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ABSTRACT: The serine/threonine protein kinase TBK1 (Tank-
binding Kinase-1) is a noncanonical member of the IkB kinase (IKK)
family. This kinase regulates signaling pathways in innate immunity,
oncogenesis, energy homeostasis, autophagy, and neuroinflamma-
tion. Herein, we report the discovery and characterization of a novel
potent and highly selective TBK1 inhibitor, GSK8612. In cellular
assays, this small molecule inhibited toll-like receptor (TLR)3-
induced interferon regulatory factor (IRF)3 phosphorylation in
Ramos cells and type I interferon (IFN) secretion in primary human
mononuclear cells. In THP1 cells, GSK8612 was able to inhibit
secretion of interferon beta (IFNβ) in response to dsDNA and
cGAMP, the natural ligand for STING. GSK8612 is a TBK1 small
molecule inhibitor displaying an excellent selectivity profile and
therefore represents an ideal probe to further dissect the biology of TBK1 in models of immunity, neuroinflammation, obesity,
or cancer.
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TBK1 is a member of the noncanonical IKK family of serine/
threonine kinases and a central player in innate immunity.1,2

Following ligation of TLR3 or TLR4, TBK1 is activated via the
adaptor protein TRIF, resulting in the phosphorylation of its
target protein IRF3. In a variety of cells including conventional
dendritic cells (DC) and macrophages, IRF3 activation
subsequently triggers the secretion of IFNβ, an immunomo-
dulatory chemokine.2−7 Through an autocrine loop via type I
IFN receptor (IFNAR) and induction of IRFs and interferon-
stimulated genes (ISGs), IFNβ typically primes stimulated
cells to produce high levels of IFNα.8,9

TLR3 is naturally stimulated by viral double stranded
(ds)RNA or by its synthetic mimetic polyinosine−polycyti-
dylic acid (poly(I:C)), a suitable tool to trigger a type I IFN
response in vitro.8 Further, TBK1 is activated following dsDNA
sensor ligation via the signaling intermediate STING, likewise
leading to IRF activation and type I IFN expression.3,10 In turn,
poly(I:C) and IFNα promote STING expression in macro-
phages and DCs, forming another mechanism of amplifying the
IFN-mediated antiviral immune response.10

Misregulation of TBK1 activity is associated with auto-
immune disorders and has therefore been considered a target
for the treatment of (auto)inflammatory diseases.11−13 This
concept is, however, challenged by the observation that TBK1
inhibition may have proinflammatory effects due to its

regulatory function in the noncanonical NF-κB pathway.14−16

More recently, roles for TBK1 in energy homeostasis and
tumorigenesis have been revealed, identifying TBK1 as
potential target for obesity and cancer.16,17 Key roles in
autophagy and neuroinflammation have also been reported for
TBK1.18 The discovery of TBK1 inhibitors has therefore
gained attention from both industrial and academic groups.19

In this context, the selective degradation of TBK1 using
proteolysis targeting chimeras (PROTACs) has been recently
explored.20 Further validation of the effects of TBK1 inhibition
in disease-relevant models is required to improve the
understanding of the biological function of this key signaling
mediator. To this end, the availability of potent and selective
chemical probes would greatly facilitate such target validation
efforts.21 We report here the discovery of GSK8612, a highly
potent and selective inhibitor for TBK1 and its activity in
cellular models.
The application of affinity enrichment based chemo-

proteomics to the discovery of selective probes for PI3Kγ,22

mTOR,23 and TNKS24 was previously described.25 Using these
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methods, the kinase selectivity of two small molecules used to
explore TBK1 biology, BX79526,27 and MRT67307,28,29 was
established (Table S1 and Figure S1). BX795 and MRT67307
were determined to have an average pKd of 7.7 and 7.1,
respectively, for TBK1 when profiled with kinobeads30 in a
mixture of cell lines and tissue extracts (optimized for a broad
protein kinase coverage). However, both molecules show
affinity for more than 20 other kinases within a 10-fold window
of their TBK1 binding affinity (see Table S1 for full list of
kinases). The inhibitor of nuclear factor kappa-B kinase
subunit ε (IKKε), a close homologue of TBK1 sharing high
sequence identity in the kinase domain, is among these 20
kinases. Of note, both molecules demonstrated highest affinity
for AP2-associated protein kinase 1 (AAK1), a protein
involved in neuropathic pain.31 Kinase inhibitors can be
classified according to their binding site (catalytic site or
allosteric site) and the form of the kinase bound (active or
nonactive and Asp-Phe-Gly (DFG) loop in or out).32 The
kinobeads are generated by immobilization of kinase inhibitors
that ligate the ATP binding site of kinases. Therefore,
molecules that demonstrate competitive binding behavior
with the kinobeads are concluded to bind into the ATP site of
kinases. In order to investigate to which kinase state these
TBK1 inhibitors bind, profiling experiments with the
kinobeads were performed using cell extracts with and without
enrichment of phosphorylated kinases. The enrichment was
achieved by treating Ramos cells with the phosphatase
inhibitor Calyculin A before cell lysis. In the Calyculin A
extracts, BX795 and MRT67307 were determined to have an
average pKd of 7.4 and 7.5, respectively, compared to 6.8 and
6.6 in the control extracts (Table S1 and Figure S2). This
shows that BX795 and MRT67307 may preferentially bind to
the phosphorylated form of TBK1 and the pKds determined
against this form are within the expected range considering the
reported TBK1 inhibition potencies in activity assays.26,28

Interestingly, in the two different cell lysates, no significant pKd
value changes were observed for other target kinases, such as
BMP-2-inducible protein kinase (BMP2K) and serine/
threonine kinase 17B (STK17B), which cannot be readily
explained (note, AAK1 protein kinase was not detected in
Ramos cells).
In an effort to discover new inhibitors of TBK1, the kinase

selectivity data of proprietary compounds was interrogated.
That revealed a series of 2,4-diaminopyrimidines with good
affinity for TBK1, and optimization of this series culminated in
the discovery of GSK8612 (Figure 1). This molecule can be

readily synthesized by two sequential nucleophilic aromatic
substitution reactions (Scheme S1; full synthetic details are
given in the Supporting Information).
Determination of the physical chemical properties of

GSK8612 (Table 1) revealed that the low log D value
translates into aqueous solubility greatly exceeding the
determined affinity for TBK1 without being detrimental to

its cellular permeability. The low lipophilicity may also
contribute to GSK8612’s low microsomal clearance in
human and rat, and low to medium clearance in mouse.
Nonetheless, despite the low log D, GSK8612 is highly protein
bound in mouse, rat, and human blood.
Kinases are attractive and extensively explored drug

targets,33,34 and the 2,4-diaminopyrimidine core is a common
structural motif found in many kinase inhibitors; indeed, both
BX795 and MRT67307 possess this structural feature. The
majority of kinase inhibitors that bind in the ATP binding
pocket make two conserved hydrogen bonding interactions
with the hinge region of the kinase backbone. GSK8612 was
docked into a crystal structure of TBK1 bound to MRT67307
(PDB 41WQ),35 and the predicted binding mode is shown in
Figure S3. The model predicts that the N1 of the pyrimidine
nitrogen and the NH linking the pyrimidine and pyrazole make
the hinge region interactions with the backbone NH and
carbonyl of Cys89, respectively. It is further predicted that the
bromine sits toward a lipophilic pocket near Met86 and that
the pyrazole may bind in two orientations projected toward the
solvent interface. The sulfonamide NH2 is predicted to make
two hydrogen bonds, one with the side chain of Asn140 and
the second with the side chain of Asp157, helping to explain
the high affinity imparted by this moiety. The combination of
the substituted pyrazole moiety on the N2-amine and the
benzyl-sulfonamide moiety on the N4-amine of the pyrimidine
conferred GSK8612 with high TBK1 affinity and good kinase
selectivity. This was revealed in the kinobead selectivity profile
of GSK8612 in extracts from a mixture of cell lines and tissue
(Figure 2 and Table S1 for a full list of kinases). An average
pKd of 8.0 was determined for GSK8612 against TBK1. Within
10-fold affinity with respect to TBK1, no off-targets of
GSK8612 could be identified. The highest affinity protein in
our study was STK17B with an average pKd of 6.2, and 100-
fold selectivity was determined over the close family member
IKKε (average pKd = 6.0). Binding of GSK8612 to AAK1, the
highest affinity target for both BX795 and MRT67307,
showed a pKd of 5.1, 1000-fold lower than for TBK1. Profiling
of GSK8612 using the lipid kinase affinity matrix in mixed cell
extracts revealed that GSK8612 bound to one lipid kinase,
phosphatidylinositol 4-kinase beta (PI4Kβ), though with only
an average pKd of 5.3 (Table S1). The preference of GSK8612
to bind to activated or nonactivated TBK1 was investigated
using extracts from Ramos cells with and without Calyculin A
treatment (Table S1 and Figure S2). This revealed that
GSK8612 has lower affinity for phosphorylated TBK1. An
average pKd for TBK1 of 6.8 was determined in the extracts
from Calyculin A treated cells compared to 7.7 in the extracts
without Calyculin A treatment. In line with the affinity
determined in extracts from Calyculin A-activated cells,
GSK8612 inhibited recombinant TBK1 with an average
pIC50 of 6.8 in a biochemical functional assay.36 Interestingly,
the pKd of the closest off-targets of GSK8612, such as IKKε,

Figure 1. Structure of TBK1 inhibitor GSK8612.

Table 1. Properties of TBK1 Inhibitor GSK8612

assay value

solubility (CLND) 119 μM
CHROM LogD (pH 7.4) 3.6
artificial membrane permeability 2.1 × 10−5 cm/s
fraction bound in blood (mouse, rat, human) 99.5%, 99.6%, 99.3%
microsomal clearance (mouse, rat, human) 8.5, 2.1, 1.1 mL/min/g tissue
microsomal half-life (mouse, rat, human) 8.5, 34.2, 67.4 min
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did not show any significant change between Calyculin A
treated and control Ramos cells. Therefore, the actual
selectivity of GSK8612 for TBK1 in the cells will depend on
the activation state of TBK1. The effects of TBK1 inhibition
with GSK8612 in live cells were then investigated. First,
Ramos cells were stimulated with the TLR3 ligand poly(I:C),
and the phosphorylation of IRF3 was measured by Western
blot. GSK8612 was able to inhibit phospho-IRF3 with an
average pIC50 of 6.0 (Figure 3A), confirming effective
inhibition of TBK1 kinase activity in live cells. Next, the
ability of GSK8612 to block TBK1-dependent functional
responses was evaluated also in primary cells. Type I IFN
secretion was measured in poly(I:C)-stimulated human
peripheral blood mononuclear cells (PBMCs).37 Since IFNβ
was below the limit of detection of the assay (MSD readout,
data not shown) and IFNα could be robustly detected by flow
cytometry (CBA assay), the latter was chosen as readout.
GSK8612 inhibited the release of IFNα with a pIC50 of 6.1,
demonstrating submicromolar potency in primary immune
cells (Figure 3B). Of note, IFNα secretion from TLR3-
stimulated PBMC is believed to result from a priming effect by
IFNβ, a well characterized IFN positive feedback re-
sponse.7,9,10 Accordingly, a blocking antibody against IFNAR
ablated poly(I:C)-triggered IFNα release in PBMC, confirming
IFNα secretion to be a secondary, though biologically relevant
downstream effect of TBK1 inhibition (Figure S4). Together,
TBK1 inhibition interferes with the activation of the TLR3-
IFN axis and disrupts the IFN positive feedback response,
resulting in the abrogation of IFNα secretion. It is also well-
known that TBK1 propagates biological signaling of IFNβ
downstream of DNA sensing by cGAS and STING.38 To test
whether GSK8612 inhibits this pathway, THP-1 cells were
stimulated with dsDNA containing virus (bacmam) or the
natural STING ligand cGAMP. GSK8612 was able to
completely inhibit secretion of IFNβ with a measured pIC50
of 5.9 and 6.3 for the dsDNA virus and cGAMP stimulated
cells, respectively (Figure 4).
In summary, the biological activity of GSK8612 was

demonstrated, resulting in inhibition of IRF3 phosphorylation
in Ramos cells, IFNα secretion from human PBMCs, and

Figure 2. Chemoproteomics based kinase selectivity of GSK8612
determined using kinobeads in mixed HEK293, K-562, HepG2, and
placenta cell extracts and lipid kinobeads in mixed HeLa, Jurkat, and
K-562 cell extracts. pKd values (shown on the y-axis) were determined
for 285 kinases.

Figure 3. Cell-based activity of GSK8612. (A) GSK8612 inhibits IRF3 phosphorylation in Ramos cells. Western blot analysis reveals inhibition of
IRF3 phosphorylation (Ser396) by GSK8612 in poly(I:C)-stimulated Ramos cells with an average pIC50 = 6.0 (n = 5). Western blot densitometry
data for pIRF3 normalized to total IRF3 are displayed as percentage of maximal inhibition. (B) GSK8612 inhibits IFNα secretion in human PBMC
with an average pIC50 = 6.1 (n = 3). IFNα was measured in supernatants of poly(I:C)-stimulated human PBMCs at 16 h by FACS-based
Cytometric Bead Array (CBA) assay. Percent of maximal inhibition was derived from normalizing mean fluorescence intensity (MFI) data to
vehicle-treated, poly(I:C)-stimulated samples (0% inhibition).
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IFNβ secretion from THP-1 cells with low micromolar
potency. GSK8612 is a highly selective TBK1 inhibitor, thus
representing an ideal tool to further dissect the physiological
roles of TBK1 in biological models of immunity, neuro-
inflammation, obesity, and cancer.
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