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Abstract

Extraction of interesting and general knowledge from large spatial databases is an
important task in the development of spatial data- and knowledge-base systems. In this
paper, we investigate knowledge discovery in spatial databases and develop a
generalization-based knowledge discovery mechanism which integrates attribute-oriented
induction on nonspatial data and spatial merge and generalization on spatial data. The
study shows that knowledge discovery has wide applications in spatial databases, and
relatively efficient algorithms can be developed for discovery of general knowledge in
large spatial databases.

1. Introduction

Spatial reasoning using data and knowledge stored in large spatial databases is a
crucial task in the development of geographical information systems, medical imaging
and robotics systems. Because of the huge amount (usually, tera-bytes) of spatial data
obtained from satellites, video cameras, medical equipments, etc., it is costly and often
unrealistic for users to examine the spatial data in detail and extract interesting
knowledge or general characteristics from spatial databases. This motivates the study
and development of knowledge discovery mechanisms for large spatial databases.

Knowledge discovery in spatial databases is the extraction of interesting spatial
patterns and features, general relationships between spatial and nonspatial data, and other
general data characteristics not explicitly stored in spatial databases. Such discovery
may play an important role at understanding spatial data, capturing intrinsic relationships
between spatial and nonspatial data, presenting data regularity in a concise manner, and
reorganizing spatial databases to accommodate data semantics and achieve high
performance.
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There are different philosophical considerations on knowledge discovery in
databases [7, 16], which may lead to different methodologies in the development of
knowledge discovery techniques. First, we assume that A spatial DB stores a large
amount, information-rich, relatively reliable and stable data. Furthermore, the following
assumptions are made as the first step in the development of mechanisms for knowledge
discovery in spatial DBs.

Assumption 1. A knowledge discovery process is initiated by a user’s learning request.

Idealistically, one may expect that a knowledge discovery system will perform
interesting discovery autonomously without human interaction. However, since learning
can be performed in many different ways on any subset of data in the database, huge
amount of knowledge may be generated from even a medium size database by unguided,
autonomous discovery, whereas much of the discovered knowledge could be out of
user’s interests. In contrast, a command-driven discovery may lead to the discovery of
what one wants to discover and therefore represents relatively constrained search for the
desired knowledge. Thus, command-driven discovery is adopted in this study.

Assumption 2. Background knowledge is available for knowledge discovery process.

Discovery may be performed with the assistance of relatively strong background
knowledge (such as conceptual hierarchy information, etc.) or with little support of
background knowledge. Obviously, the discovery of conceptual hierarchy information
itself can be treated as a part of knowledge discovery process. However, the availability
of relatively strong background knowledge not only improves the efficiency of the
discovery process but also expresses user’s preference for guided generalization, which
may lead to efficient and desirable generalization process.

Following these assumptions, our mechanism for knowledge discovery in spatial
DB adopts a learning-from-examples approach which treats the task-relevant data as
examples for learning processes and relies mainly on the generalization process.

There have been many studies on machine learning [5, 6] and some recent studies
on knowledge discovery in large databases [3, 7, 9, 10, 12, 16]. These studies set up the
foundation for knowledge discovery in spatial databases. Recently, an attribute-oriented
approach has been developed for discovery of different kinds of knowledge rules in
relational databases [9]. Moreover, a multi-resolution relational data model has been
developed [13] for performance improvement in image database applications. Studies on
data abstraction in spatial databases, such as spatial data abstraction using picture
indexing and feature clustering [4] and geometric abstraction [2], are closely related to
knowledge discovery in spatial databases.

In this study, the attribute-oriented induction technique is extended to knowledge
discovery in spatial databases. Two kinds of concept hierarchies, thematic concept
hierarchies and spatial hierarchies, are constructed for the learning process. Induction
can be performed by ascending these hierarchies and summarizing general relationships
between spatial and nonspatial attributes at a high concept level. The method can
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discover interesting interrelationships between spatial and nonspatial data and can be
applied to analyzing correlations between different spatial features based on different
thematic maps.

The paper is organized as follows. Section 2 presents spatial learning primitives,
which include spatial data representations, spatial hierarchies, and expected
representation of learning results. Section 3 presents an algorithm for nonspatial-data-
dominated spatial learning. Section 4 presents an algorithm for spatial-data-dominated
spatial learning. Section 5 discusses the extension of the two algorithms to interleaved
generalization and other related issues, and section 6 summarizes the study.

2. Primitives for Knowledge Discovery in Spatial Databases

There are different philosophies for knowledge discovery in spatial databases based
on different kinds of databases and different kinds of rules to be extracted from
databases. To confine our study to a well-defined domain, the following assumptions are
made in this study. First, we assume that the rules to be extracted are general data
characteristics and/or relationships, and the learning process is triggered by a learning
request (or query) explicitly. Secondly, we assume that a spatial database consists of
both spatial and nonspatial data, while the former is relational and stored in a relational
database; and the latter is two-dimensional and is stored in spatial data structures.
Spatial objects and their associated nonspatial information are linked to each other as in
the SAND architecture [1]. There are different representations for spatial data. In many
applications, spatial information is stored as thematic maps. Each map contains specific
features of spatial objects, e.g., forest type and coverage. There are two representations
of thematic maps: raster and vector.

(1) In a raster image, an attribute value is associated with each pixel. For example, a
geomorphological map may have its height coded in color (or grey level).

(2) In a vector representation, an object is specified by its geometry, such as the
boundary representation, and its associated thematic attributes. For example, a lake
is specified by a sequence of points sampled at the boundary and the elevation
value.

These two types of data can be represented as a set of spatially ordered objects,
each of which has its spatial and nonspatial components. In the following discussion, a
spatial object obji is assumed to be denoted as < geoi , attrii >. For example, each pixel
in raster data is represented by <(x , y ), intensity >, where (x , y ) is the spatial location
and intensity the nonspatial attribute value.

An important aspect of learning from data is to cluster data into groups with similar
characteristics. Different from relational data clustering, which is usually based on the
concept hierarchy of each single attribute, spatial data clustering is two dimensional.
Spatial aggregation may be obtained by constructing spatial hierarchy or consolidating
neighboring spatial objects. Quad-tree and R-tree are typical spatial hierarchical
structures [8, 14], where the former is frequently used for raster data, whereas the latter
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for vector data. Some spatial functions, such as adjacent_to , are useful for clustering
neighboring spatial objects. In a stable environment, spatial hierarchies and adjacency
relationships can often be computed and stored for efficient data retrieval and knowledge
discovery [8, 11, 14].

In order to represent general characteristics at a high concept level, attribute concept
hierarchies should be provided by domain experts or constructed automatically or semi-
automatically by data statistical analysis [15]. In our algorithms, an attribute hierarchy is
represented by a function c_parent(attri_val ) which returns a parent (high-level) concept
for a given attribute value. A spatial hierarchy may be represented by two functions,
s_parent(obj ) which returns the parent node of the object obj , and s_children(obj )
which returns the set of all of the children nodes of obj .

Semantic concepts in a concept hierarchy satisfy upward consistency. A high-level
concept represents information which is more general than but consistent with the
lower-level concepts. For example, Figure 1 represents an agriculture hierarchy. The
region which grows corn, wheat, rice, etc. can be generalized to a grain-production area
according to the hierarchy. Many high-level concepts for numerical values can be
represented by their summary data and served as generalized concepts. For instance,
precipitation measurement between 2.0 and 5.0 inches can be either represented by its
rainfall range or generalized to "wet", etc.

Discovered knowledge should be concise, informative, and be represented by high-
level concepts with a small number of disjuncts (with each representing one case in the
generalized rule). A generalization threshold, which represents the expected maximum
number of disjuncts in the generalized rule, or a desired concept level can be used in the
generalization process.

coffeetea ...flaxcotton ...pearapple ...lettucebroccoli ...wheatrice ...corn

beveragefabricfruitvegetablegrain

other plantsfood

agriculture

Figure 1. An agriculture hierarchy.

To make a knowledge discovery process focus on a set of interested data and
extract desired knowledge, a learning request should be used to trigger the discovery
process. Similar to DBLEARN [9], a learning request can be specified in the syntax
similar to SQL. One such example is presented here.

Example-1. Given a large set of climate data (monthly mean temperature and monthly
precipitation) obtained from over 500 weather stations scattered in British Columbia
(B.C.), our task is to find general weather pattern related to different areas in B.C. in the
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summer of 1990. There are over 18,000 pieces of data records per year. It is impossible
to find general weather pattern by simple data retrieval. A generalization process can be
initiated by the following query.

extract characteristic rule

from precipitation-map, temperature-map

where province = "B.C." and period = "summer" and year = 1990

in relevance to region and precipitation and temperature

Notice that precipitation and temperature are thematic data related to thematic
maps, and summer is a general concept (higher than month) in a concept hierarchy
period.

In general, learning requests provide the following primitives for knowledge
discovery: the set of relevant data, concept hierarchies, desired rule forms and the
learning request. Two learning algorithms are introduced based on the availability of
those primitives: one is (nonspatial) attribute-oriented induction, which performs the
generalization on nonspatial data first; whereas the other is spatial hierarchy directed
induction, which performs generalization on spatial data first.

3. Nonspatial-Data-Dominated Generalization

A spatial database stores both spatial data and their associated nonspatial data.
Spatial data is often obtained by preprocessing image data and is stored in high-
resolution with large volumes. To extract general knowledge from spatial databases,
generalization usually needs to be performed on both spatial and nonspatial data. When
one of the components is generalized, the other component will be adjusted accordingly.
Based on which component, spatial or nonspatial, to be generalized first, different
algorithms, nonspatial-data-dominated generalization vs. spatial-data-dominated
generalization, can be derived for different applications. The high-level precipitation
concepts and the concept hierarchy for season periods are provided in Table 1 and Figure
2 respectively.

Table 1. High-level precipitation concepts
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

very dry (v.d.) dry (d.) moderately dry (m.d.) fair(f.) moderately wet (m.w.) wet (w) very wet (v.w.)�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
[0, 0.1] (0.1, 0.3] (0.3, 1.0] (1.0, 1.2] (1.2, 2.0] (2.0, 5.0] 5.0 & up�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�
�
�

�
�
�

Suppose that the spatial database stores a map of British Columbia with a set of
weather stations scattered around the provinces as shown in Figure 3, where the sample
stations: D.C., Kam., Nan., Pen., P.G., P.R., Van. and Vic., are abbreviations for
Dawson Creek, Kamloops, Nanaimo, Penticton, Prince George, Prince Rupert,
Vancouver and Victoria, respectively. Climate data is collected from these weather
stations. The data contains average monthly precipitation and minimum, maximum, and
average temperatures for each regional station. Table 2 shows sample precipitation data.
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year

winterautumnsummerspring

Nov.Oct.Sept.Aug.JulyJuneMayApr.Mar. Dec. Feb.Jan.

Figure 2. A year-season-month hierarchy.

Nan.

D.C.

Vic.

Van.
Pen.

Kam.

P.R.
P.G.

Figure 3. A map of British Columbia.

Table 2. Sample precipitation data (in inch) of 1990.
� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

city Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec year total� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Nanaimo 6.37 4.36 3.99 2.50 1.47 1.55 0.91 1.01 1.73 4.19 6.06 7.11 41.25

Vancouver 8.6 6.1 5.3 3.3 3.0 2.7 1.3 1.7 4.1 5.9 10.0 7.8 59.8
Victoria 11.12 9.74 5.15 2.68 2.51 1.07 0.42 2.42 0.95 2.69 2.64 4.36 45.75

Prince Rupert 9.8 7.6 8.4 6.7 5.3 4.1 4.7 5.2 7.7 12.2 12.3 11.3 95.16. . . . . .
� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Example-2. Given the above information, the query is to report general precipitation
pattern zones in spring 1990, which is represented as below.

extract region

from precipitation-map

where province = "B.C." and period = "spring" and year = 1990

in relevance to precipitation and region.

The learning process can be provided by generalization on nonspatial attribute
precipitation first, which consists of the following steps.

(1) Collect related nonspatial data. The execution of the SQL query on nonspatial data
extracts the precipitation records relevant to the province, months and year. Notice
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that "period = spring" is a piece of generalized data, which is decomposed into
"month = March or month = April or month = May" by consulting the
generalization hierarchy.

(2) Perform attribute-oriented generalization on collected nonspatial data. This
merges the three months into "spring" and generalizes precipitation attribute values
by averaging the precipitation values of the three months. A portion of the table is
shown in Table 3. Since the average precipitation value in the nonspatial table
contains many distinct values and do not reach a desired concept level, further
generalization needs to be performed on the nonspatial data. In this case, the
average precipitation value is generalized to an even higher level, such as "wet",
"very wet", etc. by consulting the concept hierarchy of precipitation. During the
generalization and merge of identical nonspatial tuples, spatial object pointers are
collected in the generalized nonspatial data entry.

(3) Perform spatial generalization. When the nonspatial data is generalized to the
desired level or to a small number of disjuncts, neighboring areas with the same
high-level attribute values can be merged together based on a spatial function
adjacent_to. In order to generalize and merge spatial objects into a small number
of regions, it is often necessary to perform approximation. Within a spatial region,
if there is only a small portion of the area carrying some attribute values different
from that of the majority portion of the area, the small portion can be omitted in the
high level description. For example, if poplars occupy only 3% of the area in a pine
forest, the generalized description may ignore this small portion of poplars and
generalize the area to pine forest (with 97% certainty).

In general, the learning process described above can be summarized in the
following nonspatial-data-dominated generalization algorithm which generalizes
nonspatial data using concept hierarchies and then merges corresponding spatial objects
accordingly. The judgement of whether the current generalization on nonspatial data is
sufficient can be based either on the number of generalized tuples in the generalized
relation (which can be specified as a generalization threshold) or on an appropriate
concept level, which can be specified by users or experts explicitly.

To demonstrate the learning process, our example data is gathered from three
Georgia Strait regions, Vancouver, Victoria and Nanamio. The relevant precipitation
data are collected in the columns 2 to 4 in Table 3. Average monthly rainfall for each
region is computed in column 5. It is then generalized to the last column using the
high-level precipitation concept provided in Table 3.

Since the three neighboring regions carry the same generalized precipitation
attribute value "wet", the three regions are merged into one, which can be assigned to a
meaningful geographic name, such as "Georgia Strait" by a user or an expert.

The remaining generalization processes are similar to the above. The learning
result is reported in a tabular form as shown in Table 4. Figure 4 shows the learning
result of precipitation in spring 1990 for the whole province.
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Table 3. The relevant precipitation data of the regions and its generalization.

���������������������������������������������������������������������������������������������������������������������
city Mar Apr May Avg high-level concept���������������������������������������������������������������������������������������������������������������������

Nanaimo 3.99 2.50 1.47 2.85 wet
Vancouver 5.3 3.3 3.0 4.1 wet

Victoria 5.15 2.68 2.51 3.43 wet���������������������������������������������������������������������������������������������������������������������
��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

m.d.
(VII)

v.d.
(VI)

m.d.
(V)

f.
(IV)

m.w.
(III)

v.w.
(II)

w.
(I)

Figure 4. A sample B.C. spring precipitation diagram.

The learning process is summarized into the following algorithm, which generalizes
nonspatial data attributes by concept hierarchies ascension and consolidation of adjacent
spatial objects with similar attribute values. Generalization terminates when the
generalized concept level reaches the desired concept level, or when the number of
disjuncts is within a prespecified threshold.

Table 4. General Precipitation Information.

�������������������������������������������������������������������������������
Region Rainfall�������������������������������������������������������������������������������

Georgia Strait (I) wet
Coastal (II) very wet

Okanagan-Thompson (III) moderately wet
Columbia-Kootenay (IV) fair

Central Interior (V) moderately dry
Peace-Liard (VI) very dry

Northern Interior (VII) moderately dry�������������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Algorithm-1 Nonspatial-data-dominated generalization.

Input. (i) A spatial database consisting of a set of nonspatial data and a spatial map, (ii)
a learning request which indicates particular interested set of data and the desired
threshold (or concept level), and (iii) a set of concept hierarchies.

Output. A rule which characterizes the general properties and/or relationships of spatial
objects.
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Method.

(1) Collect the set of task-relevant nonspatial data by an SQL query.

(2) Perform attribute-oriented induction repeatedly on the collected nonspatial data by
(i) concept hierarchy ascension, (ii) attribute removal, and (iii) merge of identical
tuples until the number of tuples is within the generalization threshold, or until
every attribute has been generalized to a desired concept level. The spatial object
pointers are collected as a set of pointers and put into the generalized nonspatial
data entry during the merge of identical tuples.

(3) Generalize the spatial data: for every generalized nonspatial tuple, follow their
spatial pointers to retrieve the spatial objects, and perform spatial merge and
approximation until the resulting set of generalized spatial objects are reduced to a
small set .

(4) Output the generalized rule or the relationship between the generalized nonspatial
and spatial data. �

Theorem-1. The complexity of Algorithm-1 is O(N logN ).

Proof. Given a database with nonspatial components of N spatial objects, the retrieval
of one component takes O(logN ). The worst case for Step 1, the retrieval of relevant
data, may take O(N logN ). Step 2, nonspatial attribute generalization takes O(N logN )
[9]. The retrieval of relevant spatial objects using the set of pointers obtained from
nonspatial data generalization takes at most O(N ). With the availability of spatial
indices, the adjacent objects of a given object can be found in time O(log N ). Since the
maximum number of spatial merge is N , Step 3 takes O(N logN ). Thus, the overall
complexity of the algorithm is O(N logN ). �

4. Spatial-Data-Dominated Generalization

In some applications, generalization may also be performed first on spatial data
based on spatial hierarchical information, which involves partitioning regions stored in
spatial data structures, generalizing spatial data to a certain level, then generalizing their
corresponding nonspatial components, and merging/grouping the generalized concepts to
derive general and concise relationships between nonspatial and spatial data at a high
level.

Spatial-data-dominated generalization relies on spatial generalization hierarchies
which can be obtained based on (i) the semantics of spatial data, e.g. hierarchical
administration regions: county, city, province, etc.; (ii) clustering of spatial objects, e.g.
based on densely clustered spatial objects; and (iii) spatial indexing structures, such as
R-trees, Quad-trees, etc. We examine one example.

Example-3. Given regional temperature data and high-level concept of temperature
(Table 5), the learning task is to find general temperature information in prespecified
administration regions for summer 1990. The learning request can be written in an
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SQL-like query as follows.

extract characteristic rule
from temperature-map

where province = "B.C." and period = "summer" and year = 1990

in relevance to region and temperature.

Table 5. High-level temperature concepts.

� �������������������������������������������������������������������������������������������������������������������������������������������������������������������
very cold cold moderately cold mild moderately hot hot very hot� �������������������������������������������������������������������������������������������������������������������������������������������������������������������

−5 & below [−5, 10) [10, 32) [32, 50) [50, 70) [70, 90) 90 & up� �������������������������������������������������������������������������������������������������������������������������������������������������������������������
�
�
�

�
�
�

The major learning steps are as follows.

(1) Collect task-relevant data by an SQL query (on nonspatial data) and corresponding
spatial data retrieval.

(2) Generalize spatial database by clustering spatial data objects according to their
regions and merge the corresponding nonspatial pointers until it reaches the desired
concept level or the number of generalized spatial objects is within the threshold.

(3) For each region, perform generalization on non-spatial objects (e.g. taking average
or mean or numerical values) until a small number of concepts which subsume all
of the concepts existing in each subregion.

To illustrate the spatial-oriented learning process, we examine Figure 5, the south-
central region of the province.

Kam.

A.L.McL.C.C.K.L.

S.B. M.C.

Lum.
Kelo.

Merr.

S.L.

Harr.

Prin.
Hope Pen.

Vern.

Figure 5. South-Central region of British Columbia.

Table 6 shows the relevant temperature data for that region in summer 1990. The
spatial hierarchy is shown by the grid in Figure 5.

In the spatial generalization, objects in each quadrant are first merged according to
the first level of the spatial hierarchy, which are in turn merged according to higher level
spatial hierarchies. The average of the temperatures in these regions can be computed,
which can be in turn generalized to its corresponding high-level concept, such as
moderately hot, etc. The learning result is shown in Figure 6 and is mapped to Table 7.
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Table 6. Relevant temperature data for the south-central region.

�������������������������������������������������������������������������������������������������������
city June July Aug Avg�������������������������������������������������������������������������������������������������������

Adams Lake (A.L.) 62 67 64 64.3
Criss Creek (C.C.) 68 65 64 65.7
Harrison (Harr.) 60 64 63 62.3

Hope 61 65 65 63.3
Kamloops (Kam.) 64 70 68 67.4
Kelowna (Kelo.) 61 66 64 63.3
Kelly Lake (K.L.) 57 61 61 59.7

Lumby (Lum.) 55 62 61 59.3
McLure (McL.) 57 63 62 60.7
Merritt (Merr.) 57 62 61 60

Mont Creek (M.C.) 55 63 58 58.7
Penticton (Pen.) 63 74 67 68
Princeton (Prin.) 58 64 62 61.3

Spences Bridge (S.B.) 57 61 60 59.3
Summerland (Sum.) 64 70 68 67.3

Vernon (Vern.) 57 65 62 61.3�������������������������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Notice that averaging nonspatial data may not be the most desirable way to
generalizing nonspatial data in many cases since averaging may hide exceptions or
smooth data excessively. Actually, when the generalized values (such as temperatures)
present significantly different values, generalization could return a small number of
disjuncts (possibly associated with statistical information in each disjunct). In this case,
generalization on the nonspatial data can be performed by clustering and generalizing
only those nonspatial components which carry similar data values, as that has been done
in attribute-oriented induction of nonspatial data.

v.h.

h

m.h.

m.

m.
m.c.m.

m.h.

m.

Figure 6. A sample of B.C. summer temperature diagram.

The example can be summarized into a spatial-oriented learning algorithm which
utilizes the spatial hierarchy to obtain generalized objects. The generalized attribute
value of the new object is obtained by climbing up the attribute concept hierarchy to find
a minimal concept which subsumes the attribute values of the corresponding sub-objects.
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In the case when the map attribute is numeric, the new attribute value can be determined
by weighted average. For example, when the attribute is precipitation, the precipitation
of a large region can be computed from the precipitation of its sub-regions weighted by
the areas of the region. This method can also be applied to generating multi-resolution
images.

Table 7. Generalized temperature information.

�����������������������������������������������������������
Region Temperature�����������������������������������������������������������

North-West mild
North-Central moderately cold

North-East mild
Mid-West mild

Central moderately hot
Mid-East hot

South-West mild
South-Central mild

South-East very hot�����������������������������������������������������������
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Algorithm-2 Spatial-data-dominated generalization.

Input. (i) A spatial database consisting of a set of nonspatial data and a spatial map, (ii)
a spatial hierarchy, (iii) a learning request which indicates the interested set of data and
the desired threshold or concept level, and (iv) a set of concept hierarchies.

Output. A rule which characterizes the general properties and/or relationships of spatial
objects.

Method.

(1) Collect the set of task-relevant spatial data by an SQL query.

(2) Perform spatial-oriented induction on the collected spatial data by spatial hierarchy
ascension to create high-level spatial objects until either the number of spatial
objects is within the generalization threshold or the generalized concepts reach the
desired generalization level. Nonspatial data entry pointers of each generalized
spatial object are collected during the generalization.

(3) Retrieve nonspatial data using the nonspatial data pointers and generalize nonspatial
data for each spatial object using the attribute-oriented approach [9].

(4) Output the generalized rule or the discovered relationship. �

Theorem-2. The complexity of Algorithm-2 is O(N logN ).

Proof. Given N objects in the database, Step 1, the retrieval of related spatial data
objects using spatial hierarchy, takes O(N logN ). The maximum number of merges for
N spatial objects is O(N ). Step 3 is also O(N logN ). Therefore, the overall complexity
is O(N logN ). �
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Both algorithms may be invoked by different high-level queries. Two kinds of
concept hierarchy ascension can be combined into a hybrid algorithm which selects
different kinds of hierarchies (spatial or nonspatial) in hierarchy ascension by the
evaluation of cost functions (e.g. data volume reduction ratio, etc.) in order to achieve
efficient learning and elegant learning results.

5. Discussions

Besides the two primitive generalization techniques presented above, complex
spatial environments may require the techniques to be extended in many ways. Because
of the limited space, only two extensions: interleaved generalization and generalization
on multiple thematic maps, are discussed here.

5.1. Interleaved Generalization between Spatial and Nonspatial Data

Algorithm 1 generalizes nonspatial data before generalization on spatial data,
whereas algorithm 2 proceeds in reverse order. In some cases, one may interleave the
generalization between spatial and nonspatial data to achieve satisfactory results with
reasonable performance. For example, to find ten regional climate zones in B.C.,
although the threshold or the concept level for generalization is defined on spatial data,
spatial generalization, relying on spatial operations such as spatial merge or spatial join,
is often more expensive than relational ones. Thus a spatial-data-dominated algorithm
could be costly for evaluation. It is often preferable to perform non-spatial (relational)
generalization to certain level and then a high-level spatial merge/join or approximation.
Further generalization may depend on the number of distinct spatial objects or
appropriate concept levels. The concrete algorithm integrating the above two algorithms
to achieve interleaved generalization is left as an exercise to interested readers.

5.2. Generalization on Multiple Thematic Maps

The generalization in our previous examples involves only one thematic map. In
some applications, a learning task may require generalization on more than one thematic
map. For example, the classification of regions in an area based on both precipitation
and temperature may need two thematic maps: precipitation and temperature.
Generalization can be performed by first generalizing each map based on the generalized
properties, such as wet, dry, of the two maps. As a result, the regions are classified as
wet & cold, dry & cold, very wet & mild, etc. Similar spatial generalization techniques,
such as spatial merge and approximation, can be applied on the overlay of the two maps
to find the regions in each class. Generalization may also derive relationships between
nonspatial attributes.

6. Conclusions

We studied the requirements and necessity of knowledge discovery in spatial
databases and developed two knowledge discovery techniques: nonspatial-data-
dominated generalization and spatial-data-dominated generalization. Our study shows
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that knowledge discovery can be performed efficiently in spatial databases by extension
of the techniques for knowledge discovery in relational databases. Generalization over
nonspatial data is similar to generalization in relational databases; whereas generalization
over spatial data is often performed by spatial region merging and/or spatial
approximation. Two generalizations can be integrated and interleaved with the
consideration of both the cost and the semantics of generalization.

As an emerging topic for integration of spatial database and machine learning
technologies, knowledge discovery in spatial database will have wide applications in
spatial knowledge discovery, spatial reasoning, spatial query optimization, the
construction of multiple resolution spatial data models, etc. More investigation should
be performed in this direction, especially on its integration with statistical methods, the
development of customized spatial generalization operators, etc. This study
demonstrates a promising direction towards knowledge discovery in spatial databases.
Detailed performance studies and experiments on the algorithms presented here will be
performed on relatively large spatial databases. Furthermore, this study is based on the
assumptions that users have reasonably good knowledge on the spatial database
structures and on what s/he wants to learn, and the system has reasonably good
background knowledge (such as concept hierarchies) for generalization. More studies
should be performed on knowledge discovery in spatial databases under different
assumptions.
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