLE 5. Every information system in Exam- 
ple 4 is a subsystem of the system S from Example 1. 

0 
Let S = (U,A) b e an information system and let 

R E RED(S). A n information system S’ = (U’, A’) is 
a normal component of S (with respect to R) iff the 
following conditions are satisfied: (i) S’ is a subsystem 
of S, (ii) A’ = B U C, where B is a minimal (with 
respect to C) subset of R such that B 2 {a} for some 
a E A - R and C is the set of all attributes a with the 
above property. 

The set of all normal components of S (with respect 
to R) is denoted by COMPR(S). 

EXAMPLE 6. The subsystems S1, S2, S3 are nor- 
mal components of S from Example 1 (with respect to 
the reduct R2). A more detailed explanation of this 
fact is included in Example 7. 0 

PROPOSITION 4. Every information system has 
at least one normal component (with respect to any of 
its reduct). 

Let S’ E COMPR(S) and S’ = (U’, Bs’ U C’S)). By 
XR we denote the set of all attributes which simultane- 
ously occur in normal components of S (with respect to 
R) and in the reduct R, i.e. XR = Us,ECOMPR(Sj Bs’. 

Let XR be a set defined for S and R as above. We 
say that a subsystem S’ = (U’, A’) of S is a degenerated 
component of S (with respect to R) iff A’ = {a) for 
some a E R-XR. We denote this fact by {a) 2 8 (the 
empty set). 

In the sequel a component (with respect to a reduct) 
will be assumed to be either a normal component or a 
degenerated component (with respect to the reduct). 

PROPOSITION 5. Let S = (U, A) be an infor- 
mation system and let R be its reduct. Then the in- 
formation system S consists of IR - XR) degenerated 
components (with respect to R). 

Let S = (U, A) be an information system, R E 
RED(S). 

We say that S is R-decomposable into components 
or that S is C-coverable by components (with respect 
to R) iff there exist components Si = (Ul , B1 U Cl), . . . . 
Sk = (uk, & U Ck) of S (with respect to R) with a 
set of constraints C such that B1 U . . . U & = R and 
clu...uck= A - R, yielding a C-covering of S. 
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The set of constraints (connections) C includes: (i) 
decision rules corresponding to nontrivial dependen- 
cies between attributes in Bi (i = 1, . . . , k) called in- 
ternal linkings (the internal connections) within the 
component Si of S, (ii) decision rules correspond- 
ing to nontrivial dependencies between attributes in 
Bi(i = 1, . . . . k) and those in the set A - Ai, where 
Ai = Bi U Ci called external linkings (the external con- 
nections) with the outside of Si. 

THEOREM 1. Every information system is C-co- 
verable by components (with respect to any its reduct), 
where C is the set of all internal and external linkings 
OfS. 

We obtained a constructive method of information 
systems (data tables) decomposition into functional 
modules interconnected by external linkings. One can 
observe a similarity of our data, models to those used 
in general system theory and control design. 

PROPOSITION 6. Let R be a reduct of an infor- 
mation system S. Then S has at least one C-covering 
by components (with respect to R), where C is the set 
of all internal and external linkings of S. 

We denote by COVERR(S) the family of all C- 
coverings of S (with respect to R), where C is the set 
of all internal and external linkings of S. 

Procedures for Computing Components 
and Coverings 

All normal components of a given information system 
S = (U,A) (with respect to a reduct R E RED(S)) 
can be obtained by the following procedure: 

PROCEDURE for computing COMPR(S): 
Input: An information system S = (U,A), 

a reduct R E RED(S). 
Output: Components of S (with respect to R), i.e. 

the set COMPR(S). 

Step 1. Compute all dependencies of the form: 
R 2 {a}, for any a E A - R. 

Step 2. Compute the discernibility function fM(p) 
for each subsystem S’ = (U,RU{a)) withaEA-R. 
In this step we compute the so called {a} - reducts of 
R, for a E A - R (Pawlak 1991). 

Step 3. For all dependencies of the form B 2 { ai, } , 
. . ., B 2 {ai,), where B is any subset of R obtained 
in Step 2, construct a dependency B 2 C, where C = 
{uil} U . . .U {ai,). The set C is the maximal subset in 
A - R such that the dependency B 2 C is true. Now 
the subsystem S” = (U’, B U C) of S defines a normal 
component of S (with respect to R). 

The complexity of the computation of RED(S) is 
high. Nevertheless, the existing procedures and heuris- 
tics are sufficient for the computation of reducts in 
many applications (see e.g. (Bazan, Skowron & Synak 
1994)). 

EXAMPLE 7. Let us perform the procedure for the 
computation COMPR, (S) for the information system 
S of Example 1 and its reduct R3. 

Step 1. The following elementary dependencies are 
valid in the system S for the reduct R3 : {a, b, e) 2 {c}, 
hb,4 2 VI* 

Step 2. We compute the minimal subsets of R2 on 
which the sets {c) and {d} depend, i.e. we compute the 
relative reducts (cf. (Pawlak 1992)) of the left hand 
sides of the above dependencies. To reduce the first 
elementary dependency we consider the information 
system Si = (U, B U {c}) with B = {Q, b,e}. Hence, 
fM(S1) (Q, 4 4 = e. Thus {a, b, e} 2 {c} can be simpli- 
fied to {e) 2 {c). 

We reduce the second dependency in a similar way. 
As a consequence, {u, b, e} 2 {d) can be reduced ei- 
ther to {u} 2 {d} or {e} 2 {d}. Eventually, we get 
the following minimal dependencies (i.e. dependencies 
with a minimal number of attributes on the left hand 
side) with respect to R3 in the information system 
S : {u} ‘;t {d}, {e} 2 {c), {e} -;t {d}. This completes 
Step 2 of the above procedure. 

Step S. For dependencies {e} 2 {c} and {e} 2 (d} 
we construct a new dependency {e} 2 {c, d}. Now we 
have {a} 2 {d} and {e) 2 {c,d}. They define two 
normal components Si = (h&) and SZ = (VzA) 
of the system S, where: Al = B1 U Cl, B1 = {a}, 
Cl = {d}, A2 = B2uC2, B2 = {e}, C2 = {c,d}. Since 
XR~ = {u,e), we have R3 - XR~ = {b}. This means 
that {b) 2 0 is t rue in S. Hence S has the degenerated 
component S3 = (U3, A3) of the form: A3 = B3 U C3, 
B3 = {b), C3 = 8. 

Eventually, S is decomposed into three components 
(with respect to R3). They are shown in Tables 2, 
3 and 4, respectively. Cl 

In a similar way we can compute the components of 
S with respect to the reduct RI. 

To compute a covering of an information system by 
its components (with respect to a reduct) it is sufficient 
to perform the following procedure. 

PROCEDURE for computing COVERR(S): 
Input: An information system S = (U, A), 

a reduct R E RED(S). 
Output: The covering family of S, 

i.e. COVERR(S). 

Step 1. Compute all normal and degenerated com- 
ponents of S (with respect to R). 

Step 2. Compute the set C of all external and inter- 
nal linkings of S. 

Step 3. Choose those combinations of components 
which together with C yield a C-covering by compo- 
nents of S (with respect to R). This step is to be 
performed as long as new solutions are obtained. 

EXAMPLE 8. The information system S of Exam- 
ple 1 has one covering ({Si, S2, S’s}, C) (with respect 
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to the reduct Rs), where Si , S’s, S3 denote components 
of S (with respect to R2) computed in Example 7 and 
C is the set of all internal and external linkings of S. 

There are no internal linkings in the components of 
the system (with respect to Rz), since each component 
of S contains only one attribute from the reduct R2. 
However, the components are connected by external 
linkings of the form: for Si and S2 : al V a2 2 ~2, 
a1 Vu2 2 e0, el Ve2 z us; for Si and S’s : a0 Vu2 2 bo, 
h s al, h 2 dl; for S2 and S’s : ei V e2 Y$ bo, bl Y$ eo, 
h s ~2, h 2 4. 

How to Compute Concurrent Data 
Models from Information Systems? 

We present a method for constructing a marked Petri 
net (Ns, MS) for an arbitrary information system S 
such that the reachability set R(Ns, MS) represents 
the set of all global states consistent with a given in- 
formation system S. 

That method consists of two steps. First, decision 
rules corresponding to two kinds of dependencies are 
generated. The first kind consists of the partial depen- 
dencies between attributes within reducts, the second 
- of the dependencies between attributes not in reducts 
and those within reducts. Next, the decision rules so 
obtained (and represented in an optimal form with re- 
spect to the number of descriptors on the left hand 
side) (Skowron 1993) are implemented by means of a 
Petri net (Murata 1989). 

First initial transformations of decision rules are per- 
formed. There are two rules (see Figure 1). 

A rule A Petri net 

P3l 

P 
zb 

Q 

Figure 1. Initial transformation rules, 
are descriptors in S 

where P, Q, ?- 

Next a method for transforming decision rules rep- 
resenting a given information system into a Petri net 
is executed. This method consists of three levels: 

1. A net representing all processes (attributes) in a 
reduct of an information system is constructed. 

2. The net obtained in the first step is extended by 
adding the elements (arcs and transitions) of the net 
induced by the decision rules determined by: (i) all 
nontrivial dependencies between processes of the in- 
formation system; (ii) partial dependencies between 
processes within a reduct of the information system. 

3. We add to the net obtained so far the subnets corre- 
sponding to situations when between some internal 
states of processes (but not all states) there are no 
dependencies represented by the information system. 

This method is repeated for all reducts of the given 
information system. Finally, the obtained nets are 
merged. 

Such an approach makes the appropriate construc- 
tion of a net much more readable. In the example 
which follows we only illustrate step 2(i) of the above 
transformation method. This example uses the reduct 
R2 of the information system S of Example 1. 

EXAMPLE 9. Consider the decision rules from 
Example 3 for the system of Example 1: a0 s d2, 
al V a2 : 4, eo s 4, el V e2 s 4, eo V e2 z ~2, 
el 2 Cl* 

A net representation of the above decision rules ob- 
tained by an application of our construction (after 
some simplifications consisting in the deletion of su- 
perfluous arcs) is illustrated in Figure 2. The initial 
marking of the nets presented in the figure corresponds 
to the second row of Table 1 1 cl 

Remark. In Figure 2 places dl and d2 are drawn 
separately for readibility reasons. 

The construction method shortly described above 
has the following properties (Skowron & Suraj 1994): 

THEOREM 2. Let S be an information system 
and let (Ns, MS) be a marked Petri net representing 
a system S. Then INF(Ns, MS) = CON(D(S)), 
where INF(Ns, MS) denotes the set {v(M) : M E 
R(Ns, MS)) and R(Ns, MS) is the reachability set of 
NS from MS. 

THEOREM 3. Let S be an information system, 
S’ its U/-extension constructed as above. Then S’ is 
the largest consistent extension of S. 

COROLLARY 1. Let S’ be a maximal con- 
sistent extension of an information system S con- 
structed by the method presented in the paper. Then 

;OvERRtS) 
= COVERR(S’), for any reduct R of 

. 

Figure 2. A net representation of decision rules from 
Example 9 
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In Figure 3 we show nets representing the external 
linkings between components Si, 5’3. These nets also 
include arcs which guarantee the correctness of the con- 
struction. 0 

Figure 3. External linkings between components S1 
and S3 

In the Petri net (Ns , MS) constructed for a given in- 
formation system one can distinguish components and 
connections between them. The Petri net (Ns, MS) 
can be decomposed with respect to any C-covering in 
COVERR(S), h w ere R is any reduct of S and C is the 
set of all internal and external linkings of S. 

Remark. A net representation of components 5’1, 
Sa, and Sz of the system S of Example 1 is shown in 
Figure 2. 

Conclusions 
The decomposition method has been implemented in 
C + + and preliminary tests are promising. 

Our method can be applied for automatic feature ex- 
traction. The properties of the constructed concurrent 
systems (e.g. their invariants) can be interpreted as 
higher level laws of experimental data. New features 
can be also obtained by performing for a given decision 
table S = (U, A U {d}) the following steps: 

Step 1. Extract from S a subtable Si corresponding 
to the decision i, for any i E Vd, i.e. Si = (Ui, Ai), 
where Ui 
d(u) 

= {U E U : d(u) = i}, Ai = {d : u E A}, and 
= U(U) for U E Uj. 

Step 2. Compute the components of Si for any i E 
vd. 

Step 3. For a new object u compute the val- 
ues of components defined on information included in 
InfA (u) and check in what cases the computed val- 
ues of components are matching InfA(u) (i.e. they 
are included in In fA (u)). For any i E vd compute 
the ratio ni(u) of the number of components match- 
ing In fA (u) to all components of Si. The simplest 
strategy classifies u to the decision class io, where 
% t”) = ma& ?2j(U). 

We also study some applications of our method in 
control design from experimental data tables. 
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