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Various data mining techniques combined with sequence motif information in the pro-
moter region of genes were applied to discover functional genes that are involved in
the defense mechanism of systemic acquired resistance (SAR) in Arabidopsis thaliana.
A series of K-Means clustering with difference-in-shape as distance measure was ini-
tially applied. A stability measure was used to validate this clustering process. A deci-

sion tree algorithm with the discover-and-mask technique was used to identify a group
of most informative genes. Appearance and abundance of various transcription factor
binding sites in the promoter region of the genes were studied. Through the combina-
tion of these techniques, we were able to identify 24 candidate genes involved in the
SAR defense mechanism. The candidate genes fell into 2 highly resolved categories, each
category showing significantly unique profiles of regulatory elements in their promoter
regions. This study demonstrates the strength of such integration methods and suggests
a broader application of this approach.

Keywords: Integrated data mining; motif identification; classification; systemic acquired
resistance; microarray.
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1. Introduction

One of the greatest challenges in modern biology is to understand how the

expression pattern of thousands of genes in a living organism is regulated and how

expression patterns are related to one another. High throughput determination

of expression profiles has been prevalent in the past decade, particularly with the

advent of microarray technology. This has motivated researchers to utilize tools,

techniques, and algorithms, developed through many years of data mining and

knowledge discovery research, to search for useful patterns in the gene expression

data. This is exemplified by the abundance of computerized data analysis tools

that have become available to perform clustering, pattern recognition, and motif

identification in genes.

Generally, none of these individual data analysis tools are able to completely

reveal the true nature of gene regulation and co-expression in a living cell. Microar-

ray gene expression data is subject to multiple sources of variation. These include

biological variation, which may be influenced by environmental, developmental, or

genetic factors; technical variation, which may be influenced by sample prepara-

tion, hybridization, array platform, or probe design; and measurement variation,

which can be influenced by the array scanner or label fluorescence.1 To cope with

such instability in the data, many normalization techniques have been developed,

but these techniques can only ease rather than solve the problems completely. As a

consequence, the confidence in knowledge derived from the data by a single analysis

tool is dependent on the extent of noise and bias.

One of the most important questions in data mining is how to understand

the scope and minimize the impact of such noise and bias within the data. In

this paper, we describe an integrative approach in mining microarray gene expres-

sion data by using a software package developed in-house called BioMiner (http://

iit-iti.nrc-cnrc.gc.ca/projects-projets/biomine e.html), which contains a suite of

tools for functional genomics. The domain problem we studied was the regula-

tion of a defense response in Arabidopsis thaliana, a small flowering mustard plant,

using data generated by microarray analysis.

The microarray analysis addressed two key variables: the first was the effect of

salicylic acid (SA), a key elicitor of pathogen-induced systemic acquired resistance

(SAR) in plants; and the second variable was the effect of mutating the NPR1

(Non-expresser of Pathogenesis Related) gene, a key regulator of SAR.

The establishment of SAR, an inducible defense response that leads to broad-

spectrum systemic resistance, requires an endogenous increase in SA levels.2 How-

ever, the exogenous application of low concentrations of SA, as used in this study,

can also trigger a SAR response. In Arabidopsis, the NPR1 gene is essential for

SA-mediated SAR.3 Plants with npr1 mutations are therefore compromised in their

ability to launch an SAR response. Currently there is no evidence to suggest that

NPR1 binds DNA directly to regulate transcription. Rather, all research to date

suggests that NPR1 indirectly regulates the expression of genes involved in SAR
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by interacting with DNA-binding transcription factors in the nucleus such as those

of the TGA family of bZIP transcription factors.4–9

Other than its interaction with the TGA family of bZIP transcription factors,

NPR1 has not been shown to interact with any other transcription factors. However,

it has been shown that the expression of several members of the WRKY family of

transcription factors is dependent on NPR1.10 Furthermore, many disease-related

genes contain promoters that are highly enriched with the W box, the DNA binding

site for WRKY transcription factors.11 It is therefore possible that NPR1 also

mediates the SAR response through other transcription factors such as those of the

WRKY family.

In this study, our objective was to demonstrate the advantage of an integrated

data mining approach in knowledge discovery from the microarray gene expression

profiles and to identify genes that are regulated by NPR1 in response to SA during

the onset of SAR. This can be achieved by examining the expression profiles of genes

altered in wild type (WT) and mutant (npr1-3) plants in response to SA. We first

explain the material used and the method applied. The paper then continues with

a detailed description of our knowledge discovery process that is given in Sec. 3.

Section 4 contains discussion and Sec. 5 is future directions of our research.

2. Materials and Methods

2.1. Array design and hybridization

Double-stranded amplicons averaging 600bp in length were designed by PBI’s

annotation project for Arabidopsis thaliana (http://bioinfo.pbi.nrc.ca/bioinfo/

Current projects/Arabidopsis Annotation/index.html) and generated from Ara-

bidopsis thaliana ecotype Columbia genomic DNA. These amplicons were quan-

tified, and purified to produce 12662 reporters representing the predicted loci of

9899 genes based on the TAIR sequence viewer dataset last annotated on Nov. 6,

2003 (ftp://ftp.arabidopsis.org/home/tair/Maps/seqviewer data/). An amount of

0.1 to 0.2 µg/µl dilutions of the amplicons were spotted (100µm diameter) in dupli-

cate on CMT-GAPS slides (Corning, Cat# 40004) using a ChipWriterPro (Virtek)

equipped with quill pins (ArrayIt).12

Wild-type Arabidopsis thaliana (L.) Heynh. ecotype Columbia and the npr1-3

mutant were grown with a 10-h-light/14-h-dark photoperiod at 22◦C/18◦C. Three

to four week-old plants were either sprayed with water or with 0.5mM salicylic

acid and samples were collected at two time points afterwards (2 or 8 hour for SA,

8 hour for water) (Fig. 1). Spraying of SA/water for these time points was arranged

such that tissue collection was always performed at the same time of day, thereby

minimizing any circadian or temperature-regulated effects. Rossette leaf tissue was

collected and immediately frozen in liquid N2. Total RNA was extracted from frozen

tissue using RNeasy mini columns with an on-column DNase treatment (Qiagen).

Forty to 70 µg of total RNA was used as template to directly label cDNA with

either cy3 or cy5 fluorophores and hybridized for 16 to 18 hours at 37◦C in DIGeasy
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mutant (8h)
mutant (2h)

WT (2h)
WT (8h)

I IIIII

V

IV

mutant (0h) mutant (8h)
mutant (2h)

WT (0h)
WT (2h)

WT (8h)

I IIIII

Fig. 1. Experimental design. The Roman numerals are the experiment IDs. The number in brackets
refers to the number of hours plants were treated with salicylic acid prior to tissue collection. (0 h)
refers to plants treated with water.

Hyb (Roche). Arrays were washed 3 times in 1XSSC, 0.1% SDS at 50◦C. Four

hybridizations, representing biological replicates, were performed for each experi-

ment (Fig. 1), 2 hybridizations for which the control was labeled with cy3, and 2

hybridizations for which the control was labeled with cy5 (i.e. reciprocal labeling).

2.2. Data collection and pre-processing

Arrays were scanned at 10 µm resolution in a ScanArray 4000 scanner

(PerkinElmer). Spot location and intensity quantitation were performed using

QuantArray version 3.0. Adaptive spot quantitation was employed and median

intensity values were used for subsequent analysis. Localized background subtrac-

tion was performed using the BASE software platform13 and resulting signals from

each channel were normalized using the intensity-dependent LOWESS method.14

Paired channel intensity values (background subtracted and normalized) from repli-

cate hybridizations were analyzed to identify statistically significant up- or down-

regulated genes using SAM (Significance Analysis of Microarrays) software.15 Delta

values were adjusted to achieve a false discovery rate of 5% ± 0.60% for each

experiment (Table 1). A total of 738 target amplicons (reporters) representing 685

annotated loci (TAIR) were identified by SAM as showing significant change in

expression between the control and experimental samples in at least one experi-

ment (Table 1).

Expression values approaching saturation (> 50,000) were considered unreliable

and therefore filtered. Log(2) ratios of all the eight replicates (4 biological replicates

Table 1. Summary of results for significance analysis of microarrays.

Significant Significant Significant Predicted False Discovery Delta
Experiment Reporters Up-regulated Down-regulated False Positives Rate (%) Value

I 19 3 16 0.87 4.56 1.04
II 43 4 39 2.41 5.60 1.21
III 344 174 170 16.89 4.91 1.32
IV 404 271 133 20.32 5.03 1.38
V 64 64 0 3.21 5.01 1.42
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Fig. 2. Knowledge discovery process.

with 2 technical replicates each) were used in the subsequent knowledge discovery

process.

3. Knowledge Discovery Process

The knowledge discovery process is illustrated in Fig. 2. Groups of gene reporters

were determined using K-Means clustering (unsupervised learning) methods.

A group of informative genes were identified from the entire dataset through pattern

recognition (a supervised learning method detailed below) and compared to inter-

esting clusters generated by K-Means. Interesting motifs in the upstream promoter

region were identified for each gene and compared with other genes in the same

cluster. A combination of results of informative genes, gene expression profiles and

motif information constituted a representative gene reporter for each cluster. These

representative gene reporters were used as seeds for regrouping the data through

K-Means to determine more refined clusters.

3.1. Search for informative genes through pattern recognition

The input data (Fig. 3) for pattern recognition consists of a matrix containing

p attributes (gene reporters) for n cases (samples) and an attribute vector contain-

ing labels for all cases. From the perspective of data-mining, the gene reporters in

this study are considered as attributes and each replicate of an experiment condi-

tion is considered as a case (p = 738 and n = 16). The labels correspond to the

case identifications, i.e. experimental conditions that are used for discrimination by

pattern recognition. Based on the design of microarray experiments, we conducted

two sets of classifications (Table 2). One was the ratio based on the mutant over

wild type (RA = mutant/WT) that resulted in two classes, 0 h and 8 h. This classi-

fication was to identify gene reporters whose ratios were significantly changed after

treatment with SA for 8 hours. The other classification was the ratio of treatment

with SA for 8 hours over non-treated (RB = 8 h/0 h). The two classes were mutant
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Fig. 3. Format of input data for classification.

Table 2. Two classification experiments. Both experiments
were done based on ratios of expression values indicated in
the row labeled as “Values”. The J4.8 decision tree algo-
rithm was used to find a classifier that distinguishes the
two classes based on their ratio values.

Experiments RA RB

Values mutant/WT h8/h0
Classes h0 WT

h8 mutant

and wild type. This classification was to identify gene reporters that responded to

SA treatment differently between the two classes.

The agglomerative hierarchical clustering16 with the Euclidean distance measure

was used to ensure the validity of the partitioning properties between the classes

(Fig. 4). These results showed that the two classes in each process were truly dis-

tinguishable, and our design of the supervised learning process was feasible.

A search for the informative genes among the 738 gene reporters was done using

the J4.8 decision tree algorithm.17 A “discover-and-mask” technique18 was applied

in this process. Figure 5 shows an example of a decision tree and its conversion

to rules (see legend of Fig. 5) that separate the two classes (0 h and 8 h, see RA

in Table 2). The corresponding gene reporter (e.g. At2g31880-1025 in Fig. 5) was

identified as an informative gene of this dataset and then masked (removed). The

same analyses were performed for the remainder in the dataset until (i) a drop

in the percentage accuracy of the resulting model (decision tree) in the prediction

of participating cases; or (ii) no more identification of informative genes that are

able to distinguish the two classes. The same technique has been used to identify

informative genes in other applications.18,19

In this study, we exhaustively applied the “discover-and-mask” technique on

both datasets for classification. Namely, all potential models that were able to

distinguish the two classes in the dataset were identified and the discovered genes

were ranked (Table 3). Sometimes, a decision tree involved more than one gene.

We denote the single gene model as a simple model and a multi-gene model as a

complex model.
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Fig. 4. Hierarchical clustering of RA (a) and RB (b). See text for details. The vertical lines on
the left locate the separating branches in the tree for the two clusters.

Fig. 5. A decision tree. Total number of instances = 16, all correctly classified. The rule is
“if At2g31880-1025 is larger than −0.921789, then this plant was untreated, otherwise this plant
was treated with SA for 8 hours”.

Table 3. Number of informative gene reporters identified using the “discover-and-mask” tech-
nique. “Simple” = models involve only one gene. “Complex” = models involve more than one
gene.“Total models” = simple + complex, “Simple and 100%” = number of gene reporters (and
models) identified through simple models with 100% training accuracy.

Experiment Total Models Total Reporters Simple Models Simple and 100%

RA 293 484 106 40
RB 392 604 181 68
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A total of 40 gene reporters were identified through the RA classification exper-

iment, and 68 through the RB that were involved in simple models with 100%

training accuracy. A potential group of gene reporters that are related with both

the mutation and SA treatment can be identified through intersection of RA and RB

results with 100% training accuracy. Consequently, we were able to identify 15 gene

reporters belonging to this category and denote this group of gene reporters as the

most informative.

3.2. Search for significant gene clusters

The input data in this section was formatted differently from the earlier sec-

tion. Individual gene reporters were the cases and the experiment conditions were

the attributes. There is no attribute vector of labels for unsupervised learning.

Replicates of the same attributes were pooled and a mean of such replicates was

used in the clustering process.

Due to the nature of these five experiments, the data were categorized into two

groups. The first group was the time series data that contains experiments I, II

and III. The second group was the effect of SA within each of the two strains of

Arabidopsis thaliana and contained experiments IV and V. We also considered all

five experiments together in the following clustering processes.

Initially, a series of K-Means clustering processes was conducted with K rang-

ing from 2 to 40.20 For a distance measure, we used difference-in-shape (Eq. 1),21

for time series data and the entire five experiments, but coefficient of divergence

(Eq. 2),22 for the second group.
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• A = {j | j ∈ {1 . . . n}∧ attribute value Xi[j] is not missing};

• p = 1 or n, c = [1 . . . n];

• where both Xi[j] and Xk[j] are not missing value, ‘c’ is the number of variables for

which neither Xi[j] nor Xk[j] is missing and ‘n’ is the total number of variables

for certain attribute. ‘p’ is the denormalized coefficient that could be 1 or n.

The quality of each separated cluster was computed based on the Silhouettes

value23 and cluster stability24 over various clustering processes. Silhouettes value is

determined based on the comparison of tightness of each cluster and its separation

from the others,23 while a stability value is determined by the repeatability of a
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Fig. 6. Variation of the general Silhouettes and general stability values with the number of clusters
in a clustering process.

clustering over a series of clustering processes.24 The Silhouettes value and stability

value of individual clusters were used to compute the general Silhouettes and general

stability values of each clustering process, respectively. The general Silhouettes value

usually decreases as the number of clusters exceeds a certain threshold. However the

general stability does not have this property, but have scattered maxima (Fig. 6).

By considering both general Silhouettes and general stability values, we were able

to identify an optimal number of clusters for each dataset. We were particularly

interested in the clusters of genes whose mean expression levels (centroids) were

significantly up- or down-regulated for the mutant (experimental) as compared to

the wild type (control) through the progression of the SA treatment time course, or

the SA treated (8 h) vs. non-treated (0 h). The clusters that contain genes that have

no significant change in the expression levels were not considered even though they

have higher values of Silhouettes and/or stability values. As a result, we selected

two clusters to be further considered in the subsequent analysis. They are labeled

as up and down with respect to the time series experiments.

In comparing the gene reporters and stability among all up clusters from the

three datasets (1: I, II, III; 2: IV, V; and 3: I, II, III, IV, V), we noticed a conserved

list of genes between the clusters generated by dataset 1 and dataset 3. A non-

redundant list of reporters was combined from the two clusters. A list for down

clusters was generated similarly (Table 4).

3.3. Search for interesting sequence motifs in the promoter region

A general survey of 368 plant transcription factor consensus binding sites was per-

formed using GenericBioMatch, a modified pattern match algorithm for biological

sequences,25 for the promoter region (1000bp upstream of putative transcription

start site) of the genes appearing in each cluster. We found 193 plant motifs that

commonly appeared in this set of genes (data not shown). Since the NPR1 gene has

been found to interact with and enhance the binding of members of the TGA-bZIP

transcription factors4–6 and the expression of several members of WRKY family

of transcription factors is dependent on NPR110, we are particularly interested in
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Table 4. Appearances of W, Wy and ASF-1 motif elements in 1000 bp upstream sequence (both
strands) in all genes represented by the microarray, significant genes, and clustered genes. The

integer on the motif line indicates the number of sequences that contain the specific motif. In the
“up” and “down” columns, “A” is for the clusters generated before application of selected seeds,
while “B” is for the clusters generated afterward. “SEF” = statistical expected frequency, which is
calculated based on nucleotide distribution probabilities in the promoter sequences. “All” = entire
9899 genes used in the microarray, “All significant” = dataset used in this paper. “RA×RB” =
genes in both RA and RB lists (Table 3) with 100% training accuracy.

Up Down
All

SEF All significant A B A B RA × RB

Number of Sequences N/A 9899 685 25 12 15 12 15
TTGAC N/A 8366 592 20 9 13 10 14
TTGACY N/A 6363 470 13 7 11 8 11
TGACG N/A 5276 389 12 7 9 7 10

Motif index

W box 2.04 2.28 2.32 1.72 1.83 3.20 3.33 2.73
Wy box 1.01 1.22 1.29 0.84 1.00 1.93 2.00 1.47
ASF-1 motif 1.02 0.89 0.91 0.60 0.75 0.93 1.00 1.07

the cis-acting elements bound by these two families of transcription factors. The

TGA-bZIP transcription factors bind to a TGACG sequence element called the

ASF-1 motif.26 The WRKY transcription factors bind to a TTGAC sequence ele-

ment called a W box.27 Most W boxes analyzed so far are followed with either C or

T (represented as Y).27 We denote these more stringent W boxes as a Wy box. The

number of genes whose promoter regions contain such motifs is listed in Table 4.

In Table 4, the W box index is defined as the mean number of W boxes

that appear in the 1000bp upstream region (both sense and anti-sense strands)

of a group of genes. The Wy box index and ASF-1 motif index are defined

similarly.

3.4. Identification of representatives for co-expressed genes

as seeds for re-clustering

Based on motif results (Table 4), and published information regarding the possible

roles of these elements in regulating SAR-related genes (see introduction), a strategy

was devised for selecting representative genes as seeds to re-cluster. From each of

the three datasets (1: I, II, III; 2: IV, V; and 3: I, II, III, IV, V), we identified two

clusters: up and down. Gene reporters that were present in the up clusters generated

by all three datasets were chosen as candidate seeds for the up cluster. Candidate

seeds for the down cluster were identified similarly. These candidate seeds were

further screened based on appearance of W box and ASF-1 motif, and ranking in

the list of informative reporters. Genes that contained both W box and ASF-1 motif

and ranked the highest were selected (Table 5).

A series of clustering, which generated 2 to 40 clusters, were performed for

the three datasets using the two representative genes as seeds. We denote these two
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Table 5. Representative genes. “RA × RB” stands for intersection of RA and RB with 100%
training accuracy (Table 3), namely the list of most informative genes.

Cluster Reporter W Box ASF-1 Motif Wy Box Informative Gene List

Up At2g43560-1813 1 1 0 RA × RB
Down At3g11340-5623 2 2 2 RA × RB

0.40

0.60

0.80

1.00

10 15 20 25 30 35

Number of clusters

0.40

0.60

0.80

1.00

A

B

S
ta

b
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it

y
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Fig. 7. Stability of up, down cluster and general stability during re-clustering process of two
datasets. A: time series dataset (I, II, III); B: entire dataset (I, II, III, IV, V). Vertical bars
indicate where the up and down clusters were taken for the final two clusters (Fig. 8). Labels in
panel B also apply to panel A.

seeds as master seeds to distinguish them from additional seeds. In order to perform

clustering for more than two clusters, additional seeds were selected from those first

occurred in each dataset. Both master seeds represent respective clusters with the

highest stability in a series of clustering processes (Fig. 7). This demonstrates the

robustness of the chosen seeds in distinguishing their cluster of genes from other

genes in the dataset. A union of genes appearing in the up clusters of datasets

one (I, II, III) and three (I, II, III, IV, V) produced a non-redundant list of genes.

The down cluster was generated similarly. The resulting size of both new clusters

decreased (Table 4), while all of the member genes in each respective cluster had

co-clustered prior to the use of master seeds. Figure 8 shows the expression profiles

of genes in these two clusters.

3.5. Analysis of motif results

Although there is significant overlap between the W boxes and ASF-1 motif, their

frequencies of occurrence, as indicated by their index values, were markedly different

from each other among the various populations of genes. We found the majority

(10 out of 12) of genes in the down cluster contained at least one W box in their

promoter region. WRKY proteins bind to sequences with an invariant TGAC core,

which is often preceded by a T.11 Before the application of the selected seeds, this

TTGAC motif appears 48 times on both strands of the 13 promoters, with an

average of 3.7 copies per promoter (not considering the promoters that do not have

this motif). The statistical expectation for a random distribution of the pentamer
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Fig. 8. Expression profile of genes in up and down cluster. Red indicates up-regulation. Green
indicates down-regulation. Black dots on the left denote that these genes were also identified as
the most informative genes (RA × RB, Table 3) through pattern recognition.

is 2.04 copies per 1000bp (on both strands). Thus, W boxes were highly enriched

in the promoters of the down cluster genes. Using the most stringent definition of

WRKY binding site, a TTGACY (Y = C/T, named Wy box in Table 4) hexamer

motif,27 we still detected a significant over representation of 29 potential binding

sites on 11 of the 15 promoters, an average of 2.6 (as compared to 1.02 by random

distribution) copies per promoter. This property did not change after application of

selected seeds. Because the down cluster represents genes that were down regulated

in the mutant in response to SA, our data would indicate that WRKY transcription

factors, to a certain degree, mediate the regulatory control exerted by NPR1 on

SAR-responsive genes in the wild type plant.

Conversely, the ASF-1 motif appears under-represented in the promoters of

the genes from up cluster, with an average frequency of 0.75 copies per promoter.

Furthermore, even though it shares the same TGAC core with W box, this motif

appears to be under-represented throughout the genome; the calculated index for

all genes represented on the array is 0.89, when its statistically expected frequency

(SEF) is 1.01 copies per promoter (Table 4). However, the frequency of this motif

in the promoters of genes from down cluster appears to be similar to SEF.

3.6. Integration of results from various stages of the knowledge

discovery process

Through repeated clustering, we were able to identify and confirm 12 genes that

were markedly down-regulated in the mutant as compared to the wild type following

SA treatment and 12 genes that were up-regulated. Using the “discover-and-mask”

technique, we were able to identify 15 highly informative genes (both in RA and RB

with 100% training accuracy, Table 3), the majority of which were down-regulated.

In these 15 most informative gene reporters, 8 also appeared in the down cluster

(Fig. 8) and had higher W box and ASF-1 motif indices when compared to
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those not in this group (Table 6). Among the remaining 7 genes, only 3 were in the

up cluster (Fig. 8) and had a low W box index (1.00). This is consistent with

the results in Table 4. All reporters in the final list of the two clusters were also

identified as informative by the “discover-and-mask” technique and appeared in

both RA and RB list (Table 3) except for At1g15820-15522 that appeared only in

RA list.

4. Discussion and Conclusion

We have demonstrated the strength of integrated data mining in the knowledge

discovery process of microarray gene expression data of Arabidopsis thaliana. We

have shown that the combination of motif information with both unsupervised and

supervised learning methods in knowledge discovery, and the use of representative

genes as seeds for re-clustering are advantageous and novel approaches to mine

biological data. The use of representative genes as seeds improved the quality of

clustering analysis. This re-clustering process refined the two clusters.

This study has identified genes whose expression patterns were specifically

altered in the mutant in response to the SAR defense mechanism as initiated by SA

treatment. These genes represent candidates that could function as indirect targets

for regulation by NPR1, and our study warrants further investigation into their

roles for the SAR response. The fact that the promoters of down-regulated genes

are highly enriched in W boxes suggests that they could be activated indirectly by

NPR1 through WRKY proteins.

This study also showed that the ASF-1 motif is under-represented in the up clus-

ters of genes identified in this study. Of further interest, the ASF-1 motif index of

our entire dataset (representing 9899 genes) is lower than the statistically predicted

frequency (0.89 vs. 1.01), suggesting that ASF-1 motifs are generally under repre-

sented in the promoter regions of the genome. However, in the down cluster, the

ASF-1 motif index appears to be slightly higher than the genome wide average.

Furthermore, 8 genes in the down cluster, which were also identified as the most

informative by the “discover-and-mask” technique, are further enriched for ASF-1

motif (1.38, Table 6). The higher ASF-1 motif index in the most informative

down-regulated genes and its under-representation in the up cluster suggests that

NPR1 may mediate transcriptional activation through the TGA family of bZIP

transcription factors during the SAR response. This finding is supported by earlier

work.28

Table 6. The difference in motif indices between two groups of the most informative
genes. Eight reporters appeared in down cluster, while the other seven did not.

In Down? W Box Index ASF-1 Motif Index Wy Box Index

Yes 3.88 1.38 2.13
No 1.43 0.71 0.71
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We initially considered a transcription factor (TF) in our seed selection as sug-

gested by Zhu et al.29 This attempt was unsuccessful due to the fact that, in this

experiment, the expression change of most TFs was not very significant. Among the

1411 TFs from AGRIS (http://arabidopsis.med.ohio-state.edu/AtTFDB/, Nov. 6,

2003), 14 appear in the 685 genes used in this study, but none are among the final

list of either up or down clusters. This implies that a group of co-expressed genes, if

they are also co-regulated, do not necessarily co-express with the TF that regulates

this group of genes. There could be a delay between the expression of TFs and the

clusters of genes that the TFs regulate, which cannot be resolved in this study. The

regulatory module networks identified by Sagel et al. in yeast clearly demonstrate

this phenomenon.30

In conclusion, we have demonstrated the advantages of an integrative data min-

ing approach that consists of clustering with various distance measure algorithms,

pattern recognition, and motif information in the promoter region of a group of

genes. This study has shown the strength of such combined approaches in knowledge

discovery related to the SAR defense mechanism in Arabidopsis thaliana. Through

this integration, we were able to identify 12 informative genes that were down

regulated and 12 up-regulated genes in the npr1-3 mutant plants in response to

treatment with SA. The promoter regions of the down-regulated genes are highly

enriched with W-box and Wy-box motifs, while that of up-regulated genes are

deprived of W-box. Throughout the entire genome of Arabidopsis thaliana, the

ASF-1 motif appears to be under represented. In the up-regulated group of genes,

this motif is even further deprived. However, a group of 8 most informative down-

regulated genes are enriched with the ASF-1 motif as compared with its genome

wide distribution.

5. Future Direction

This study has clearly shown the strength of integrating various data mining

techniques. Further study may include the development of new computational

approaches to discover potential, currently unknown common motifs in the pro-

moter region of a cluster of genes. Integration of gene expression profiles and certain

known functionality of co-expressed genes and discovery of common motifs would

promote the annotation of previously un-described genes. Our current study is on

functional genes related with SAR defense mechanism in Arabidopsis thaliana, this

same technique can be applied to other domains including biomedical research.
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