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Abstract—Modeling the interface region of a protein complex
paves the way for understanding its dynamics and functionalities.
Existing works model the interface region of a complex by using
different approaches, such as, the residue composition at the
interface region, the geometry of the interface residues, or the
structural alignment of interface regions. These approaches are
useful for ranking a set of docked conformation or for building
scoring function for protein-protein docking, but they do not
provide a generic and scalable technique for the extraction of
interface patterns leading to functional motif discovery. In this
work, we model the interface region of a protein complex by
graphs and extract interface patterns of the given complex in
the form of frequent subgraphs. To achieve this we develop a
scalable algorithm for frequent subgraph mining. We show that
a systematic review of the mined subgraphs provides an effective
method for the discovery of functional motifs that exist along the
interface region of a given protein complex.

In our experiments, we use three PDB protein structure
datasets. The first two datasets are composed of PDB structures
from different conformations of two dimeric protein complexes:
HIV-1 protease (329 structures), and triosephosphate isomerase
(TIM) (86 structures). The third dataset is a collection of
different enzyme protein structures from the six top-level enzyme
classes, namely: Oxydoreductase, Transferase, Hydrolase, Lyase,
Isomerase and Ligase. We show that for the first two datasets, our
method captures the locking mechanism at the dimeric interface
by taking into account the spatial positioning of the interfacial
residues through graphs. Indeed, our frequent subgraph mining
based approach discovers the patterns representing the dimeriza-
tion lock which is formed at the base of the structure in 323 of the
329 HIV-1 protease structures. Similarly, for 86 TIM structures,
our approach discovers the dimerization lock formation in 50
structures. For the enzyme structures, we show that we are able
to capture functional motifs (active sites) that are specific for
each of the six top-level classes of enzymes through frequent
subgraphs.

Index Terms—Bio-Informatics, Functional Motifs, Interfacial
Network, Frequent Subgraph Mining
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S
TRUCTURAL dynamics and functions of many proteins

are primarily controlled by the interaction of residues at

the interface region. Because of this, studying and analyzing

the interface region of a protein is crucial for understanding

the underlying protein machinery [1]. In existing literatures,

many research works have provided a detailed analysis

of the interface region of various proteins. However, in

the majority of these works protein interface region is

represented through different spatial features; examples

include interface area, interface polar residue abundance,

hydrogen bonds, solvation free energy gain from interface

formation, and binding energy [2]. Such a feature-based

representation—although useful for ranking of predicted

docked conformation of protein-protein complexes or for

building scoring function for docking [3]–[5]—is not much

useful for understanding protein machinery. This is due to

the fact that a feature-based representation of interface region

works like a black-box without providing much information

regarding the functionalities of the protein. So, alternative

representations of interface regions are needed for providing

a better understanding of functional motifs, which are

responsible for carrying out protein’s intended functionalities.

Sequence motifs often correspond to the functional regions

of a protein, such as, catalytic sites, binding sites, structural

motifs, etc. and they are considered to be the building blocks

of protein sequences [6]–[8]. These motifs are conserved

across different proteins and possess highly discriminative

features for predicting the functions of a protein [9]. However,

sequence motifs are limited in their representation ability, so

in recent years, networks are being used for representing bio-

logical data. Besides, network theories are also being used to

gain insights into complex biological problems [10]–[13]. The

concept of network motif has also emerged, which has been

hypothesized to play an important role in carrying out the key

functionalities that are performed by the entities in a biological

network [14]–[17]. A very recent study [18] showed that the

distribution of network motifs influences the organization of

metabolic networks. However, the methodologies for network

motif discovery [14], [17] yield sub-networks that are frequent

in a given network, and hence they are not useful for finding

conserved sub-networks at the interface of a set of proteins.

Mining frequent sub-networks (FSM) is an important and

well studied task in data mining field; it is defined as finding

all subgraphs that appear frequently in a graph dataset given

a minimum frequency threshold. There are two variants of
___________________________________________________________________
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Fig. 1. (a) A graph database with 3 graphs (b) All the frequent subgraphs of the graph database in (a) using a minimum support value of 2. If we want to
obtain only the induced frequent subgraphs, g1-g5, g7, and g13 are frequent for a minimum support of 2.

this problem—in the first variant [19]–[25], the dataset has a

collection of many graphs, and in the second variant [26]–[28],

the dataset contains a single large graph. For the latter variant,

the frequency of a subgraph is counted as its multiplicity in

the large graph. On the other hand, the earlier variant of graph

mining counts the frequency of a subgraph over the collection

of graphs in the dataset. Thus, for this variant of graph mining,

the overall frequency of a subgraph pattern is the number of

distinct graphs in which the pattern appears. In this work, we

represent the interface region of oligomeric proteins as a set

of networks and then use a novel frequent sub-network mining

algorithm for finding functional motifs in the interface region.

As we discover patterns that span over a set of networks, the

algorithms belonging to the first variant are relevant for our

task and forthcoming references of frequent graph mining in

this paper pertain to the first variant of FSM.

Mining sub-networks from a set of networks is defined as

follows: Given a graph dataset G, and a minimum support

πmin, obtain the set of subgraphs whose frequency is higher

than πmin. The set of frequent subgraphs are generally repre-

sented by F . In Figure 1(a), we show a graph dataset with 3

graphs and in Figure 1(b) we show the frequent subgraphs

of this dataset considering πmin = 2. Over the years, a

good number of algorithms for frequent sub-network mining

(FSM) have been proposed, examples include Subdue [19],

AGM [20], FSG [21], gSpan [22], FFSM [29], DMTL [24],

and Gaston [25]. Distributed solutions of FSM [28], [30]

which runs on map-reduce platform have also been proposed.

Existing FSM algorithms are proven to be effective for

finding frequent subgraphs from input graphs which are small

and sparse. However, for general graphs, FSM task is not

scalable due to the inherent complexity of this task. In fact,

Horváth et al. have shown that FSM cannot be solved in

output polynomial time [31]. The lack of scalability of FSM

task has also been shown empirically. For instance, FSM has

been applied on a small dataset (only 3 graphs) of protein-

protein interaction (PPI) graphs, each graph having 2154

nodes on average; but the most efficient of the existing FSM

algorithms cannot mine all the frequent subgraphs from this

dataset in days of running even with 100% support value [32].

Distributed solution, such as [30] can successfully overcomes

the lack of scalability issues arising from the large number of

graphs in the dataset, but they still remains not scalable when

the graphs in the dataset are dense and large. Our investigation

finds that any reasonable construction of interface networks on

real-life protein data yields large and dense graphs for which

existing methods simply fail to find interface patterns in an

effective manner.

Existing FSM methods suffer from some other serious

limitations when they are used for mining interface patterns.

First, existing subgraph mining methods require that the

user selects a minimum support threshold value [22], [24],

[25]. However, when the main objective of subgraph mining

is to discover functional motifs from a number of protein

conformations, this support value is generally unknown. This

is due to the fact that the spatial orientation of the residues in

a functional motif across the conformations fluctuates owing

to the dynamics of the motif, and a part of the motif may be

occluded in some subgraphs, making the motif infrequent. So,

choosing a large support threshold may miss a significant part

of a functional motifs; on the other hand, choosing a small

support threshold may return too many random subgraphs

that are frequent simply by chance. The second limitation

is that existing algorithms [22], [24], [25] enumerate all the

frequent subgraphs starting from size-1 and thus they return

a large number of unnecessary patterns. But, for functional

motifs, the subgraph size of interest is known in many cases;

if not known, a reasonable initial guess of the motif size

can be made from the knowledge of protein’s family and

functionalities. So, a novel frequent subgraph mining method

is needed which is scalable, not dependent on the minimum

support threshold, and able to return frequent subgraphs of a

user-specified size.

In this work, we propose a graph mining framework which

is particularly suited for the discovery of functional motifs

from the interface graphs of a large collection of protein

structures. Our proposed approach uses spatial proximity for

creating the interfacial network dataset, so, the proteins in a

dataset need to have high structural similarity (low structural

diversity). For instance, these structures could either be struc-

tural conformations of the same protein (see Sections V-A and

V-B) or they could represent multiple proteins from the same

functional group (see Sections V-C). The proposed method

first creates a dataset of interface graphs, each representing

a structure from the database. It then uses a novel sampling

based method for mining subgraphs of a given size which are

frequent over the graph database with a high probability. In

the proposed method, subgraph size is user-defined, which can

be chosen from user’s domain knowledge of the protein under
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investigation.

To validate the effectiveness of our method we perform

three independent experiments. In the first two experiments,

we use two different datasets of protein conformations: (1)

HIV-1 protease (329 conformations) and (2) Triosephosphate

isomerase (TIM) (86 conformations) and find frequent sub-

graphs of appropriate size from the given conformations of

these proteins. The subgraphs that we mine from the interface

networks enable us to discover the functional motifs in the

above pair of proteins. The first protein, HIV-1 protease is

essential for the life cycle of human immunodeficiency virus

(HIV) which causes acquired immunodeficiency syndrome

(AIDS) in humans. The second protein, TIM is the fifth

enzyme in the glycolysis pathway that produces energy in

all living organisms. For both proteins, the large number of

structures represent a sample of different conformational states

of the proteins that are solved experimentally and they can

explain the functional dynamics and functional motifs of the

protein [33]. The 10 most frequent subgraphs mined from the

HIV-1 protease using our proposed method collectively capture

a 16-residue functional motif, named dimerization lock (shown

in Figure: 2(a)) that exists in the interface of the protein.

Among these frequent subgraphs, our method retrieves 15 out

of 16 residues in 6 subgraphs, 14 residues in 2 subgraphs and

13 residues in the remaining 2 subgraphs. Similarly, frequent

subgraphs from TIM retrieve dimerization lock that exists in

TIM conformations (shown in Figure: 2(b)).

In the third experiment, we use the Dobson and Doig

(D&D) benchmark dataset for enzymes (691 enzymes out of

1178 protein structures) [34]. As enzymes are known to be

macromolecular catalysts, discovering functional motifs at the

interface region of these proteins is paramount to understand-

ing how they bind and interact with other macromolecules to

perform their functions. The subset of enzymes in D&D is

composed of groups of proteins from the six top-level classes

of enzymes namely: Oxydoreductase, Transferase, Hydrolase,

Lyase, Isomerase and Ligase. We use our approach for mining

function specific motifs for each of these classes of enzymes.

Specifically, for each class, We mine up to 200 most frequent

patterns within a size range of 5, 6, 7 and 8 nodes per pattern.

By checking the overlap between the set of patterns mined

from each class, we show that our approach discovers function

specific patterns from each functional class of enzymes. We

also show that these patterns include catalytic sites of enzymes

that have been identified in the literature.

We claim the following contribution in this paper:

• We propose a method to map the interfacial region of a

protein as a network for the discovery of functional motifs

by using a sampling based frequent subgraph (FSM)

mining method.

• We validate the utility of the proposed FSM method by

capturing the locking mechanism at the dimeric interface

from different conformations of HIV and TIM protein

structures.

• We also observe that our sampling based FSM method

enables us to capture function specific patterns at the

interface region of 3D structures of proteins belonging

to the same functional group.

II. BACKGROUND

Let G(V,E) be an interfacial network, where V is the set of

vertices and E is the set of edges. For our problem, the vertices

are set of residues and the edges are connection among the

residues based on their pair-wise physical proximity. Specifi-

cally, if the inter- and intra-chain distance between a pair of

residue is smaller than a user defined distance threshold, an

edge is added between the corresponding pair of vertices. By

construction, the interfacial networks are simple graph which

do not have self-loops or multi-edges. Besides, these graphs

are undirected, because the Euclidean distance is a symmetric

metric. Finally, for all reasonable choices of inter and intra

chain distance threshold, these graphs are connected.

A labeled graph G(V,E, L,Ψ) is a graph1 for which the

vertices and the edges have labels that are assigned by a

labeling function, Ψ : V ∪E → L where L is a set of labels. In

our case, only vertices have labels, which is a value between 1
to 20, corresponding to the 20 amino acid residues of proteins.

A graph G′ = (V ′, E′) is a subgraph of G (denoted as

G′ ⊆ G) if V ′ ⊆ V and E′ ⊆ E. A graph G′ = (V ′, E′) is a

vertex-induced subgraph of G if G′ is a subgraph of G, and

for any pair of vertices va, vb ∈ V ′, (va, vb) ∈ E′ if and only

if (va, vb) ∈ E. In other words, a vertex-induced subgraph

of G is a graph G′ consisting of a subset of G’s vertices

together with all the edges of G whose both endpoints are in

this subset. In this paper, we have used the word subgraph

for abbreviating vertex-induced subgraph. If G′ is a (induced

or non-induced) subgraph of G and |V ′| = ℓ, we call G′ a

ℓ-subgraph of G.

Let G = {G1, G2, . . . , Gn} be an interfacial network

database, where each Gi ∈ G, ∀i = {1 . . . n} represents

a labeled, undirected and connected graph. The support-set

of the graph g is t(g), and t(g) = {Gi : g ⊆ Gi ∈
G}, ∀i = {1 . . . n}. This set contains all the graphs in G
that have a subgraph isomorphic to g. The cardinality of the

support-set is called the support of g. g is called frequent if

support ≥ πmin, where πmin is predefined/user-specified min-

imum support (minsup) threshold. Given the graph database G,

and minimum support πmin, the task of a frequent subgraph

mining (FSM) algorithm is to obtain the set of frequent

subgraphs (represented by F). While computing support, if

an FSM algorithm enforces induced subgraph isomorphism, it

obtains the set of frequent induced subgraphs (represented by

FI ). It is easy to argue that FI ⊆ F .

III. RELATED WORK

There are several works that represent a protein structure as

a network consisting of a set of nodes and the relationship be-

tween the nodes. However, the way different works model the

network differs. Across these works, the nodes can represent

amino acid residues [1], [12], [35]–[38], functional atoms from

the side chains [39], [40], secondary structure elements [41]–

[43], proteins [44], [45], protein complexes [46], and interac-

tion pseudoatoms [47]. Edges also has different connotations

1We have used the terms graph and network interchangeably.
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(a) HIV (b) TIM

Fig. 2. (a) Retrieved frequent patterns representing the dimerization lock at the base of HIV- 1 protease structure and (b) along the dimeric interface of
triosephosphate isomerase.

in different works. For instances, edges connect nodes if they

interact with each other [35], [36], or if they are nearer to each

other spatially [1], [40], or if they are within the interacting

distance of each other [39]. Some works create edges between

two nodes if the nodes are part of a functional unit in a

pathway or in a biological process [44], [45], or if side-chains

interact with each other [13]. Our work differs in the method

of construction and analysis of these networks from previous

studies. In our work, we use Cα carbon (backbone carbon) of

a particular residue as a node. So, the Cα carbons from all the

residues of a particular protein represent the set of nodes and

we connect two nodes if their Cα carbons are spatially nearer

to each other. Existing works use a graph to capture the entire

protein structure, but in this work we capture dense interfacial

region between different subunits of the same structure.

In existing works, network representation of proteins has

been used for various purposes; for example, to study the

evolution of protein-protein interactions [1], to summarize

how central network elements are enriched in active

centers and ligand binding sites directing the dynamics of

entire protein [40], to classify protein 3D-structures [12],

[38], to characterize the topological role of residues [37],

to offer a comprehensible view of critical residues and

to facilitate the inspection of their organization [48],

to detect cancer-associated functional residues [44], to

uncover distinct cancer-specific functional modules [45], to

document functional components and sub-components of

proteins [49], and to compare two networks (Oligomeric

vs Monomeric) [36] for getting insight into the protein

association. Greene et al. [11] authored a good review article

which surveys several key advances in the expanding area

of protein structure and folding research using network

approaches. To the best of our knowledge we are the first to

develop graph mining methodologies for mining interfacial

networks to discover important functional units (such as,

lock structure in HIV 2(a) and hugging point 2(b) in TIM

structure), or to find family specific active sites from enzymes.

IV. METHODS

In Figure 3, we provide a pictorial depiction of the proposed

method. Given a set of structures of a protein, we first convert

each structure into an interfacial network, which is our collec-

tion of graphs in the graph dataset. Then we use our designed

frequent pattern mining method for mining a set of fixed-

size (user defined) subgraphs, which are the most frequent

(probabilistically) over the graphs in the graph database. For

each of the mined frequent subgraphs, we find their structural

embedding in the host graphs, and identify those patterns for

which the nodes in a pattern consistently map to a fixed set of

residues in all the conformations. We consider these structural

patterns as possible candidates of being a functional motif,

and study whether these residues correspond to any known

oligomerization mechanism. In this work, we use these set of

steps to study the dimerization interfaces of HIV-1 and TIM

proteins, and also to discover family-specific active sites of

various enzyme families. Below, we discuss each of the steps

of our method in details.

A. Modeling Protein as Interfacial Network

For each structure, we first retrieve the Cα carbons along

with their 3D co-ordinates from the residues of a pair of chains

Ui and Uj . We then construct an interfacial network of the

structure by connecting the subset of Cα residues that are in

the interface region of either of the chains. We consider a

residue (say, va) in a chain (Ui) to be at the interface region if

it is within a maximum spatial distance (γ) of any Cα residue

(say, vb) in the other chain (Uj), with respect to a distance

measure (∆) that is the Euclidean distance in our case. The

interface Cα carbons are the set of nodes in our interface

network. Within each chain, we connect pairs of residues if

they are within a spatial proximity of at most δ. We label

the nodes from 1 to 20 based on the amino acid types of the
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Fig. 3. A pictorial depiction of the proposed method. Given a set of structures of a protein, we first convert each structure into an interfacial network. Then
we use a frequent pattern mining method for mining a set of fixed-size (user defined) subgraphs. Finally, for each of the mined frequent subgraphs, we find
their structural embedding in the host graphs.

corresponding residues. Then, we form edges between nodes

(residues) of different chains if they are spatially close to each

other. After this step, we obtain an undirected vertex-labeled

graphs— corresponding to interfacial network of the input

protein structure. Equation (1) formally describes the graph

modeling process. Note that for interfacial networks, the intra-

chain distance threshold (δ) should be made low while the

inter-chain distance threshold (γ) should be kept high. This

will make the graph model emphasize the interfacial region at

the surface between the different chains of the structure (at the

3D level) while making the intra-chain network very sparse to

approximately contain at most the connections between amino

acids at the primary structure level.

e(va, vb) =











1, if ∆(va, vb) ≤ δ | va ∈ Ui, vb ∈ Uj , i = j

1, if ∆(va, vb) ≤ γ | va ∈ Ui, vb ∈ Uj , i 6= j

0, otherwise
(1)

It is important to note that having a larger distance threshold

(values of δ, and γ) makes the interfacial networks denser

and thus makes it more likely to find frequent subgraph

patterns across different structures. However, the patterns that

are discovered using a large threshold are less precise because

the edges of these patterns cover a larger range of distances

between a pair of residues. On the other hand, if we consider

smaller distance threshold we get more precise patterns, but

the mining process is less likely to find a frequent pattern. This

is similar to precision-recall trade-off in information retrieval.

For larger values of δ and γ, the recall increases but precision

deteriorates, and for smaller values, the precision improves

with a loss of recall.

B. Frequent Subgraph Mining with FS3

For mining a fixed size frequent subgraph we use a sampling

based graph mining algorithm, called FS3, which we have

proposed in one of our recent works [50]. FS3 is based on

sampling of subgraphs of a fixed size 2. Given a graph dataset

G, and a size value ℓ, FS3 samples subgraphs of size-ℓ from G.

The distribution from which the size-ℓ subgraphs is sampled is

biased such that the sampling process over-samples the graphs

that are likely to be frequent over the graphs in G. FS3 runs the

above sampling process for many times, and uses an innovative

priority queue to hold a small set of most frequent subgraphs,

which it returns at the end of the sampling process. The

unique feature of FS3 is that unlike earlier works which are

based on sampling [51], FS3 does not perform any subgraph

isomorphism (SI) test, so it is scalable to large graphs. By

choosing different values of ℓ, user can find a succinct set of

frequent subgraphs of different sizes. Also, as the number of

samples increases, FS3’s output progressively converges to the

top-k most frequent subgraphs of size ℓ. So user can run the

sampler as long as he wants to obtain more precise results.

A detail discussion of FS3 algorithm is out of scope

for this paper. However, to make this paper self-sufficient,

We describe below some key concepts of FS3 algorithm.

Interested readers are encouraged to read the original FS3

paper [50] for more details.

Subgraph sampling by FS3 Algorithm: At each sampling

iteration, FS3 performs a 2-stage sampling process. In the first

stage, FS3 chooses one of the graphs in G (say, Gi) uniformly,

and in the second stage it samples a size-ℓ subgraph of Gi

and returns. For the second stage, FS3 performs a Markov

chain Monte Carlo (MCMC) sampling over the ℓ-subgraphs

of Gi. The main idea of MCMC sampling is to perform a

random walk over the sampling space and subsequently return

the sample the walk visits. The transitional probability of the

2The name FS3 should be read as F-S-Cube, which is a compressed
representation of the 4-gram composed of the bold letters in Fixed Size
Subgraph Sampler.
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3 4

5 7

6

9

8 10

11

12

(i)

1: 〈1, 2, 3, 6〉, 〈1, 2, 5, 6〉, 〈1, 3, 5, 6〉

2: 〈1, 2, 3, 4〉, 〈1, 2, 3, 6〉, 〈1, 2, 3, 9〉, 〈1, 2, 4, 5〉, 〈1, 2, 5, 6〉, 〈1, 2, 5, 9〉

〈2, 3, 4, 5〉, 〈2, 3, 5, 6〉, 〈2, 3, 5, 9〉

3: 〈1, 2, 3, 4〉, 〈1, 2, 3, 8〉, 〈1, 3, 4, 5〉, 〈1, 3, 5, 8〉, 〈2, 3, 4, 5〉, 〈2, 3, 5, 8〉

5: 〈〉

(ii)

(b)

Fig. 4. State Transition of the random walk for substructure sampling. (a)(i) A database graph Gi with the current state of FS3’s random walk (a)
(ii) Neighborhood information of the current state 〈1, 2, 3, 4〉. (b)(i) The state of random walk on Gi (Figure 4(a)) after one transition (b) (ii) Updated
Neighborhood information.

random walk is chosen so that the stationary distribution of the

random walk matches with a user-chosen target distribution.

FS3’s target distribution favors ℓ-subgraph so that the sampling

process can predominantly sample frequent subgraphs. FS3’s

MCMC walk changes state by walking from one ℓ-subgraph

(say g) to a neighboring ℓ-subgraph. In our neighborhood

definition, for a ℓ-subgraph all other ℓ-subgraphs that have

ℓ− 1 vertices in common are its neighbor subgraph/state. To

obtain a neighbor subgraph of g, FS3 simply replaces one of

the existing vertices of g with another vertex which is not part

of g but is adjacent to one of g’s vertices. Also, note that in

g, FS3 includes all the edges of Gi that are induced by the

set of the selected vertices, so the sampled subgraph of FS3

is always a connected induced subgraph of the graph Gi. For

a given graph Gi in G, the currently sampled ℓ-subgraph is

saved so that the random walk over Gi can be resumed in

a later iteration if the graph Gi is again selected in the first

stage of the sampling iteration. Below, we show an example

of state transition of FS3.

Example: Suppose FS3 is sampling 4-subgraphs from the

graph Gi shown in Figure 4(a)(i) using MCMC sampling.

Let, at any given time the 4-subgraph, 〈1, 2, 3, 4〉 (shown

in bold lines) is the current state of this random walk. In

Figure 4(a)(ii), we list its neighbor states as four comma-

separated lists, one in each row. The neighbor-list in the top

row is labeled by ‘1’, which indicates that these neighbors

can be obtained from the current 4-subgraph 〈1, 2, 3, 4〉

by retaining the vertex 1 and replacing exactly one of the

remaining vertices ({2, 3, 4}) with a new vertex which is

adjacent to vertex 1, ensuring connectedness. Similarly, the

neighbors in the second list are obtained by retaining the

vertex 2 and replacing one of the remaining vertices with

a vertex from 2’s adjacency list. The information in the

third and fourth lists are populated in a similar manner. As

shown in the top-list, 〈1, 2, 3, 5〉 is a neighbor of 〈1, 2, 3, 4〉;
if the random walk transitions to this state, the current

state becomes 〈1, 2, 3, 5〉, which is shown in Figure 4(b)(i).

In Figure 4(b)(ii), we show the updated neighbor lists

considering the new state. Note that, here also we have 4 set

of neighbors corresponding to 4 vertices of 〈1, 2, 3, 5〉. The

neighbor-list corresponding to vertex 5 is empty, as besides

1 and 3 (which are part of current state), 5 has no other

adjacent vertices that can be used as a replacement vertex to

build a new state.

C. Finding Sub-Network Embedding in the Interface Graph

Note that FS3 samples ℓ-node induced subgraphs from the

database graphs using a sampling-based method. It makes FS3

scalable over large networks, but to achieve scalability it also

loses completeness, i.e., for a given frequent subgraph, its

support-list i.e. relative support-list may miss some of the

graphs in G in which the pattern occurs. Therefore, at the

end of the sampling process, for each of the top-k frequent
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(a) An interface graph
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(b) Subnetwork patches

Fig. 5. Subnetwork patches embedded in an interface graph.

subgraph patterns, we use a subgraph isomorphism algorithm

for finding the embedding of the pattern in all the graphs in

the database. This step completes the relative support-list of

a frequent subgraph pattern and we get the actual support-

list. Besides, it provides a mapping between the pattern nodes

and a subset of interface graph nodes such that the mapping

respects the vertex label. Thus, the embedding process enables

us to inspect the subgraph pattern within the native context of

residue contact graph.

Additionally, we observe that, in some cases most of the

top-frequent subgraphs are almost identical except one or two

nodes. After embedding, they map to a patch of the functional

motif, such that super-imposition of the embedded patches

of multiple top-frequent patterns cover the entire motif. For

visualizing this step, we present Figure 5. In Figure 5(a), we

show an example interface graph. The node labels in the figure

represent residue ids. In Figure 5(b), we list two top-frequent

patterns. Bold blue and dashed red lines in Figure 5(a) show

that super-imposing the embedding of the top two patterns

retrieves the entire motif consisting of residues 1, 2, 3, 4 and

9 (shown in color).

For HIV-1 protease, we consider only 10 of the most

frequent subgraphs, and the embedding of these subgraphs

discovers the entire 16-residue dimeric lock motif in 323 out

of 329 patterns. Similar treatment for the TIM protein using

20 most frequent subgraphs finds the dimeric lock in 50 out

of 86 structures.

D. Statistical Significance Test of Discovered Patterns

Statistical significance test of a frequent subgraph g deter-

mines the probability (p-value) of observing g as a frequent

pattern at equal or a higher support value in a database of

random graphs, where the random graphs are constructed from

a null model. The subgraph pattern g is statistically significant

when it is highly unlikely for g to be frequent under the null

model. In existing works [14], statistical significance test has

been used to calculate the p-value of network motifs, which

are mined from a single large graph. In these works, a set

of random graphs are generated from the input graph under

a specified random graph model and the subgraphs which

appear in the input graph at a much higher frequency than

in the random graphs are considered as significant. But, this

method does not apply for our task, because in our task the we

have a database of input graphs instead of a single graph. So,

we generalize the above method as below. First, we generate

a set 3 of clone graph databases each containing the same

number of random graphs as our input graph database. The

random graphs in the clone databases are generated using a

null model, details of which is discussed in the next paragraph.

Then, we run our algorithm on the input graph database and on

each of the clone graph databases to discover the top-k patterns

and their frequencies in these datasets. Finally, we compute

the z-score of a mined subgraph pattern. If the support of a

subgraph pattern g in an input graph database is sreal(g) and

the average support and standard deviation in an ensemble of

random graph database are savg(g) and sdev(g), then z-score

of g is calculated as shown below:

z-score(g) =
sreal(g)− savg(g)

sdev(g)
(2)

Then we obtain the p-value of g by considering that the support

of a top-k pattern under the null hypothesis is distributed

as a normal distribution. A small p-value confirms that the

null hypothesis is discarded and the subgraph pattern g is

statistically significant.

Random Graph Generation for Null Model As we have

discussed earlier, for significant test we build a set of clone

graph databases, each containing the same number of random

graphs as the input graph database. Under the null model, the

random graphs in the clone databases have the same degree

distribution and vertex label distribution. The null hypothesis

is that a frequent subgraph g is also frequent in the clone

databases.

Generating a random graph (i.e. generating random 0-1

matrices) by keeping the degree distribution the same is a

well studied problem. We use switching method proposed

by [52]. In this method, for a given adjacency matrix of

a particular graph, all the adjacency matrices which can

be obtained by switching alternating 1’s and 0’s along

the alternative rectangles or the alternating hexagons are

considered to be the neighbor states. A Markov chain can be

formed from this state transition and [52] has shown that if

we take a particular state after p or less transitions we sample

a random graph uniformly at random where p represents

the minimum of the total number of zero’s and one’s in

the random network. This algorithm samples correctly in

the limit of long run and in practice is found to give good

results compared to other methods [53]. In Figure 6, we

show an example. Figure 6 (a) represents the input network

(a line graph) whereas Figure 6(b) and Figure 6 (c) show

two random graphs generated using the switching technique.

From the figures, we can see that randomization has rewired

the nodes by preserving the degree of all the nodes in the

input graph. We do not alter the vertex labels, so the vertex

label distribution is identical to the original graph.

For both the TIM and HIV-1 protease structures (discussed

in Section V-A and V-B, respectively), we generate 20 (cho-

sen arbitrarily) clone databases containing random graphs,

i.e., for each graph in the host database, we generate 20

3size of this set can be anything between 10 and 100, the higher the size
the better is the estimates.
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Fig. 6. Random graph generation from a particular graph. Figure (a) is the input graph, Figures (b) and (c) are random graphs using switching algorithm
described in Section IV-D. Interchanges are shown in blue and green color.

random copies of that graph using the method described in

the above paragraph. Then we apply FS3 on both the host

(input) database and each of the random graph databases

separately with the same configuration (size-ℓ) used for the

input database. Our experiments show that all our frequent

patterns (size 16 for HIV-1, and size 20 for TIM) are highly

significant as their frequency in the database of random graphs

is zero, but the average support of HIV-1 frequent patterns is

320 (for a database size 329) and the average support of TIM

frequent patterns is 50 (for a database size 86). This yields

a p-value less than 0.00001 using Laplace correction for the

denominator, thus making all the discovered frequent patterns

in both datasets highly significant. Interestingly, no frequent

patterns exist in the clone databases of random graphs; in fact,

the highest support of any subgraph in each of these clone

databases is exactly one, that is each subgraph appears in only

one random graph.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental findings. Sec-

tion V-A and V-B shows that our graph-mining method re-

trieves the dimerization locks in each of the protein structure

with multiple conformations whereas in Section V-C, we

show that our approach captures class specific active sites

for the six top-level classes of enzymes each composed of

multiple protein structures with a single conformation. In

Section V-A and V-B, we report average pairwise RMSD

(Root Mean Square Deviation) distance among conformers4.

For calculating RMSD distance, we use Kabsch algorithm [54]

and Quaternion algorithm [55]. Kabsch algorithm [54] is a

simple procedure which determines a best rotation of a given

vector set into a second vector set by minimizing the weighted

sum of squared deviations. On the other hand, Quaternion

algorithm [55] solves for the orientation and the position of

an object by minimizing a single cost function associated with

the sum of the orientation and position errors.

A. HIV-1 protease structures

HIV-1 PR dimerization occurs at the interface between two

homologue structures- each subunit having 99 residues. Each

subunit structure can be divided into functionally important

components (Fig. 7A): 1) Terminal domains (blue, NT strand:

residues 1-4 and CT strand: residues 96-99) that form the base

of the protease structure. 2) Flap domain (orange, residues

37-58) that opens and closes the structure for substrate

recruitment and product release. The coordination of motion

between 3) Fulcrum (red, residues 9-21) and 4) Cantilever

(green, residues 59-75) controls the opening/closing motion

4https://github.com/charnley/rmsd

of the Flap domain.

NT (residues 1-4) and CT (residues 96-99) strands from

one subunit form a ridge where the CT strand from the

partner subunit gets inter-digitated, and vice versa (Fig

7B). This interlocked configuration of the terminal strands

forms a strongly-bound dimeric base which facilitates the

opening-closing motion of the flap tips of the Flap domains.

We selected 329 HIV-1 structures from PDB [56] such

that each structure has no missing residues. Subsequently, we

have created an interfacial network (connected graph) for each

structure considering the interfacial residues that are within

8 Angstrom (Å) distance from any residue from the partner

subunit. We also connect two residues within the same subunit

if their distance is within 4 angstrom, i.e., we set γ = 8Å and

δ = 4Å. The average number of nodes and edges for these

networks are 64.00 and 242.00 respectively. Then, we mined

these 329 connected graphs using FS3, our graph mining

method. If the proteins are structurally similar, the frequent

subgraphs are more likely to form; so one may opt for more

precise results by setting smaller values of δ and γ. For

this purpose, structural similarity of a collection of proteins

should be obtained by optimally superimposing the proteins

one on top of another, and then computing The average RMSD

distance. We perform the same by using both the Kabsch and

the Quaternion algorithm on our HIV-1 dataset. The median

RMSD value was 0.7305 (minimum =0.0, maximum=2.74)

when the statistics was calculated over all the 329 conformers

of HIV-1.

Figure 7C labels the 16 residues of four strands that form

the dimeric lock at the base - four residues in each strand.

For a pattern of size 16, our method retrieves 13 of these base

forming residues. Three residues (I3 on NT B, I3 and T4 on

NT A) shown in red were not included, rather K5 and T6 on

the coil connecting NT B and Fulcrum and T91 on the helical

region at the N-terminal end of CT A got included.

B. TIM structures

TIM is the fifth enzyme in the glycolysis pathway that pro-

duces energy in all living organisms. The functional oligomeric

state of TIM is a homo-dimeric structure in most mesophilic

organisms. A TIM subunit has a central barrel formed by eight

strands (β1− β8) which is surrounded by eight helices (α1-

α8). Eight back loops (BL1-BL8) connect from helix to strand

and eight front loops (FL1-FL8 or simply Loop 1−Loop 8)

connect from strand to helix. Details can be found in [57]

(Fig. 8A). Two monomeric subunits form the dimeric TIM

structure through interaction of a pair of symmetric locks

at their interface. We construct interfacial network for each
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Fig. 7. HIV-1 protease (HIV-1 PR) functional components, interface formation, and computationally retrieved residues from the interface residue network.
Panel A shows the macromolecular architecture of the protease (based on PDB: 1a30, a closed conformation), Panel B show the lock formation at the base,
Panel C shows the residues in spheres at the dimeric base, and Panel D shows the computationally retrieved residues from the interface networks. (A) Front
view of HIV-1 PR dimeric structure (modified from Fig. 2 of [33]). The functionally important components are colored and labeled in subunit A. N-terminal
(NT) and C-terminal (CT) strands are colored blue: NT residues 1-4 and CT residues 96-99. NT and CT strands of one subunit form a ridge where CT strand
of the other subunit is locked, and vice versa. Fulcrum (red, residues 9-21) - at one end of this component is the C-terminus and on the other end there are
the active site region. Flap domain (orange, residues 37-58) has three main regions. Cantilever (green, residues 59-75) is located at the C-terminal end of the
Flap domain. (B) Lock formation at the base of the structure - NT and CT strands of chain A form a ridge where CT from B is inserted and vice versa.
(C) The residues on NT and CT of each chain forming the lock are identified (PDB 1a30). (D) Blue ones are the correctly recognized interface residues by
graph mining. Three residues forming the lock shown in the panels B and C that the mining algorithm failed to identify are colored red. Instead, the mining
included the orange residues in the pattern that are not part of the lock pair.

of the 86 triosephosphate isomerase (TIM) PDB structures

with γ = 8Å and δ = 4Å. The average number of nodes and

edges for these networks are 158.50 and 884.75 respectively.

The average RMSD distance using both the Kabsch and the

Quaternion algorithm is: 5.76 (min=0.0, max=24.64) and it

was calculated over 25 TIM structures for which the number

of Cα carbons were the same.

A dimer of two subunits is formed by two symmetric

locks at the interface: Loop 1 and Loop 4 of one subunit

form a ridge wherein Loop 3 of the partner subunit gets

engaged, and vice versa. Figure 8A shows such a pair of

locks at the dimeric interface of a TIM structure (PDB 1ypi).

The space-filled view in Fig. 8B illustrates one of these

locks more clearly. Figure 8C illustrates the residues of the

involved loops in spheres ( L1 of chain B: F11K12 L13N14G15

S16, L4 of chain B: G94 H95S96E97 R98R99 S100Y101 F102H103

E104D105, L3 of chain A: Q64N65 A66Y67L68 K69A70S71

G72A73F 74T75G76 E77N78S79).

Our graph-mining method retrieves the key residues of the

locking mechanism. When the pattern-size is 12, the retrieved

residues are: L1 (chain A): 10, 12; L4 (chain A): 95, 97, 98; L3
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Fig. 8. Type 1 interface of TIM dimeric structure. (A) Loop 3 from subunit A and Loop 1 and Loop 4 from subunit B form a lock at the interface,

and vice versa. (B) Surface view of Lock 1. (C) Residues of the loops involved in Lock 1 are shown in spheres. (D) Retrieved residues in Lock 1

are shown in bright color and others are deemed.

(chain B): 72-77; N-terminal base of L3 (chain A): 64. And,

when the pattern-size is 12 are: L1 (chain A): 10, 12; L3 (chain

B): 72,..., 77; L4 (chain A): 95, 97, 98; and N-terminal base of

L3 (chain A): 63, 64, 65, 66. The residues from the interlock-

ing mechanism that are retrieved by our method are shown in

bright spheres (Fig. 8D). Interestingly, all the residues of Loop

3 (S71G72 A73F74T75 G76E77 - 7 residues [58]) are successfully

retrieved. Moreover, the retrieved patterns reveal that a few

residues at the N-terminal region of Loop 3 from chain A

(residues G64, N65, and A66) engages in the lock formation.

C. Enzymes

Enzymes are known to be macromolecular catalysts that

speed up biochemical reactions by providing an alternative

reaction pathway of lower activation energy. In the absence

of enzymatic catalysis, most biochemical reactions are so

slow that they would not occur under the mild conditions

of temperature and pressure that are compatible with life

[59]. Enzymes accelerate the rates of such reactions by well

over a million-fold, so reactions that would take years in

the absence of catalysis can occur in fractions of seconds

if catalyzed by the appropriate enzyme. Enzymes bind their

reactants or substrates at a small portion of their structure

that is known as the active site. Active sites are substructures

on the surface of an enzyme, usually composed of amino

acids from different parts of the polypeptide chain that are

brought together in the tertiary structure of the folded protein

[59]. Hence, mining functional motifs (active sites) from the

interface region of enzymes is important for understanding

the underlying mechanisms that allow them to interact with

other molecules and perform their vital functions that sustain

life in the cells. The International Union of Biochemistry and
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Molecular Biology5 has developed a classification system for

enzymes6 that, at its top-level, divides them into six groups

namely:

• Oxydoreductase (EC1): catalyze oxidation/reduction re-

actions.

• Transferase (EC2): transfer of a chemical group from

substrate to product.

• Hydrolase (EC3): cleavage of bonds by hydrolysis.

• Lyase (EC4): elimination of various bonds by means other

than hydrolysis and oxidation.

• Isomerase (EC5): catalyze isomerization changes within

a single molecule.

• Ligase (EC6): join two molecules with covalent bonds.

Unlike the previous two experiments where we mined

patterns that are shared across the different conformations

of the same protein, in this experiment, we are interested in

mining functional motifs that are shared by multiple protein

structures within the same group of enzymes but not across the

different classes. That is to say, class specific active sites that

allow each of the enzyme classes to exert a specific function.

Since enzymes need to bind to their substrates at their active

sites to perform their biological functions, mining class-wise

frequent patterns at the interface region of enzymes could help

to unravel class specific active sites. We use enzymes from

the Dobson and Doig (D&D) protein structure dataset [34]

which originally consists of 1178 proteins divided into a group

of 691 enzymes and a second group of 487 non-enzymes.

We consider only the subset of oligomeric protein structures

from the enzymes, i.e, structures with at least two sub-units.

The remaining set of enzymes is composed of 326 protein

structures. Table I shows the number of protein structures in

each class, the number of EC subclasses and sub-subclasses

in each group, as well as, the average number of nodes and

edges from the derived graphs.

TABLE I
INTERFACIAL NETWORK STATISTICS FOR OUR SUBSET OF ENZYMES FROM

THE DOBSON AND DOIG (D&D) PROTEIN STRUCTURE DATASET [34]

Class #structures #Subclasses #Sub-subclasses Avg. #Nodes Avg. #Edges

EC1 76 16 35 151 487

EC2 84 8 21 102 318

EC3 91 8 29 82 262

EC4 40 4 9 128 414

EC5 21 5 10 118 367

EC6 14 4 6 134 403

We have constructed an interfacial network for each PDB

structure of the set, based on Equation (1) with γ = 10Å and δ

= 4Å. After this step, we obtained a set of undirected, vertex-

labeled graphs—each corresponding to one enzyme protein

structure. We used FS3 to discover function specific subgraph

motifs across the six different classes of enzymes. We mined

200 most frequent patterns for each of the following sizes 7

5, 6, 7 and 8 from each of the six enzyme classes.

5http://iubmb.org/
6http://www.enzyme-database.org/
7Size of a subgraph pattern is the number of vertices in that pattern.

We first validate whether the discovered patterns are abun-

dant across all six enzyme classes or they are frequent only

within an enzyme class. Since the enzyme classes are derived

from their function, patterns that are frequent only within an

enzyme class are functional motif for that class of enzyme. For

this validation, we count the number of patterns that occurs

over multiple classes of enzymes. For a clean presentation, in

Table II we only show the number of patterns which overlap

over a pair of enzyme classes. Along the rows we list
(

6

2

)

= 15
pairs of enzyme classes and along the column we list the size

of patterns. Each cell entry shows the number of overlapping

patterns across the corresponding pair of enzyme classes for

the given pattern size. For example, there are 14 patterns (out

of 200 most frequent patterns) of size-5 which overlaps across

enzyme class 1 and enzyme class 2. We notice that the overlap

between the sets of patterns mined from each class is very

small for the sizes 5, 6 and 7, and that there is no overlap at

all at the size 8. Thus the number of overlaps decreases while

increasing the size of patterns. This shows that our modeling

and mining method allows to unravel class specific patterns

at the interfacial region. Besides, the fact that each of the

classes performs a particular function also suggests that the

discovered patterns are active sites and they are specific to

functions performed by the enzymes in that class.

In fact, the active site of an enzyme is composed of two

components. The first component is the catalytic site that is

known to be small (2 − 4 amino acids [60], [61]), highly

conserved, and allows the enzyme to perform its function.

The second component is the binding site which allows the

recognition and precise positioning of an enzyme’s substrate in

proximity to the chemically active catalytic residues and lower

the energy of the transition state, which aids catalysis [60].

Figure 9 shows an example of a protein structure namely the

L-3-hydroxyacyl-CoA dehydrogenase (PDB IDs: 1F14) from

the EC1 class of our dataset and the mapping of a frequent

pattern of size 8 that we discovered using our subgraph mining

method. The pattern contains a catalytic site composed of

the residues ”Glutamine”, ”Asparagine”, and ”Serine” that

have been identified at the same structure in the Catalytic

Site Atlas8 [60], [62], a database of both hand-curated and

automatically annotated catalytic sites in enzyme structures.

Since the catalytic and binding sites co-occur together as part

of the same active site, we consider the five remaining residues

(”Lysine”, ”Leucine”, and 3 ”Alanine”) from the pattern as of

the binding site. Figure 9 shows the catalytic and binding site

in red and blue respectively.

VI. CONCLUSION & FUTURE WORK

In this work, we proposed a method for the discovery of

functional motifs from the interface region of dimeric protein

structures. Our method uses a graph representation of the

interface region of these structures, and mines a fixed-size

highly frequent subgraphs over those graphs. We then use a

small collection of subgraphs to discover functional motifs at

the interface region of the structures. In our experiments, we

showed that our method discovers the oligomeric lock motif

8http://www.ebi.ac.uk/thornton-srv/databases/CSA/
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(a) Front view of the L-3-hydroxyacyl-CoA dehydrogenase protein struc-
ture

(b) Zoomed view of the active site of the structure: in red and blue are
residues from the catalytic and binding sites respectively

Fig. 9. Retrieved frequent pattern representing active site at the L-3-hydroxyacyl-CoA dehydrogenase protein structure. (a) A front view of the entire structure
with the active site and (b) a zoomed view of the active site with the catalytic site (in red) and binding site (in blue).

TABLE II
THE NUMBER OF PATTERNS OVERLAPS WITHIN DIFFERENT GROUPS FOR A

SPECIFIC SIZE, ℓ AND TOP-200 PATTERNS.

# Overlaps for a specific ℓ

Classes ℓ = 5 ℓ = 6 ℓ = 7 ℓ = 8

EC1− EC2 14 8 7 0

EC1− EC3 0 0 0 0

EC1− EC4 20 2 0 0

EC1− EC5 10 0 0 0

EC1− EC6 5 4 1 0

EC2− EC3 17 2 2 0

EC2− EC4 14 0 0 0

EC2− EC5 11 3 0 0

EC2− EC6 8 0 0 0

EC3− EC4 12 0 0 0

EC3− EC5 0 0 0 0

EC3− EC6 3 0 0 0

EC4− EC5 6 0 0 0

EC4− EC6 8 0 0 0

EC5− EC6 3 0 0 0

in the majority of the structures for both HIV-1 protease

and TIM protein. We also showed that our method discovers

class specific active sites at the interfacial region of the six

top-level classes of enzymes.

There are significant scopes for extending this work. First,

we plan to make our FS3 software a stand-alone tool for the

functional motif discovery at the interfacial region of proteins.

As we have observed highly frequent patterns of a given size

although captures the functional motifs, each such patterns

sometimes misses a few residues of a functional motifs. At

this stage, we manually patch together a collection of patterns

to identify the entire functional motifs. One immediate future

work is to identify a cluster of similar patterns which overlap

the core of a functional motif and then automatically patch

them together to discover the functional motifs. Also, we

are planning to extend the functionality of our FSM based

functional motif discovery tool. Currently, our FSM method

counts the frequency of a pattern by its identical occurrences

over different graphs. As future work, we are planning to

extend our approach with a selection module that accounts for

amino acids similarity as in [38], [63] for counting occurrences

of a pattern.
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