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1.0 SUMMARY 

This research project addressed the problem of learning useful "deep" representations 

from unlabeled data. The major goal was to innovate new unsupervised deep learning 

algorithms capable of learning important semantic structure in the input data in a domain 

general way. At the conclusion of this project, these goals stand fulfilled. The lab 

produced a variety of new and influential learning algorithms including Independent 

Subspace Analysis (ISA); Reconstruction Independent Components Analysis (RICA); 

recursive neural networks; and recursive tensor networks, among others. These 

algorithms have posted state-of-the-art results across a number of domains and tasks, 

and have had impact on both academia and industry. 
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2.0 INTRODUCTION 

 

This research project addressed the problem of learning useful "deep" representations 

from unlabeled data. How can we learn succinct, higher-level representations of a variety 

of input data? The major goal was to innovate new unsupervised deep learning 

algorithms capable, ultimately, of learning important semantic structure in the input data 

in a domain general way. As evidence of this ability, we applied the models to video, 

text, and other modalities; and even to multiple modalities simultaneously. At the outset 

of the project, the promise of these algorithms was to allow general-purpose machine 

learning to be much more easily applied to problems in vision, audio understanding, text 

understanding, sensor understanding, and other problems, and achieve superior 

performance while requiring significantly less hand tuning. Instead of needing hand- 

engineered features developed through years of research, a generic deep learner would be 

able to achieve superior performance using large amounts of unlabeled and labeled data. 

 

Our approach relied on “deep learning” techniques, which learn many stages of nonlinear 

transformations. The learning process can be fully supervised, but can also leverage 

unsupervised data in a “pretraining” stage. Our algorithms were deployed on commodity 

hardware. A key method in our approach was to scale these algorithms to much greater 

sizes and apply them to much larger datasets than had previously been attempted. This 

required better algorithms specifically adapted to this scale, as well as large clusters of 

commodity computers and GPU processors. To evaluate the unsupervised learning 

component of the algorithms (which has become of less importance in the era of “big 

data”, see Discussion and Conclusions) we deployed advanced visualization techniques 

to understand invariance to transformations; compared learned representations to those in 

biological visual, auditory, and somatosensory cortex; and ran numerous control 

experiments investigating the impact of architecture, learning algorithms, and encoding 

methods. These methods are further discussed in Section 3.0. 

 

In Section 4.1 we discuss results from the variety of new and influential learning 

algorithms we developed, including ISA; RICA; recursive neural networks; and recursive 

tensor networks, among others. These have bested state-of-the-art results across a large 

range of domains including image recognition, auditory phoneme recognition, image 

segmentation, parsing, sentiment classification, knowledge base reasoning, video activity 

recognition, and multimodal audio-video and text-image learning. The breadth of tasks  

on which these techniques have been successful is unusual, and points to the largely 

domain general nature of these machine learning methods. As a mark of the impact of 

this work, the academic papers reporting our results have been cited many hundreds of 

times, and the methods have been reported in a variety of popular press venues including 

Wired and the New York Times. 

 

A key and distinctive feature of this grant was its focus on scaling: from the outset, our 

lab intended to push towards very large models using a combination of COTS hardware 

and GPU acceleration. Deep learning models do not naturally parallelize, so this scaling 

has required the introduction of a number of new algorithmic techniques. The hypothesis 

was that a simple algorithm running at huge scale would do better than a complex 
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algorithm that could only be run on smaller datasets. This idea has proven deeply 

impactful, from initial work showing that simple feature learning algorithms, if scaled 

massively, could substantially beat state-of-the-art algorithms, through multiple 10x size 

increases in the largest-ever trained networks, each associated with new record results. 

Indeed even in the short span of this grant, this idea has crossed into industry (based on 

our lab’s work at the Google Brain project), where massive deep networks are now 

deployed in products in a number of top tech companies. Particularly in industry, where 

“big data” has generated labeled datasets of previously unthinkable size, scaling has 

proven to be a central breakthrough emerging from this work. Section 4.2 outlines our 

results obtained through scaling. 

 

To guide the development of algorithms, we also embarked on a number of theory- 

focused projects aimed at a greater understanding of deep learning algorithms.  Efforts in 

this direction have ranged from Hessian-based invariance visualizations, to analytic 

investigations of the impact of architectural choices on selectivity and invariance. Our lab 

reported the first extensive quantitative comparison of learned representations from a 

variety of algorithms to those in biological primary visual, auditory, and somatosensory 

cortices. We also conducted a highly impactful study separating the effect of learning 

algorithm from encoding architecture in classification performance. A central theme 

emerging repeatedly from this work is the ultimate similarity of different unsupervised 

learning algorithms, despite widely differing formal justifications. Whereas it had 

previously been thought that differences in algorithm performance were largely 

attributable to differences in the learning algorithms (e.g., learning probabilistic 

generative models in RBMs; learning independent components in ICA; or learning 

cluster centroids in K-means), our work has shown that in fact 1) all formalisms match 

biological data equally well and 2) all formalisms produce learned filters supporting 

equal classification performance. Differences in classification performance arise, instead, 

from differences in how these features are encoded—the architecture of the system— 

rather than differences in the filters arising from the learning process. For example, 

RBMs use filters in a simple linear map followed by sigmoid nonlinearity, while sparse 

coding uses filters in an inference step that computes sparse activities—and this inference 

step—not differences in the learned filters—is primarily responsible for the better 

classification performance of sparse coding. As one particularly extreme version of these 

results, we showed that even completely random filters could support near state-of-the-art 

classification results when embedded in the right architecture. These insights further 

emphasize our focus on scaling, as the training algorithm has proven to be less important 

than other factors. Further details on our theoretical results are given in section 4.3. 

 

Section 5.0 sets out the conclusions arising from the research effort, discusses aspects of 

the original proposal that have changed over the course of the grant, and describes 

ongoing derivative work. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

 

Deep, layered, compositional representations are the key conceptual method underlying 

the variety of algorithms and methods we investigated in this grant. Deep learning 

algorithms build a feature hierarchy of gradually increasing complexity that can support a 

great variety of applications. Our methods can be divided into efforts aimed at new 

algorithms, larger scale, and greater understanding (theory). 

 

3.1 Novel algorithms 

 

We have introduced a variety of new models over the course of this grant, listed below. 

While containing novel aspects, all of these models are extensions of (and arose in 

dialogue with) prior work by a variety of groups. The primary evaluation for our new 

methods is classification performance on a practical task (or tasks) of interest. In keeping 

with the domain general promise of deep learning algorithms, our applications have 

spanned domains from image recognition to sentiment analysis, speech recognition, and 

natural language processing, surpassing the previous state-of-the-art in all of these areas. 

 Tiled convolutional neural networks [1], which relax the rigidly enforced 

translation invariance of the popular convolutional neural network model 

 Spatio-temporal Independent Subspace Analysis [2] which extends ISA to 

model video input and complex invariances 

 Deep energy models [3], which provide a formalism for probabilistic training of 

deep layered networks 

 Recursive neural networks [4, 5], in which deep networks with tree structures 

are recursively built up for each input example, to capture the recursion present 

in, eg natural language 

 Recursive autoencoders [6], which extend supervised recursive neural networks 

to the unsupervised setting 

 Dynamic pooling [7], which extends the commonly used pooling over a fixed 

neighborhood to a dynamically-sized neighborhood for use with variable length 

input (eg, natural language) 

 Similarity-based receptive field selection [8], an algorithm that learns local 

receptive fields based on pairwise similarity, replacing the typically hand-crafted 

local receptive field structure used in most algorithms. 

 Reconstruction Cost Independent Component Analysis [9], in which the hard 

orthonormality of standard ICA is replaced by a soft orthogonalization based on 

minimizing reconstruction error 

 Sparse filtering [10], a simplified feature learning algorithm with only a single 

hyperparameter 

 Matrix-vector recursive neural networks [11], which extend recursive neural 

networks to include both the standard vector encoding 

 Convolutional recursive neural networks [12], which combine convolution and 

recursion to achieve translation invariance and model recursive structure in, eg, 

images 

 Neural tensor networks [13], which further generalizes matrix-vector neural 
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networks 
 

3.2 Methods for deep learning at massive scale 

 

A key focus of the grant is on scaling deep learning methods to much larger models and 

datasets. To achieve this, we developed novel methods of parallelizing algorithms on 

commercial off the shelf hardware, including large clusters of CPUs, as well as GPU 

hardware [14]. We developed algorithms and optimization methods specifically aimed at 

large scale, including using K-means for unsupervised learning and removing the need 

for whitening at each layer via soft orthogonalization [9, 15, 16, 17]. 

 

3.3 Theory and control experimental methods 

 

While the primary evaluation of our novel methods is classification performance on a 

task of interest, we have also sought deeper understanding of deep learning algorithms. 

Towards this end we have occasionally employed more theoretical methods, including 

mathematical proofs of properties of architectures (eg, provable translation invariance  

and orientation selectivity in convolutional square pooling architectures with random 

weights [18]). We have also developed a novel test of the multimodal abilities of deep 

learning algorithms based on comparisons to neuroscientific data from mammalian 

visual, auditory, and somatosensory cortices [19]. We also directly compared the 

performance of different optimization techniques in the context of large scale models 

[17]. Finally, we developed control experiments to tease apart the relative contribution of 

different unsupervised learning algorithms (that generate a set of weight vectors in a deep 

hierarchy) as compared to encoding algorithms (that use a set of weight vectors to encode 

a new input example) [15]. 
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4.0 RESULTS AND DISCUSSION 

 

Our novel algorithms have obtained good performance in a broad range of tasks, which 

we detail in Section 4.1. We describe our performance gains obtained through achieving 

greater scale in Section 4.2. Finally Section 4.3 presents results from our theoretical 

analyses. 

 

4.1 Performance of novel algorithms 

 

In the ensuing, we divide our results by modality, first discussing visual applications, 

then natural language processing applications, and finally multimodal applications. 

 

4.1.1 Visual object recognition. A central thread of our research has concerned 

applications to visual object recognition problems. We now describe our results obtained 

for this class of tasks. We note that our large-scale efforts (often also aimed at object 

recognition) are described in Section 4.2. Here we describe our novel models that were 

applied to smaller, research-oriented datasets. 

 

In early work [1], we developed the tiled convolutional neural network model. 

Convolutional neural networks (CNNs) have been successfully applied to many tasks 

such as digit and object recognition. Using convolutional (tied) weights significantly 

reduces the number of parameters that have to be learned, and also allows translational 

invariance to be hard-coded into the architecture. We considered the problem of learning 

invariances, rather than relying on hardcoding. We proposed tiled convolution neural 

networks (Tiled CNNs), which use a regular “tiled” pattern of tied weights that does not 

require that adjacent hidden units share identical weights, but instead requires only that 

hidden units k steps away from each other to have tied weights. By pooling over 

neighboring units, this architecture is able to learn complex invariances (such as scale and 

rotational invariance) beyond translational invariance. Further, it also enjoys much of 

CNNs’ advantage of having a relatively small number of learned parameters (such as 

ease of learning and greater scalability). We provided an efficient learning algorithm for 

Tiled CNNs based on Topographic ICA, and showed that learning complex invariant 

features allows us to achieve highly competitive results for both the NORB and CIFAR- 

10 datasets. 

 

Next, we developed Deep Energy Models [3]. Deep generative models with multiple 

hidden layers have been shown to be able to learn meaningful and compact 

representations of data. Deep energy models use deep feedforward neural networks to 

model the energy landscapes that define probabilistic models. We are able to efficiently 

train all layers of the model simultaneously, allowing the lower layers of the model to 

adapt to the training of the higher layers, and thereby producing better generative models. 

We evaluated the generative performance of our models on natural images and 

demonstrated that this joint training of multiple layers yields qualitative and quantitative 

improvements over greedy layerwise training. We further generalized our models beyond 

the commonly used sigmoidal neural networks and showed how a deep extension of the 

product of Student-t distributions model achieves good generative performance. Finally, 
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we introduced a discriminative extension of our model and demonstrated that it 

outperforms other fully-connected models on object recognition on the NORB dataset. 

 

We applied deep learning methods to text detection and character recognition in scene 

images with unsupervised feature learning [20, 21]. Reading text from photographs is a 

challenging problem that has received a significant amount of attention. Two key 

components of most systems are (i) text detection from images and (ii) character 

recognition, and many recent methods have been proposed to design better feature 

representations and models for both. We instead applied large-scale deep learning 

algorithms for learning the features automatically from unlabeled data–and showed that 

they enable highly effective classifiers for both detection and recognition to be used in a 

high accuracy end-to-end system. Our method attained exceptional performance, far 

surpassing the previous state of the art. 

 

Finally, we developed algorithms for processing video data [2]. Much work on action 

recognition has focused on adapting hand-designed local features, such as SIFT or HOG, 

from static images to the video domain. We instead used unsupervised feature learning as 

a way to learn features directly from video data. More specifically, we developed an 

extension of the Independent Subspace Analysis algorithm to learn invariant spatio- 

temporal features from unlabeled video data. We discovered that, despite its simplicity, 

this method performs surprisingly well when combined with deep learning techniques 

such as stacking and convolution to learn hierarchical representations. By replacing hand- 

designed features with our learned features, we achieved classification results superior to 

all previous published results on the Hollywood2, UCF, KTH and YouTube action 

recognition datasets. On the challenging Hollywood2 and YouTube action datasets we 

obtain 53.3% and 75.8% respectively, which are approximately 5% better than the current 

best published results. Importantly, prior methods addressed these different datasets 

individually, while our approach could support good performance on all of them 

simultaneously, pointing to the domain-general promise of unsupervised learning 

methods. 

 

4.1.2 Natural language processing. Another strong thread of our research has been 

novel algorithms for natural language processing tasks. We now describe our results in 

this vein. 

 

A key model class that we introduced is the recursive neural network [4]. Initially, we 

applied this to learning continuous phrase representations and syntactic parsing. Natural 

language parsing has typically been done with small sets of discrete categories such as 

NP and VP, but this representation does not capture the full syntactic nor semantic 

richness of linguistic phrases, and attempts to improve on this by lexicalizing phrases 

only partly address the problem at the cost of huge feature spaces and sparseness. To 

address this, we introduced a recursive neural network architecture for jointly parsing 

natural language and learning vector space representations for variable-sized inputs. At 

the core of our architecture are context-sensitive recursive neural networks (CRNN). 

These networks can induce distributed feature representations for unseen phrases and 

provide syntactic information to accurately predict phrase structure trees. Most 
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excitingly, the representation of each phrase also captures semantic information: For 

instance, the phrases “decline to comment” and “would not disclose the terms” are close 

by in the induced embedding space. This system achieves an unlabeled bracketing F- 

measure of 92.1% on the Wall Street Journal dataset for sentences up to length 15. 

 

We next introduced a novel machine learning framework based on recursive 

autoencoders [6] for sentence-level prediction of sentiment label distributions. Our 

method learns vector space representations for multi-word phrases. In sentiment 

prediction tasks these representations outperform other state-of-the-art approaches on 

commonly used datasets, such as movie reviews, without using any pre-defined sentiment 

lexica or polarity shifting rules. We also evaluated the model’s ability to predict 

sentiment distributions on a new dataset based on confessions from the experience 

project. The dataset consists of personal user stories annotated with multiple labels 

which, when aggregated, form a multinomial distribution that captures emotional 

reactions. Our algorithm can more accurately predict distributions over such labels 

compared to several competitive baselines. 

 

We introduced our novel dynamic pooling algorithm [7] in the context of a paraphrase 

detection task. Paraphrase detection is the task of examining two sentences and 

determining whether they have the same meaning. In order to obtain high accuracy on 

this task, thorough syntactic and semantic analysis of the two statements is needed. We 

presented a method for paraphrase detection based on recursive autoencoders (RAE). Our 

unsupervised RAEs are based on a novel unfolding objective and learn feature vectors for 

phrases in syntactic trees. These features are used to measure the word- and phrase-wise 

similarity between two sentences. Since sentences may be of arbitrary length, the 

resulting matrix of similarity measures is of variable size. We developed a novel dynamic 

pooling layer which computes a fixed-sized representation from the variable-sized 

matrices. The pooled representation is then used as input to a classifier. Our method 

outperforms other state-of-the-art approaches on the challenging MSRP paraphrase 

corpus. 

 

Based on the limitations of standard recursive neural networks, we introduced recursive 

matrix-vector spaces [11]. Single-word vector space models are very successful at 

learning lexical information. However, they cannot capture the compositional meaning of 

longer phrases, preventing them from a deeper understanding of language. We introduced 

a recursive neural network (RNN) model that learns compositional vector representations 

for phrases and sentences of arbitrary syntactic type and length. Our model assigns a 

vector and a matrix to every node in a parse tree: the vector captures the inherent 

meaning of the constituent, while the matrix captures how it changes the meaning of 

neighboring words or phrases. This matrix-vector RNN can learn the meaning of 

operators in propositional logic and natural language. The model obtains state of the art 

performance on three different experiments: predicting fine-grained sentiment 

distributions of adverb-adjective pairs; classifying sentiment labels of movie reviews and 

classifying semantic relationships such as cause-effect or topic-message between nouns 

using the syntactic path between them. 
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Knowledge bases provide applications with the benefit of easily accessible, systematic 

relational knowledge but often suffer in practice from their incompleteness and lack of 

knowledge of new entities and relations. Much work has focused on building or 

extending them by fi nding patterns in large unannotated text corpora. In contrast, we 

developed an algorithm to complete a knowledge base by predicting additional true 

relationships between entities, based on generalizations that can be discerned in the given 

knowledgebase. We introduced the neural tensor network (NTN) model [13] which 

predicts new relationship entries that can be added to the database. This model can be 

improved by initializing entity representations with word vectors learned in an 

unsupervised fashion from text, and when doing this, existing relations can even be 

queried for entities that were not present in the database. Our model generalizes and 

outperforms existing models for this problem, and can classify unseen relationships in 

WordNet with an accuracy of 75.8%. 
 

Finally, we developed a novel approach to natural language parsing [22]. Natural 

language parsing has typically been done with small sets of discrete categories such as 

NP and VP, but this representation does not capture the full syntactic nor semantic 

richness of linguistic phrases, and attempts to improve on this by lexicalizing phrases or 

splitting categories only partly address the problem at the cost of huge feature spaces and 

sparseness. Instead, we introduce a Compositional Vector Grammar (CVG), which 

combines PCFGs with a syntactically untied recursive neural network that learns 

syntactico-semantic, compositional vector representations. The CVG improves the PCFG 

of the Stanford Parser by 3.8% to obtain an F1 score of 90.4%. It is fast to train and 

implemented approximately as an ef fi cient reranker it is about 20% faster than the current 

Stanford factored parser. The CVG learns a soft notion of head words and improves 

performance on the types of ambiguities that require semantic information such as PP 

attachments. 
 

Overall, our results in natural language processing have shown the promise of deep 

learning methods applied to these domains, and generated renewed interest in deep 

learning methods in the NLP community. 
 

4.1.3 Speech recognition. While not a major focus of our efforts, we have also applied 

deep learning to speech recognition tasks. Work on deep neural networks as acoustic 

models for automatic speech recognition (ASR) have demonstrated substantial 

performance improvements. We introduced a model which uses a deep recurrent auto 

encoder neural network to denoise input features for robust ASR [23]. The model is 

trained on stereo (noisy and clean) audio features to predict clean features given noisy 

input. The model makes no assumptions about how noise affects the signal, nor the 

existence of distinct noise environments. Instead, the model can learn to model any type 

of distortion or additive noise given sufficient training data. The model is competitive 

with existing feature denoising approaches on the Aurora2 task, and outperforms a 

tandem approach where deep networks are used to predict phoneme posteriors directly. 
 

4.1.4 Multimodal tasks. We evaluated a number of algorithms on tasks from multiple 

modalities, or on directly multimodal tasks. 
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While unsupervised feature learning is effective at learning representations that perform 

well on image, video and audio classification, many feature learning algorithms are hard 

to use and require extensive hyperparameter tuning. We developed sparse filtering [10], a 

simple new algorithm which is efficient and only has one hyperparameter, the number of 

features to learn. In contrast to most other feature learning methods, sparse filtering does 

not explicitly attempt to construct a model of the data distribution. Instead, it optimizes a 

simple cost function – the sparsity of l2-normalized features – which can easily be 

implemented in a few lines of MATLAB code. Sparse filtering scales gracefully to 

handle high-dimensional inputs, and can also be used to learn meaningful features in 

additional layers with greedy layer-wise stacking. We evaluate sparse filtering on natural 

images, object classification (STL-10), and phone classification (TIMIT), and show that 

the method works well on a range of different modalities. 

 
 

In another application, we focused on combining color and depth information. Advances 

in 3D sensing technologies make it possible to easily record color and depth images 

which together can improve object recognition. Most previous methods relied on very 

well-designed features for this new 3D modality. We introduced a model based on a 

combination of convolutional and recursive neural networks (CNN and RNN) for 

learning features and classifying RGB-D images [12]. The CNN layer learns low-level 

translationally invariant features which are then given as inputs to multiple, fixed-tree 

RNNs in order to compose higher order features. RNNs can be seen as combining 

convolution and pooling into one efficient, hierarchical operation. Our main result is that 

even RNNs with random weights compose powerful features. The model obtains state of 

the art performance on a standard RGB-D object dataset while being more accurate and 

faster during training and testing than comparable architectures such as two-layer CNNs. 

 

 

Finally, we applied deep learning methods to audio/video multimodal tasks [24]. We 

presented a series of tasks for multimodal learning and showed how to train a deep 

network that learns features to address these tasks. In particular, we demonstrated cross 

modality feature learning, where better features for one modality (e.g., video) can be 

learned if multiple modalities (e.g., audio and video) are present at feature learning time. 

Furthermore, we showed how to learn a shared representation between modalities and 

evaluated it on a unique task, where the classifier is trained with audio-only data but 

tested with video-only data and vice-versa. We tested our methods on the CUAVE and 

AVLetters datasets with an audio-visual speech classification task, demonstrating 

superior visual speech classification on AVLetters and effective multimodal fusion. 
 

Taken together, our results across a great variety of tasks demonstrates the potential of 

deep learning to address complex, multimodal data and successfully perform a variety of 

real-world perception tasks. 
 

4.2 Results from achieving greater scale 

A key hypothesis of our grant was that even simple models would have good 

performance if run at massive scale on big datasets. We detail results from this line of our 



11 
Approved for Public Release; Distribution Unlimited  

work in this section. 
 

Our first effort in this area showed that even very simple unsupervised learning 

algorithms could attain high performance if run at scale [16]. A great deal of prior 

research focused on improving (typically, increasing the complexity of) algorithms for 

learning features from unlabeled data. And indeed, much progress was made on 

benchmark datasets like NORB and CIFAR by employing increasingly complex 

unsupervised learning algorithms and deep models. In our experiments, however, we 

showed that several very simple factors, such as the number of hidden nodes in the 

model, is as important to achieving high performance as the choice of learning algorithm 

or the depth of the model. Specifically, we applied several off-the-shelf feature learning 

algorithms (sparse auto-encoders, sparse RBMs and K-means clustering, Gaussian 

mixtures) to NORB and CIFAR datasets using only single-layer networks. We then 

performed a detailed analysis of the effect of changes in the model setup: the receptive 

field size, number of hidden nodes (features), the step-size (“stride”) between extracted 

features, and the effect of whitening. Our results show that large numbers of hidden 

nodes and dense feature extraction are as critical to achieving high performance as the 

choice of algorithm itself—so critical, in fact, that when these parameters are pushed to 

their limits, we achieved state-of-the-art performance on both CIFAR and NORB using 

only a single layer of features. More surprisingly, our best performance is based on K- 

means clustering, which is extremely fast, has no hyper-parameters to tune beyond the 

model structure itself, and is very easy implement. Despite the simplicity of our system, 

we achieve performance beyond all previously published results on the CIFAR-10 and 

NORB datasets (79.6% and 97.0% accuracy respectively). The promising results from 

this initial study led us (and others) to the conclusion that scale matters, often even more 

than the learning algorithm or model. 

 

To pursue greater scale, we developed new algorithms specifically aimed at overcoming 

barriers to scalability. For large deep network architectures the number of parameters can 

grow quadratically in the width of the network, thus necessitating hand-coded “local 

receptive fields” that limit the number of connections from lower level features to higher 

ones (e.g., based on spatial locality in images). To remove the need for such hand-coded 

modality-specific knowledge, we developed a fast method to choose these connections 

that may be incorporated into a wide variety of unsupervised training methods [8]. 

Specifically, we choose local receptive fields that group together those low-level features 

that are most similar to each other according to a pairwise similarity metric. This 

approach allows us to harness the advantages of local receptive fields (such as improved 

scalability, and reduced data requirements) when we do not know how to specify such 

receptive fields by hand or where our unsupervised training algorithm has no obvious 

generalization to a topographic setting. This method allowed us to use even simple 

unsupervised training algorithms to train successful multi-layered networks that achieved 

state-of-the-art results on CIFAR and STL datasets: 82.0% and 60.1% accuracy, 

respectively. 

 

Another major barrier to scaling is the “whitening” preprocessing step common to a 

number of deep learning algorithms. One commonly used unsupervised learning 
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algorithm, Independent Component Analysis, requires an orthonormality constraint to be 

enforced, which makes it difficult to learn overcomplete features. In addition, ICA is 

sensitive to whitening. These properties make it challenging to scale ICA to high 

dimensional data. We developed a robust soft reconstruction cost for ICA that allows us 

to learn highly overcomplete sparse features even on unwhitened data [9]. Our 

formulation reveals formal connections between ICA and sparse autoencoders, which 

have previously been observed only empirically. Our algorithm can be used in 

conjunction with off-the-shelf fast unconstrained optimizers. We show that the soft 

reconstruction cost can also be used to prevent replicated features in tiled convolutional 

neural networks. Using our method to learn highly overcomplete sparse features and tiled 

convolutional neural networks, we obtained competitive performance on a wide variety 

of object recognition tasks, and state-of-the-art test accuracies on the STL-10 and 

Hollywood2 datasets. 

 

We also investigated the best optimization approach in a large scale, distributed context. 

The predominant methodology in training deep learning advocates the use of stochastic 

gradient descent methods (SGDs). Despite its ease of implementation, SGDs are difficult 

to tune and parallelize. These problems make it challenging to develop, debug and scale 

up deep learning algorithms with SGDs. We showed that more sophisticated off-the-shelf 

optimization methods such as Limited memory BFGS (L-BFGS) and Conjugate gradient 

(CG) with line search can significantly simplify and speed up the process of pretraining 

deep networks [17]. In our experiments, the difference between LBFGS/CG and SGDs 

are more pronounced if we consider algorithmic extensions (e.g., sparsity regularization) 

and hardware extensions (e.g., GPUs or computer clusters). Our experiments with 

distributed optimization supported the use of L-BFGS with locally connected networks 

and convolutional neural networks. Using L-BFGS, our convolutional network model 

achieved 0.69% on the standard MNIST dataset, a state-of-the-art result among 

algorithms that do not use distortions or pretraining. 
 

With these advances in hand, we attempted the first major attempt at massive-scale deep 

learning [14]. We considered the problem of building high-level, class-specific feature 

detectors from only unlabeled data. For example, is it possible to learn a face detector 

using only unlabeled images? To answer this, we trained a massive 9 layered locally 

connected sparse autoencoder with pooling and local contrast normalization on a large 

dataset of images (the model has 1 billion connections, the dataset has 10 million 

200x200 pixel images downloaded from the Internet). We trained this network using 

model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 

cores) for three days. Our experimental results revealed that it is possible to train a face 

detector without having to label images as containing a face or not. Control experiments 

showed that this feature detector is robust not only to translation but also to scaling and 

out-of-plane rotation. We also found that the same network is sensitive to other high-level 

concepts such as cat faces and human bodies. Starting with these learned features, we 

trained our network to obtain 15.8% accuracy in recognizing 20,000 object categories 

from ImageNet, a leap of 70% relative improvement over the previous state-of-the-art. 

This result decisively demonstrated the benefits of scaling. 
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4.3 Theoretical results and control experiments 

While most of our efforts were aimed at achieving better performance, we also conducted 

work aimed at a greater understanding of deep learning algorithms and their behavior. 

This section describes our efforts to understand—and ultimately improve—deep learning 

systems. 

 

Two anomalous results in the literature demonstrated that certain feature learning 

architectures can perform very well on object recognition tasks, even without any 

training of the feature weights. In this theoretical work [18] we posed the question, why 

do random weights sometimes do so well? We proved that the answer lies in the 

architecture: certain convolutional pooling architectures are provably frequency selective 

and translation invariant, even with random weights. Based on this we demonstrated the 

viability of extremely fast architecture search by using random weights to evaluate 

candidate architectures, thereby sidestepping the time-consuming learning process. This 

work also showed that a surprising fraction of the performance of certain state-of-the-art 

methods can be attributed to the architecture alone, arguing against the learning algorithm 

per se as the site of performance differences between algorithms. 

 

A vital element of deep learning and unsupervised feature learning is its domain general 

promise: a good algorithm might be expected to work without alteration on data from a 

variety of modalities like vision, audition, and natural language processing. We sought to 

directly evaluate the ability of a variety of unsupervised learning algorithms to learn good 

representations of different input data, by comparing the learned representations to those 

observed in the perceptual systems of biological organisms. We found that a number of 

unsupervised feature learning algorithms can account for features of normal neural 

receptive field properties across primary visual, auditory and somatosensory cortices 

[19]. Furthermore, we showed that the same algorithms explain the observed alterations 

in receptive field properties following experimental manipulation of an animal’s early 

environment. These results make a contribution to theoretical neuroscience: Based on 

these modeling results we propose these models as phenomenological models of 

receptive field plasticity during an organism’s lifetime. And due to the success of the 

same models in multiple sensory areas, we suggest that these algorithms may provide a 

constructive realization of the theory, first proposed by Mountcastle [1], that a 

qualitatively similar learning algorithm acts throughout primary sensory cortices. For the 

purposes of this grant, though, they revealed an important finding: all current deep 

learning algorithms fit biological data indistinguishably well. This is further evidence that 

the specific details of the learning algorithm matter less than the scale at which it is 

applied, and the architecture into which the learned features are placed. 

 

Finally, in highly influential work, we directly investigated the relative importance of 

learning versus encoding [15]. While vector quantization (VQ) has been applied widely 

to generate features for visual recognition problems, much work has focused on more 

powerful methods. In particular, sparse coding has emerged as a strong alternative to 

traditional VQ approaches and has been shown to achieve consistently higher 

performance on benchmark datasets. Both approaches can be split into a training phase, 

where the system learns a dictionary of basis functions, and an encoding phase, where the 
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dictionary is used to extract features from new inputs. In this work, we investigate the 

reasons for the success of sparse coding over VQ by decoupling these phases, allowing us 

to separate out the contributions of training and encoding in a controlled way. Through 

extensive experiments on CIFAR, NORB and Caltech 101 datasets, we compare several 

training and encoding schemes, including sparse coding and a form of VQ with a soft 

threshold activation function. Our results show not only that we can use fast VQ 

algorithms for training, but that we can just as well use randomly chosen exemplars from 

the training set. Rather than spend resources on training, we find it is more important to 

choose a good encoder—which can often be a simple feed forward non-linearity. By 

choosing the best combination of learning algorithm and encoding algorithm, we 

obtained state-of-the-art performance on both the CIFAR and NORB object recognition 

datasets. 
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5.0 CONCLUSIONS 

 

At the conclusion of this project, the goals outlined in the introduction stand fulfilled. A 

key finding of this report is that deep learning methods are capable of state-of-the-art 

performance across a huge variety of tasks in multiple modalities. This result has 

overturned key intuitions held across the machine learning, computer vision, speech 

recognition, and natural language processing communities: not only are hand-designed 

features no longer necessary, they are in fact now inferior to using deep learning 

methods. Researchers are thus now able to focus resources on modality-independent 

improvements, as better algorithms, greater scale, and faster optimization methods can be 

expected to improve state-of-the-art performance across a range of domains. 

 

Based on our results from scaling algorithms up, we also conclude that pushing toward 

greater scale—both in model size and in dataset size—offers an important direction for 

increased performance. This trend towards “big data” and massive models, with very 

high capacity, trained in a purely supervised manner, is likely to continue to drive new 

applications in industry. 

 

Our theoretical results all support the conclusion that, at present, the available 

unsupervised learning algorithms learn representations of equal quality. This overturned 

the widely-held intuition that more sophisticated (particularly probabilistic) learning 

methods were responsible for increasing performance in applications. We also conclude 

that current evaluation standards in the field, which focus on end-to-end system 

performance and permit simultaneous changes to many aspects (scale, learning algorithm, 

optimization method) of an algorithm, do not allow strong conclusions to be drawn as to 

the relative merits of single aspects of these algorithms. All that can be said is that an 

overall system combination is superior. Hence, we see a continued role for careful 

controlled experiments to tease apart the contributions of each design decision. 

 

While many of the ideas and goals from the beginning of this project have proven durable 

throughout, certain parts of the project have evolved as our understanding has grown. 

Notably, at the outset of the project, we placed emphasis on using unlabeled data and 

unsupervised learning methods to reduce the amount of labeled data required for good 

performance. At the end of the project, this basic motivation remains intact— 

unsupervised deep learning methods are still best able to leverage very few labeled 

training examples—however, there has been a massive increase in available labeled data 

in many real world problems. This trend towards “big data” in industry has meant that 

interest has shifted from unsupervised learning to supervised learning in massive models. 

Unsupervised pretraining remains a useful regularizer to prevent overfitting in the regime 

where there are few labeled examples, but the challenge posed by “big data” is very 

different: the available datasets are so large that in fact underfitting is the main challenge. 

This trend has led to massive models, with very high capacity, trained in a purely 

supervised manner. Our recent work reflects this shift in focus. 

 

The work arising from this project is continuing in a variety of paths. This project has 

supported the creation of a tutorial (the Stanford UFLDL Wiki), which has become a 
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widely used learning resource for those wishing to engage with deep learning. Students 

supported by this grant have gone on to positions at leading academic institutions (CMU; 

Princeton) and industry (Google; Baidu; Coursera). At the tail end of the grant, and 

continuing now, our lab has started a project aimed at vision-based autonomous driving. 

Leveraging massive labeled datasets collected on instrumented vehicles, this work aims 

to use deep learning at great scale to build low cost, low power, highly accurate 

perception systems for autonomous driving. It has been a great pleasure, and we are very 

grateful, to have contributed to the development of deep learning systems, now of use 

across a great variety of applications, which have taken another small step toward closing 

the gap between man and machine. 
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List of Acronyms 
 

ASR Automatic Speech Recognition  

CNN Convolutional Neural Networks 

COTS Commercial Off The Shelf 

CRNN Context-sensitive Recursive Neural Networks 

CVG Compositional Vector Grammar 

GPS  Graphics Processing Unit 

HOG Histogram of Oriented Gradients 

ICA Independent Component Analysis 

ISA IndependentSubspace Analysis 

NLP Natural Language Parsing 

NORB NYU Object Recognition Benchmark 

NP Noun Phrases 

NTN Neural Tensor Network 

PCFG Probabilistic Context Free Grammar 

PP Prepositional Phrases 

RAE Recursive AutoEncoders 

RBM Recursive Boltzman Machine 

RICA Reconstruction Independent Components Analysis 

RNN Recursive Neural Networks 

SIFT Scale Invariant Feature Transform 

VP  Verb Phrases 

 

CIFAR-10 Canadian Institute for Advanced Research funded dataset which has 10 classes of 

objects with 6000 images each 

Hollywood2 Action dataset based on movie excerpts 
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