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Summary26

The elucidation of protein function and its exploitation in bioengineering have greatly27

contributed to the development of the life sciences. Existing protein mining efforts28

generally rely on amino acid sequences rather than protein structures due to technical29

difficulties in structural elucidation. We describe here for the use of AlphaFold2 to30

predict and subsequently cluster an entire protein family based on predicted structure31

similarities. We selected the deaminase family of proteins to analyze and through this32

approach identified many previously unknown deaminase properties. We applied33

these new deaminases to the development of new cytosine base editors with distinct34

features. Although we found many new double-stranded DNA deaminases from the35

DddA-like protein clade, we were surprised to find that most of the proteins in this36

family were not actually double-stranded DNA cytidine deaminases. From this protein37

clade, we engineered the smallest single-strand specific cytidine deaminase, which38

facilitates the first efficient cytosine base editor to be packaged into a single AAV39

vector. Importantly, we also profiled a deaminase from this clade that edits robustly in40

soybean plants, which previously suffered from poor editing by cytosine base editors.41

These newly discovered deaminases based on AI-assisted structural predictions42

greatly expand the utility of base editors for therapeutic and agricultural applications.43

44

Keywords: structural prediction, protein classification, deaminase, Ddd, Sdd,45

specificity, context preference, base editing46
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Introduction47

The discovery and engineering of new proteins has greatly transformed the life48

sciences. Traditional enzyme mining based solely on sequence information has been49

effective at classifying and predicting protein functions and evolutionary trajectory1,2.50

However, one-dimensional (1D) information, whether in the form of core amino acids,51

specific motifs, overall amino acid sequence identity, or Hidden Markov Models52

(HMM), cannot completely illuminate the functional characteristics of proteins.53

In contrast, since protein function is ultimately determined by three dimensional54

(3D) protein folds, understanding protein structures would provide reliable and55

rational insights into protein function during the process of protein mining and56

clustering classifications3,4. Although the number of publicly reported protein57

structures is increasing, it is miniscule compared to the number of new proteins58

discovered based on amino acid sequences5,6. Recently, many artificial intelligence59

(AI) methods have been developed that use 1D amino acid sequences to accurately60

predict high resolution 3D protein structures7-9. These protein structure prediction61

methods should thus enable large-scale mining and classifications of proteins with62

specific functions.63

Deaminase-like proteins catalyze the deamination of nucleotides and bases in64

nucleic acids. They play important roles in defense, mutation and nucleic acid65

metabolism and other biological processes10-13 and have been recently exploited for66

use in programmable DNA and RNA base editors14-16, a class of precise genome67

editing technologies. Members of this family act as nucleotide deaminases and nucleic68

acid deaminases, including adenosine, cytidine, cytosine and guanine deaminases, and69

have the ability to act on single-stranded DNA (ssDNA)17, double-stranded DNA70

(dsDNA)10, double-stranded RNA (dsRNA)18, transfer RNA (tRNA)19, free71

nucleosides12, and other deaminated nucleotide derivatives20. The sporadic72

distribution of deaminases and their rapid evolution due to positive selection often73

confounds the relationships between the various protein families in phylogenetic74

analyses based on sequence20,21. Here, we performed new protein clustering75
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classifications on the greater deaminase family of proteins based on76

AlphaFold2-predicted 3D structures.77

To better differentiate and discover deaminases with diverse functions, we78

employed AlphaFold2 to first predict deaminase structures and subsequently79

performed structural comparisons to generate a new taxonomic tree of deaminase80

proteins that better reflect the different types of cytidine deaminases. Using81

AlphaFold2-predicted structures, we were able to classify proteins into different82

clades more efficiently than using 1D amino acid sequences.83

Cytosine base editors (CBEs) use cytidine deaminases to catalyze C-to-U base84

conversions, resulting in permanent C G-to-T A base edits in DNA14,15,22,23. Base85

editors have great potential in therapeutic genome editing, fundamental life sciences86

research, and for breeding new elite traits into plants24-26. Previous DNA base editors87

exploited the use of two types of cytidine deaminases acting on either ssDNA or88

dsDNA10,14. To date, only a few ssDNA-targeting APOBEC/AID-like deaminases and89

one dsDNA-targeting deaminase (DddA) have been used to generate CBEs10,14,15,27-30.90

These deaminases remain limited to sequence context restrictions, low on-off target91

editing ratios and large protein sizes, which makes their delivery by adeno-associated92

virus (AAV) viral vectors difficult31. For unknown reasons, some species like soybean93

plants, a staple agricultural crop grown all over the world, have suffered from poor94

cytosine base editing since the technology was first introduced in 201632. Thus, robust95

and more efficient CBEs are still needed to further expand their utility. By generating96

new protein classifications based on their predicted structures, we have developed a97

suite of new ssDNA and dsDNA deaminases used for precision genome editing. We98

highlight that enzyme mining based on structures predicted by AlphaFold2 is a simple,99

flexible, and high-throughput method to classify and engineer proteins with unknown100

functions.101
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Results102

Clustering and discovery of new cytidine deaminases via protein structures103

We hypothesized that the comparison and clustering of known or predicted protein104

structures, given that the 3D structure of a protein ultimately determines its function,105

could be an effective method for classifying deaminases into functional clades. Thus,106

we employed a combination of AI-assisted protein structure prediction, structural107

alignments, and clustering to generate new protein classification relationships among108

deaminases (Figure 1A). We selected 238 protein sequences annotated as having a109

deaminase domain from the InterPro database and 4 distant outgroup candidate110

protein sequences from the JAB-domain family (Figure S1A). Specifically, we111

randomly selected 15 candidates of at least 100 amino acids in length from each of the112

16 deaminase families and used AlphaFold2 to predict their protein structures. We113

conducted multiple structural alignments (MSTA) of all candidates using normalized114

TM-scores as a guide33. Based on the MSTA results, we generated candidate115

similarity matrices reflecting the overall structural correlation between the proteins.116

We then organized these similarity matrices into a structural dendrogram using the117

average-linkage clustering algorithm (Figure 1B). The dendrogram clustered the 238118

proteins into 20 unique structural clades and the deaminases within each clade had119

distinct conserved protein structural domains (Figure 1C and 1D).120

We found that accurate protein clustering classifications could be generated based121

on protein structural alignments, even without the use of contextual information such122

as conserved gene neighborhoods and domain architectures. When using123

structure-based hierarchical clustering, different clades reflected unique structures,124

implying distinct catalytic functions and properties (Figure 1D). Interestingly, we also125

found that this structure-based clustering method was much more effective at sorting126

for functional similarities than traditional 1D amino acid sequence-based clustering127

approaches. For example, adenosine deaminases (A_deamin, PF02137 in InterPro128

database), enzymes involved in purine metabolism, were split into different clades129
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when using amino acid sequence-based clustering methods but were all grouped130

together into a single A_deamin-clade using our structure-based clustering approach131

(Figure 1B, 1C and S1B). Additionally, four deaminase families (dCMP, MafB19,132

LmjF365940 and APOBEC as annotated by InterPro) were each divided into two133

separate clades when using structure-based clustering (Figure 1C and 1D).134

Comparison of protein structures showed that the two clades for each of these four135

deaminase families had quite different structures, contrary to what their InterPro136

naming and sequenced-based classification might suggest (Figure 1D and S1C). In137

summary, AI-assisted 3D protein structures provide reliable clustering results and138

only require an amino acid sequence from the user, making it a convenient and139

effective strategy for generating protein relationships.140

Evaluating diverse deaminase clades by fluorescence imaging141

CRISPR-based CBEs are precise genome editing technologies capable of generating142

CG-to-TA substitutions in the genome of living cells. Because single-strand DNA143

specific cytidine deaminases are an essential component of CBEs, we sought to144

explore the deamination activity of each structure-based classified deaminase clade in145

the context of DNA base editing. We evaluated a total of 190 deaminase domains by146

selecting at least five proteins from each clade. Importantly, because the core147

deaminase domain used for clustering may not show editing activity, we extended148

each deaminase sequence to include additional secondary structures from each149

corresponding gene around the deaminase domain (Figure S1A). For each of 190150

newly annotated deaminases, we generated plant CBEs by fusing each candidate151

domain-related sequence to the N-terminus of a Cas9 nickase (nCas9, D10A)152

followed by an uracil-DNA glycosylase inhibitor (UGI)14,34. We developed four153

BFP-to-GFP reporter systems to reflect TC, CC, GC, and AC 5’-base deamination154

preferences (Figure S2A). Each CBE was co-transformed with all four BFP-to-GFP155

reporter plasmids into rice protoplasts and analyzed by fluorescent microscopy after156

three days34. We found that deaminases belonging to the SCP1.201 (PF14428),157
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XOO_2897 (PF14440), MafB19 (PF14437), Toxin-deaminase (PF14424), and158

TM1506 (PF08973) clades possessed ssDNA cytidine deamination activity.159

Interestingly, we noticed that some deaminase candidates displayed different sequence160

preferences compared to the APOBEC/AID-like deaminases as evaluated using the161

fluorescence reporter system. Therefore, we demonstrated that the use of 3D162

structures for protein classification enabled the discovery of new functional163

deaminase clusters for use in base editors, offering new opportunities for developing164

enhanced and bespoke precise base editing tools.165

Validation of the diverse functions of SCP1.201 deaminases166

While evaluating deaminases from each clade, we were surprised to find that some167

deaminases annotated from the SCP1.201 clade were capable of deaminating168

single-stranded DNA substrates. These deaminases were previously named169

Double-stranded DNA deaminase toxin A-like (DddA-like) deaminases in the170

InterPro database (PF14428). The DddA deaminase was recently developed into a171

CRISPR-free double-stranded DNA cytosine base editor (DdCBE) capable of172

deaminating cytosine bases on double-stranded DNA10. Because of DddA, all proteins173

in the SCP1.201 clade were also annotated as double-stranded DNA deaminases. To174

re-analyze this SCP1.201 clade, we selected all 489 SCP1.201 deaminases from the175

InterPro database. We also included seven additional proteins that were 35% to 50%176

identical by Basic Local Alignment Search Tool (BLAST) with DddA but were177

characterized separately in InterPro. After identity and coverage filtering, we178

performed a new AI-assisted protein structure-based classification of 332 SCP1.201179

deaminases. Structure clustering showed that the SCP1.201 deaminases clustered into180

different clades with unique core structural motifs (Figure 2A-2E).181

We found that DddA and ten other proteins clustered into one subclade of182

SCP1.201. Upon analyzing the 3D predicted structures of all 11 proteins within this183

subclade, we found that they shared a similar core structure to DddA. Given their184

structural similarities to DddA, we hypothesized that the other proteins in this185
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subclade can also perform double-strand DNA cytidine deamination. To evaluate186

dsDNA deamination, we generated DdCBEs comprised of each deaminase alone or187

split in half at a residue similar to the site where DddA was split by protein structure188

alignment and joined together using a dual TALE system10 (Figure S2B). We189

evaluated 10 proteins from this Ddd subclade in HEK293T cells at the JAK2 and190

SIRT6 sites and observed that 8 proteins could perform dsDNA base editing (Figure191

2A and 2F). We hereafter named these deaminases as double-strand DNA deaminases192

(Ddd) and assigned them to this newly identified Ddd sub-clade.193

To evaluate other SCP1.201 candidate proteins, we selected 24 proteins at194

random and subjected these to our CBE fluorescent reporter system. We found that 22195

showed detectable fluorescence and selected 13 to evaluate endogenous base editing196

in the context of CBE in mammalian cells (Figure 2). Although these were previously197

characterized as DddA-like, many showed cytosine base editing activity on ssDNA198

(Figure 2A, 2G) but not dsDNA (Figure S2C). Therefore, we hereafter named these199

ssDNA-targeting protein domains from the SCP1.201 clade as single-stranded DNA200

deaminases (Sdd). We were surprised to find that a majority of protein members from201

the SCP1.201 clade were found to be Sdd proteins since these were all previously202

annotated as DddA-like. We also observed that these Sdd proteins shared a similar203

protein structure as Sdd7, one of the highest editing ssDNA CBEs, which is distinct204

from the Ddd proteins (Figure 2D and 2E). Thus, the annotated DddA-like205

deaminases in the InterPro database (PF14428) should be further subdivided and206

re-annotated accordingly.207

In comparison, we also performed a clustering of the proteins from the SCP1.201208

clade based on 1D amino acid sequences and found that some outgroup members209

were dispersed throughout the tree, even though we chose four more closely related210

families as outgroups (Figure S2D and S2E). These results highlight the usefulness211

and importance of using protein structure-based classifications for comparing and212

evaluating protein functional relationships.213
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New Ddd proteins have distinct editing preferences to DddA214

Due to the strict 5’-TC sequence motif preference of DddA, the use of DddA-based215

dsDNA base editors is limited predominantly to TC targets10. Although the recently216

evolved DddA11 displayed a broadened ability to deaminate and edit cytosine bases217

with a 5’-HC (H = A, C or T) motif, the editing efficiency for AC, CC, and GC targets218

still need to be improved35. We evaluated the newly discovered Ddd proteins to219

determine if they could expand the utility and targeting scope of DdCBEs. 13220

deaminases belonging to the Ddd sub-clade were cloned into DdCBEs and evaluated221

for dsDNA base editing at the endogenous JAK2 and SIRT6 sites in HEK293T cells222

(Figure 2F, S3A, S3B). Interestingly, we found that Ddd1, Ddd7, Ddd8, and Ddd9 had223

comparable or higher editing efficiencies to DddA (Figure 3A, S3A and S3B).224

Importantly, we identified that Ddd1 and Ddd9 had a much higher editing activity225

compared to DddA at 5’-GC motifs (Figure 3A, S3A and S3B). Strikingly, at the C10226

(5’-GC) residue in JAK2 and the C11 (5’-GC) residue in SIRT6, we found that while227

DddA resulted in 21.1% and 0.6% editing, Ddd9 was capable of editing 65.7% and228

45.7%, respectively (Figure 3A).229

Because certain Ddd proteins seemed to exhibit distinct editing patterns230

compared to DddA, we sought to evaluate any sequence motif preference for these231

Ddd proteins. We first constructed 16 plasmids35 encoding the JAK2 target sequence232

and modified positions 9-11 from GCC to NCN (N = A, T, C and G), yielding 16233

different plasmids, and independently co-transfected each plasmid along with a234

DdCBE variant (Figure 3B). Following comparative analyses of CG-to-TA base235

conversion frequencies for each NCN, we generated corresponding sequence motif236

logos to reflect sequence context preferences of each dsDNA deaminase (Figure 3B).237

We found that as previously discussed, DddA and its structural homolog, Ddd7,238

strongly preferred a 5’-TC sequence motif (Figure 3C and S3C). In contrast, we found239

that Ddd1 and Ddd9 showed preferences towards editing 5’-GC substrates, while240

Ddd8 showed preferences towards editing 5’-WC (W=A or T) substrates. Therefore,241

the newly discovered dsDNA-targeting deaminases can edit cytosine bases at motifs242
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previous inaccessible to DddA, which is also essential for future engineering efforts.243

Sdd deaminases enable base editing in human cells and plants244

We next wondered whether the newly characterized Sdd proteins could be used for245

more precise or efficient base editing. We chose to evaluate the six most active Sdds246

as well as four weaker Sdds and compared their activities using a fluorescent reporter247

system. We generated plant CBEs for each of the ten Sdds and evaluated their248

endogenous base editing across six sites in rice protoplasts (Figure 4A and S4A). We249

found that seven of the deaminases (Sdd7, Sdd9, Sdd5, Sdd6, Sdd4, Sdd76 and Sdd10)250

had higher activity compared to the rat APOBEC1 (rAPOBEC1)-based CBE. The251

most active Sdd7 base editor reached as high as 55.6% cytosine base editing, which252

was more than 3.5-fold that of rAPOBEC1. To examine the versatility of these253

deaminases, we also constructed the corresponding human-cell targeting BE4max254

vectors36 and evaluated their editing efficiencies across three endogenous target sites255

in HEK293T cells. In agreement with the results in rice, we found that Sdd7 had the256

highest editing activity (Figure S4B).257

We previously showed that human APOBEC3A (hA3A) performed robust base258

editing with a large editing window in plants37,38. We therefore compared the editing259

activities of hA3A and Sdd7 in human cells (Figure S4B) and plants (Figure S4C).260

Interestingly, Sdd7 had comparable editing activities as hA3A across all three target261

sites in HEK293T cells (Figure S4B) and five endogenous sites in rice protoplasts262

(Figure S4C). Because editing efficiency is of primary significance for genome263

editing in plant breeding, these results confirmed that Sdd7 is a robust cytosine base264

editor for use in both plants and human cells.265

Sdd proteins have unique base editing characteristics266

When evaluating endogenous base editing, we observed different editing patterns by267

the different Sdd-CBEs across all tested genomic target sites in both human and rice268

cells. For instance, while Sdd7, Sdd9, and Sdd6 showed no particular motif editing269
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preference, Sdd3 seemed to prefer editing 5’-GC and 5’-AC motifs and strongly270

disfavor editing 5’-TC and 5’-CC motifs (Figure S4D). To better profile the editing271

patterns of each deaminase, we used Targeted Reporter Anchored Positional272

Sequencing (TRAP-seq), a high-throughput approach for parallel quantification of273

base editing outcomes39. A 12K TRAP-seq library comprised of 12,000 TRAP274

constructs, each containing a unique gRNA expression cassette and the corresponding275

surrogate target site, was stably integrated into HEK293T cells by lentiviral276

transduction. Following cell culture and antibody selection, base editors were stably277

transfected into this 12K-TRAP cell line followed by ten days of blasticidin selection278

(Figure 4B). On the eleventh day post transfection, we extracted the genomic DNA279

and performed deep amplicon sequencing to evaluate the editing products of each280

deaminase (Figure 4B). We found that while Sdd7 and Sdd6 showed no strong281

sequence context preference, rAPOBEC1 had a strong preference for 5’-TC and282

5’-CC bases while disfavoring 5’-GC and 5’-AC bases (Figure 4C). On the contrary,283

Sdd3 showed an entirely complementary pattern preferring to edit 5’-GC and 5’-AC284

bases while showing nearly no activity towards 5’-TC and 5’-CC bases (Figure 4C).285

Interestingly, we found that Sdd6 and Sdd3 had different editing windows and286

preferred to edit positions +1 to +3 in the protospacer as compared to rAPOBEC1 and287

Sdd7 (Figure 4C). In conclusion, the newly identified Sdd base editors show unique288

base editing properties such as increased editing efficiencies, disparate deamination289

motif preferences, and altered editing windows from conventional cytosine base290

editors.291

It was previously described that CBEs could cause genome-wide292

Cas9-independent off-target editing outcomes, which raises concerns about the safety293

of these precise genome editing technologies for clinical applications40,41. It is thought294

that these off-target mutations may be a result of overexpression of the cytidine295

deaminase. We wondered whether the newly-discovered Sdd proteins could offer a296

more favorable balance between off-target and on-target editing. We therefore297

evaluated the Cas9-independent off-target effects of the ten Sdds using an established298

orthogonal R-loop assay in rice protoplasts42. We found that six (Sdd2, Sdd3, Sdd4,299
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Sdd6, Sdd10, and Sdd59) of the ten deaminases had lower off-target activities than300

rAPOBEC1. Interestingly, while Sdd6 showed nearly no off-target editing activity, it301

was still robust at on-target base editing when tested across six endogenous sites in302

rice protoplasts (Figure 4D and S4E). When we analyzed the on-target:off-target303

ratios of these ten deaminases, Sdd6 exhibited the highest on-target:off-target editing304

ratios, which was 37.6-fold that of rAPOBEC1 (Figure 4E). We further compared the305

on-target and off-target editing of Sdd6 to that of rAPOBEC1 and its two high-fidelity306

deaminase variants, YE1 and YEE, in HEK293T cells43. Importantly, we found that307

Sdd6 had the highest on-target:off-target editing ratios and was calculated to be308

2.8-fold, 2.1-fold and 2.5-fold higher than that of rAPOBEC1, YE1 and YEE,309

respectively, and 10.4-fold higher than that of hA3A (Figure 4F and S4F). Notably,310

the on-target activity of Sdd6 was comparable to that of rAPOBEC1 and much higher311

than that of YE1 and YEE (Figure S4F). Thus, we identified that the SCP1.201 clade312

contains unique and more precise Sdd proteins to be used as high-fidelity base editors.313

Rational design of Sdd proteins assisted by AlphaFold2 structure prediction314

Although viral delivery of CBEs has great potential for disease treatment, the large315

size of APOBEC/AID-like deaminases restricts their ability to be packaged into single316

AAV particles for in vivo editing applications31. Others have developed dual-AAV317

strategies delivery approaches by splitting CBEs into an amino-terminal and318

carboxy-terminal fragment and packaging them into separate AAV particles31.319

However, these delivery efforts would challenge large-scale manufacturing, require320

higher viral dosages, and pose potential safety challenges for human use44. Recently, a321

truncated sea lamprey cytidine deaminase-like 1 (PmCDA1)-based CBE was322

developed that could theoretically be packaged into a single-AAV, but the editing323

efficiency was extremely low when using the packaged AAVs during HEK293T cell324

transduction45. As SCP1.201 deaminases are canonically compact and conserved325

(Figure S5A), we thought that they might be the ideal protein for single-AAV CBEs.326

We wondered whether we could use AI-assisted protein modeling to further327
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engineer and shorten the size of the newly discovered Sdd proteins. We then328

generated multiple truncated variants of each of Sdd7, Sdd6, Sdd3, Sdd9, Sdd10, and329

Sdd4 and tested these variants for endogenous base editing in rice protoplasts across330

two sites each.331

We identified mini-Sdd7, mini-Sdd6, mini-Sdd3, mini-Sdd9, mini-Sdd10, and332

mini-Sdd4 as newly minimized deaminases that are both small (~130-160 aa) and333

have comparable or higher editing efficiencies compared to their full-length proteins334

both in rice protoplasts and human cells (Figure 5A, S5B and S5C). Strikingly, all six335

miniaturized deaminases would permit the construction of single-AAV-encapsulated336

SaCas9-based CBEs (< 4.7 kb between ITRs) (Figure 5B, S5D, S5E and S5F). We337

used mini-Sdd6 to construct a single-AAV SaCas9 vector and found that it had editing338

efficiencies of around 60% in mouse neuroblastoma N2a cells at two sites in the HPD339

gene (Mus musculus 4-hydroxyphenylpyruvate dioxygenase)46 by transient340

transfection (Figure 5C). These results highlight that the Sdd proteins offer great341

advantages over APOBEC/AID deaminases in terms of AAV-based CRISPR base342

editing delivery. The success in further shortening Sdd proteins for AAV packaging343

highlights the great potential of AI-assisted protein engineering.344

Robust base editing with Sdd-based CBEs in rice and soybean345

We next explored the use and application of newly engineered Sdd proteins for base346

editing in plants. We first evaluated the ability to use of mini-Sdd7 in347

Agrobacterium-mediated genome editing of rice plants and observed more mutants348

recovered and a greater proportion of edited plants, which reflects both a higher349

efficiency and lower toxicity compared to the most used hA3A-based CBE in350

agricultural application (Figure S5G).351

Soybean is one of the most important staple crops grown around the world,352

serving as an essential source of vegetable oil and protein47. Although previously353

reported base editors have been widely used in many crops like rice, wheat, maize,354

potato and more, cytosine base editing remains challenging and poorly efficient across355
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most sites tested in soybean crops32,48. Since the first development of base editing,356

only one article has used Agrobacterium tumefaciens to obtain stable transformations357

and cytosine base-edited soybeans, but the efficiency was extremely low and resulted358

in chimeric plants rather than completely edited soybeans32.359

We wondered whether our newly developed Sdd-based CBEs would result in360

superior cytosine base editing in soybeans. The transient base editing shown was361

evaluated using a soybean hairy root transformation mediated by Agrobacterium362

rhizogenes. This approach is often used in soybeans due to its quick nature (~20 days)363

in allowing researchers to evaluate editing percentages in root cells. We constructed364

vectors with an AtU6 promoter driving sgRNA expression and a CaMV 2× 35S365

promoter driving CBE expression and evaluated these using transgenic soybean hairy366

roots following Agrobacterium rhizogenes-mediated transformations (Figure S5H).367

We found that the APOBEC/AID deaminases had low editing activities across all five368

sites evaluated as expected, including at the GmALS1-T2 and GmPPO2 sites which369

were particularly difficult to edit by other CBEs in soybean (Figure 5D). Remarkably,370

mini-Sdd7 displayed a 26.3-fold, 28.2-fold, and 10.8-fold increased cytosine base371

editing levels, respectively, compared to rAPOBEC1, hA3A and human372

activation-induced cytidine deaminase (hAID), respectively, across the five sites and373

reaching editing efficiencies up to 67.4% (Figure 5D). However, the cells from hairy374

root transformations are impossible to regenerate into soybean plants so the canonical375

Agrobacterium tumefaciens is used to perform stable soybean plant editing in376

cotyledons.377

We next sought to use hA3A and mini-Sdd7 to base edit and obtain transgenic378

soybean plants following Agrobacterium tumefaciens-mediated transformation. We379

chose to edit the endogenous GmPPO2 gene to create an R98C mutation, which380

would result in carfentrazone-ethyl resistant soybean plants49. Although the editing381

efficiencies from hairy root transformations are a great approach for evaluating382

relative editing efficiencies, it is not reflective of the percentage of edited plants383

following soybean plant regeneration. Even with the highly efficient hA3A-base384

editor in plants, we never successfully obtained cytosine base-edited plants (Figure385
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5E). Surprisingly, we obtained 34 base-edited heterozygotes from 154 transgenic386

soybean seedlings of Sdd7 transgenic plants from four independent biological387

experiments (Figure 5E). Therefore, Sdd7 now enables efficient cytosine base editing388

in soybean plants, which will greatly contribute to future agricultural breeding efforts389

(Figure 5E and 5F).390

After treatment with carfentrazone-ethyl for ten days, we could obviously observe391

that while the wild-type plant was sensitive to wilting and could not generate roots,392

the mutated plant edited by Sdd7 grew well and normal (Figure 5G). The393

development of efficient cytosine base editors for use in soybean plants could enable394

diverse applications in the future.395

Discussion396

Compared with the limited insights provided by 1D amino acid sequence alone, 3D397

structural information provides a more visually informative representation of potential398

protein functions. Structure-based protein mining promises to be a useful method for399

discovering and engineering new enzymes. Previously, research in functional400

genomics has been limited by either the cost of high-resolution analysis of protein401

structure or by the low-accuracy of traditional computational-driven folding402

simulations50,51. AI-based high accuracy protein folding prediction models and the403

related databases have breathed new life into the life sciences.404

Here we carried out a proof-of-concept exploration of protein classification and405

mining of novel protein functions based on structural predictions for the Cytidine406

Deaminase-like superfamily. We showed that AlphaFold2-predicted structures407

classified deaminases reliably into distinct clades with diverse protein folds and408

catalytic functions. We built on this by identifying deaminases with novel and409

different DNA substrates, which in turn permits the design of bespoke precision410

genome editing tools. In principle, this strategy could be applied to the high411

throughput classification and functional analysis of any protein dataset. We believe412

that future sequencing efforts in parallel with structural predictions will substantially413

advance the mining, tracking, classification, and design of functional proteins.414
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Currently only a few cytidine deaminases are in use as cytosine base editors.415

Canonical efforts based solely on protein engineering and directed evolution have416

helped diversify editing properties, however, these efforts are generally difficult to417

establish. Using our structure-based clustering methods, we discovered and profiled a418

suite of deaminases with distinct properties that can work both in plants and419

mammalian cells.420

Among the newly AI rational discovered and designed deaminases, we identified421

compacted Sdd7 and Sdd6 to show great promise for both therapeutic and agricultural422

applications. Sdd7 was capable of robust base editing in all tested species and had423

much higher editing activity than the most commonly used APOBEC/AID-like424

deaminases. Surprisingly, we found that Sdd7 was capable of efficiently editing425

soybean plants, which was a major limitation for cytosine base editing previously. We426

speculated that Sdd7, derived from the bacterium Actinosynnema mirum, may possess427

high activity at temperatures suitable for soybean growth, in contrast to the428

mammalian APOBEC/AID deaminases. While profiling Sdd6, we found that this429

deaminase was smaller and by default more specific than the other deaminases while430

maintaining high on-target editing activity. We believe that these newer discovery and431

engineering efforts will contribute to the development of bespoke genome editing432

tools, which will be more precise and specific to each therapeutic or breeding433

application.434

Advances in sequencing methods have propelled the discovery of new species435

and proteins. The advent of AI-assisted protein structure predictions in combination436

with growing numbers of sequencing efforts will further spark new enzyme discovery437

and enable even greater bioengineering efforts.438

Limitations of the study439

Due to the length and time constraints of this paper, we cannot fully explore the440

properties of all proteins in the SCP1.201 family and other family proteins. However,441

we believe that in future studies, there will be many surprises for these large and442
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unknown protein families.443
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Figure legends478

Figure 1. Protein clustering of deaminases based on structures predicted by479

AlphaFold2.480

(A) Workflow of protein clustering based on AlphaFold2-predicted structures. The481

structures of candidate re-annotated domain sequences were predicted by AlphaFold2482

and subsequently clustered based on structural similarities. Then, ssDNA and dsDNA483

cytidine deamination activities were experimentally tested in plant and human cells.484

(B) Structural similarity matrix to reflect similarities between 242 predicted protein485

(238 cytidine deaminases and 4 JAB) structures across 16 deaminase families and one486

outgroup. Different family proteins are distinguished by different colors; heat map487

color shades indicate the degree of similarity. (C) The classification of proteins into488

different deaminase families based on protein structure and labeled with different489

color modes.490

(D) Representative predicted structures for each of 16 deaminase clades.491
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Figure 2. The clustering and characteristics of SCP1.201 deaminases.492

(A) Classification of SCP1.201 deaminases based on protein structure. The JAB493

families are colored brown and regarded as an outgroup, and the tested deaminases494

are shown in red (single-strand editing), green (double-strand editing) or dark grey495

(no editing). Undefined deaminases in light grey await further functional analysis.496

(B) Predicted core structure of DddA by AlphaFold2.497

(C) Characteristics of the canonical structure of Ddd protein.498

(D) Predicted core structure of Sdd7 by AlphaFold2.499

(E) Characteristics of the canonical structure of Sdd protein.500

(F) Experimental evaluation of dsDNA deamination activity of Ddds at two501

endogenous sites in HEK293T cells. The edited bases used for calculating editing are502

highlighted in green.503

(G) Experimental evaluation of ssDNA deamination activity of Sdds at two504

endogenous sites in HEK293T cells. The edited bases used for calculating editing are505

highlighted in green.506

Data in (F) and (G) are representative of three independent biological replicates (n =507

3).508
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Figure 3. Evaluating newly discovered Ddd protein properties for use as base509

editors.510

(A) Editing efficiencies and editing windows of Ddd1, Ddd7, Ddd8, Ddd9 and DddA511

SCP1.201 dsDNA deaminases at two genomic target sites in HEK293T cells.512

(B) Plasmid library assay to profile context preferences of each Ddd protein in513

mammalian cells. Candidate proteins target and edit the “NC10N” motif.514

(C) Sequence motif logos summarizing the context preferences of Ddd1, Ddd7, Ddd8,515

Ddd9, and DddA as determined by the plasmid library assay.516

For all plots, dots represent individual biological replicates, bars represent mean517

values, and error bars represent the s.d. of three independent biological replicates (n =518

3).519
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Figure 4. Evaluating newly discovered Sdd proteins for use as base editors in520

plant and human cells.521

(A) Overall editing efficiencies of the Sdds and rAPOBEC1 across six endogenous522

target sites in rice protoplasts. The average editing frequencies using rAPOBEC1 at523

each target were set to 1 and frequencies observed with Sdds were normalized524

accordingly. Dots represent each of three individual biological replicates across six525

endogenous genomic sites.526

(B) Overview of using 12K-TRAPseq to perform high throughput quantification of527

the activities and properties of the Sdds and rAPOBEC1 in HEK293T cells.528

(C) Overview of the editing properties and patterns of the Sdds and rAPOBEC1 as529

evaluated by the 12K-TRAP library. Left panels, the editing efficiencies and editing530

windows of the deaminases. Right panels, a sequence motif logo reflecting the context531

preferences of the deaminases.532

(D) Evaluation of off-target effects using an orthogonal R-loop assay in rice533

protoplasts. Dots represent average on-target C-to-T conversion frequencies of three534

independent biological replicates across six on-target sites in rice in (A) versus535

average sgRNA-independent off-target C-to-T conversion frequencies across two536

ssDNA regions (OsDEP1-SaT1 and OsDEP1-SaT2) for each base editor.537

(E) On-target:off-target editing ratios for each base editor calculated from (D).538

(F) On-target:off-target editing ratios of Sdd6, rAPOBEC1-YE1, rAPOBEC1-YEE,539

rAPOBEC1, and hA3A tested across two on-target and three off-target sites in540

HEK293T cells.541

For (E) and (F), Dots represent individual biological replicates, bars represent mean542

values, and error bars represent the s.d. of three independent biological replicates (n =543

3). Data are presented as mean values ± s.d. P values were obtained using two-sided544

Mann-Whitney tests. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.545
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Figure 5. Engineering truncated Sdd proteins for use in animals and plants.546

(A) Engineering truncated Sdd proteins. Top panel, AlphaFold2-predicted structures547

of Sdd6, Sdd7, Sdd3, and Sdd9. Conserved regions are shown in cyan and truncated548

regions are shown in pink. Bottom panel, relative editing efficiencies of Sdds and549

their minimized version across two endogenous sites in rice protoplasts and two sites550

in HEK293T cells.551

(B) Theoretical packaging of a SaCas9-based CBE vector for packaging into a single552

AAV. Top panel, schematic diagram of APOBEC/AID-like deaminases, Sdds and their553

AAV vectors. Grayed deaminases are too large for single-AAV packaging. Bottom554

panel, schematic representation of Sdd-based AAV vectors.555

(C) Editing efficiency of mini-Sdd6 at two endogenous target sites in the MmHPD556

gene in N2a cells.557

(D) Editing efficiencies of mini-Sdd7, rAPOBEC1, hA3A, and hAID base editors at558

five endogenous target sites in soybean hairy roots.559

(E) Frequencies of mutations induced by mini-Sdd7 and hA3A in T0 stable soybean560

plant editing in cotyledons by canonical Agrobacterium tumefaciens. The data were561

collected by four independent biological experiments.562

(F) The genotypes of base edited soybean plants.563

(G) Phenotypes of soybean plants treated with carfentrazone-ethyl for 10-days. Left564

panel, wild-type soybean plant (R98). Right panel, base-edited soybean plant (C98).565

Bar=1 cm.566

For (A), (C) and (D), Dots represent individual biological replicates, bars represent567

mean values, and error bars represent the s.d. of three or four independent biological568

replicates.569
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STAR★Methods570

RESOURCEAVAILABILITY571

Lead contact572

Further information and requests for resources and reagents should be directed to and573

will be fulfilled by the Lead Contact: Caixia Gao (cxgao@genetics.ac.cn).574

Materials availability575

All unique/stable reagents generated in this study are available from the Lead Contact576

with a completed Materials Transfer Agreement.577

Data availability578

The deep amplicon sequencing data were deposited in the PRJNA915939,579

PRJNA915940, PRJNA915941, and PRJNA915942. All other data are available in580

the main paper or supplement.581

EXPERIMENTALMODELAND SUBJECT DETAILS582

E.coli transfection583

FastT1 E.coli competent cells were used for amplifying plasmid DNA. Transfected584

E.coli cells were grown at 37°C in Lysogeny Broth (LB) medium supplemented with585

100 mg/mL ampicillin or kanamycin overnight.586

Rice protoplast transfection587

For protoplasts transfection, we used the Japonica rice (Oryza sativa) variety588

Zhonghua11 to prepare protoplasts. Protoplast isolation and transformation were589

performed as described previously52. Plasmids (5 µg per construct) were introduced590

by PEG-mediated transfection. The transfected protoplasts were normally incubated at591

26 ℃ for 72 hours for fluorescence cell observation or DNA extraction.592

Mammalian Cell lines and culture conditions593
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Both human HEK293T cells (ATCC, CRL-3216) and mouse N2a cells (ATCC,594

CCL-131) were cultured in Dulbecco’s Modified Eagle’s medium (DMEM, Gibco)595

supplemented with 10% (vol/vol) fetal bovine serum (FBS, Gibco) and 1% (vol/vol)596

Penicillin-Streptomycin (Gibco) in a humidified incubator at 37 °C with 5% CO2.597

METHOD DETAILS598

Protein clustering and analyzing599

Protein sequences were downloaded from InterPro database53 and NCBI’s BLAST54600

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) on the NR database. HMM was utilized to601

annotate deaminase domains to reduce the accumulation of unrelated information by602

HMMER55. We randomly chose 15 proteins from each family and clustered their603

domain sequences with a threshold of 90% sequence identity and 90% coverage using604

CD-HIT56. Representatives of each cluster were selected for further analysis. High605

confidence protein structures were predicted by Alphafold v2.2.0 and filtered with606

average per-residue confidence metric pLDDT ≥ 70.607

Multiple sequence alignment was performed using Multiple Protein Sequence608

Alignment (MUSCLE)57. The phylogenetic tree was constructed using IQ-TREE 2609

(http://www.iqtree.org) with 1500 ultrafast bootstraps58. A low perturbation strength610

(-pers 0.2) and large number of stop iterations (-nstop 500) were set because of the611

short length of the deaminase domains. Structure alignment was performed based on612

normalized TM-score33. The structural similarity matrix was further clustered by613

Unweighted Pair Group Method with Arithmetic mean (UPGMA) and visualized by614

Figtree (http://tree.bio.ed.ac.uk/software/figtree/). Protein structure diagrams were615

made in PyMOL59.616

Deaminase synthesis and removal of redundant sequence617

We chose gene fragments encoding complete deaminase domains as well as extra N618

and C protein sequences for commercial synthesis (GenScript) (fig. S1). All of the619

candidate cytidine deaminases were codon optimized (rice and wheat or human and620

mouse). The toxin deaminase was split into two fragments and the split site was621
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selected according to DddA by protein structure alignment. The conserved protein622

structure was obtained through multiple alignment of predicted structure in PyMOL59,623

which helps to conduct the removal of redundant sequence.624

Plasmid construction625

For plant CBE vectors (maize ubiquitin-1 promoter-driven CBEs), synthesized626

deaminases were cloned into pnCas9-PBE vector (Addgene#98164), yielding vectors627

with Ubi-1::NLS-deaminase-linker-nCas9(D10A)-UGI-NLS::CaMV expression628

cassettes.629

For CBE vectors for mammalian cells (CMV promoter-driven CBEs), synthesized630

deaminases-SpCas9-2UGI were cloned into p2T-CMV-ABEmax-BlastR vector631

(Addgene#152989), yielding vectors with632

CMV::NLS-deaminase-linker-nCas9(D10A)-2xUGI-NLS::bGH expression cassettes.633

The DdCBE vectors including NLS, TALE array sequences, candidate cytidine634

deaminases, and UGI sequence were codon optimized for both human and mouse,635

synthesized commercially (Genscript), and cloned into pCMV_BE4max vector636

(Addgene#112093), yielding vectors with637

CMV::NLS-TALE-deaminase-UGI-NLS::bGH expression cassettes.638

The plant sgRNA vectors (rice U3 promoter drives sgRNA) were constructed as639

reported previously using the pOsU3 backbone (Addgene#170132)60. To construct640

human and mouse sgRNA vectors (human U6 promoter drives sgRNA), the hU6641

promoter was amplified and cloned into the pOsU3 backbone, followed by sgRNA642

target sequence cloning steps52.643

Plant SaCas9 vectors for off-target testing were constructed as reported644

previously42.645

To construct AAV vectors, the sequences between ITRs were synthesized (GenScript)646

and cloned into pX601 vector (Addgene#61591), followed by sgRNA target sequence647

cloning steps.648

To construct binary vectors for rice plant transformation, the candidate cytidine649

deaminases were codon optimized, synthesized commercially (GenScript), and cloned650
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into pH-nCas9-PBE vector (Addgene#98163), followed by sgRNA target sequence651

cloning steps52.652

To construct binary vectors for soybean hairy root transformation, NLS, candidate653

cytidine deaminases, linker, nCas9(D10A), UGI, P2A, mScarlet sequences were654

codon optimized, synthesized commercially (GenScript), and cloned into pBSE901655

(Addgene#91709) vector, followed by sgRNA target sequence cloning steps. To656

construct binary vectors for soybean transformation, the selection marker was657

replaced by the EPSPS sequence.658

Mammalian cell line transfection659

All the cells were routinely tested for Mycoplasma contamination with a Mycoplasma660

Detection Kit (Transgen Biotech). The cells were seeded into 48-well661

Poly-D-Lysine-coated plates (Corning) in the absence of antibiotic. After 16-24 hours,662

cells were incubated with 1 µL Lipofectamine 2000 (ThermoFisher Scientific), 300 ng663

vector with deaminases, and 100 ng sgRNA expression vector. For DdCBEs664

transfection, cells were incubated with 1 µL Lipofectamine 2000, 300ng TALE-L and665

300ng TALE-R. 72 hours later the cells were washed with PBS, followed by DNA666

extraction. For examining off-target effects by the R-loop assay, four vectors namely667

BE4max vector, SaCas9BE4max vector and the corresponding sgRNA vectors were668

co-transfected into cells36.669

TRAPseq library670

We used the sgRNA 12K-TRAPseq library for evaluation of base editor properties.671

We seeded 2×106 cells into 100 mm dish 20-hours before viral transduction. We672

transduced 500 µL of sgRNA lentivirus. For stably integrated cells, we used 1 µg/mL673

of puromycin (Gibco) to select. For each base editor, we seeded 2×106 cells into674

6-plates 24-hours before transfection. We transfected 15 µg of each CBE member675

plasmid DNA and 15 µg of Tol2 DNA with 60 µL of Lipofectamine 2000. Following676

24 hours after transfection, we changed new culturing media to contain 10 µg/mL677

blasticidin (Gibco). After another 3 days, we washed the cells, suspended and678

reseeded all cells in 10 µg/mL blasticidin-containing media. After 6 days, we679
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harvested all cells by washing with PBS then centrifuged and extracted DNA using680

Cell/Tissue DNA Isolation Mini Kit (Vazyme). For each member, we prepared681

sequencing reactions by applying 1.2 µg of DNA with a first set of primers following682

by barcoding and next-generating sequencing.683

DNA extraction684

For HEK293T cells and N2a cells, genomic DNAwas extracted with Lysis Buffer and685

Proteinase K with a Triumfi Mouse Tissue Direct PCR Kit (Beijing Genesand686

Biotech). For protoplasts, genomic DNA was extracted with a Plant Genomic DNA687

Kit (Tiangen Biotech) after 72 hours’ incubation. All DNA samples were quantified688

with a NanoDrop 2000 spectrophotometer (Thermo Scientific).689

Amplicon deep sequencing and data analysis690

Triumfi Mouse Tissue Direct PCR Kit (Beijing Genesand Biotech) was used for691

amplification of target sequence in HEK293T cells and N2a cells. Phanta Max Master692

Mix (Vazyme) was used for amplification of target sequence in plants.693

Nested PCR was used for amplification. In the first round PCR, the target region694

was amplified from genomic DNA with site-specific primers. In the second round,695

both forward and reverse barcodes were added to the ends of the PCR products for696

library construction. Equal amounts of PCR product were pooled and purified with a697

GeneJET Gel Extraction Kit (Thermo Scientific) and quantified with a NanoDrop698

2000 spectrophotometer (Thermo Scientific). The purified products were sequenced699

commercially using the NovaSeq or Miseq platform, and the sequences around the700

target regions were examined for editing events60. Amplicon sequencing was repeated701

three times for each target site using genomic DNA extracted from three independent702

samples. Analysis of base editing behaviour by NovaSeq and Miseq was performed as703

described previously60.704

For TRAP-seq analysis, we filtered NGS read depths of 12K TRAP below 50 and705

calculated the average editing efficiency at the corresponding surrogate target site706

inside the windows (from -10 to +27). In addition, we calculated the editing frequency707

for each NCN sequence motif and its proportions to evaluate context preferences.708
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Agrobacterium-mediated transformation of rice calli709

The Japonica rice (Oryza sativa) variety Zhonghua 11 was used for genetic710

transformation in this study. Binary vectors were introduced into Agrobacterium711

tumefaciens strain AGL1 by electroporation. Agrobacterium-mediated transformation712

of Zhonghua11 callus cells was conducted as reported61. Hygromycin (50 µg/ml) was713

used to select transgenic plants.714

Soybean hairy root transformation and plant transformation715

The soybean (Glycine max) variety Williams 82 was used to generate hairy roots.716

Binary vectors were introduced into Agrobacterium rhizogenes strain K599 by717

electroporation. Explants were allowed to grow and develop roots for around 20 days718

in germination medium. Transgenic hairy roots were generated without selection in719

10-12 days62. The soybean (Glycine max) variety Zhonghuang13 were used for720

generation of transgenic plants using Agrobacterium tumefaciens-mediated stable721

transformation. 10 mg/L glyphosate was used for selection during plant regeneration63.722

For phenotype identification of base-edited soybean, 0.3 mg/L carfentrazone-ethyl723

were added in rooting medium for selection.724

Plant mutant identification725

Genomic DNA of transgenic plants was extracted with DNA Quick Plant System726

(Tiangen Biotech). Specific primers were used to amplify and sequence the target727

sites as described previously60 (Supplementary Table 1) (BGI). T0 transgenic rice and728

soybean plants were examined individually.729

Statistical analysis730

All numerical values are presented as means ± s.d. Significant differences between731

controls and treatments were tested using the two-sided Mann-Whitney test, and P <732

0.05 was considered statistically significant, P < 0.01 was considered statistically733

extremely significant.734
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