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Abstract

Dengue fever (DF) is the most frequent arthropod-borne viral disease of humans, with almost half

of the world's population at risk of infection1. The high prevalence, lack of an effective vaccine,

and absence of specific treatment conspire to make DF a global public health threat1, 2. Given their

compact genomes, dengue viruses (DENV 1-4) and other flaviviruses likely require an extensive

number of host factors; however, only a limited number of human, and an even smaller number of

insect host factors have been identified3-10. To discover insect host factors required for DENV-2

propagation, we carried out a genome-wide RNA interference screen in Drosophila melanogaster

cells using a well-established 22,632 dsRNA library. This screen identified 116 candidate dengue

virus host factors (DVHFs) (Supplementary Fig. 1). While some were previously associated with

flaviviruses (e.g., V-ATPases and alpha-glucosidases)3-5, 7, 9, 10, most DVHFs were newly

implicated in DENV propagation. The dipteran DVHFs had eighty-two readily recognizable

Correspondence and requests for materials should be addressed to JLP (pears016@mc.duke.edu) or MGB (garci001@mc.duke.edu).
Reprints and permissions information is available at www.nature.com/reprints.

Author Contributions: All authors contributed to the strategy and implementation of the work.

The authors declare no competing financial interests.

Author Information: Complete list of hits and dsRNA sequence information are available at the DRSC website (http://

www.flyrnai.org).

Supplementary Information accompanies the paper on www.nature.com/nature

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2012 October 02.

Published in final edited form as:

Nature. 2009 April 23; 458(7241): 1047–1050. doi:10.1038/nature07967.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.nature.com/reprints
http://www.flyrnai.org
http://www.flyrnai.org
http://www.nature.com/nature


human homologues and, using a targeted siRNA screen, we showed that forty-two of these are

human DVHFs. This indicates remarkable conservation of required factors between dipteran and

human hosts. This work suggests novel approaches to control infection in the insect vector and the

mammalian host.

DENV 1-4 are transmitted from one human host to another by mosquitoes of the Aedes

genus, principally Aedes aegypti and albopictus2. While there are important efforts to

sequence and annotate the genomes of these vectors11-13, there is currently an unfortunate

dearth of resources to carry out systematic functional genomics in Aedes. In contrast, there

are robust materials and methods to do so in the related dipteran Drosophila melanogaster.

In order to take advantage of these existing tools, DENV-2 New Guinea C (DEN2-NGC)

was adapted by serial passage in D.Mel-2 cells over a period of four months (DEN2S2;

Supplementary Fig. 2). To identify DVHFs required for efficient propagation of DENV2 in

insect cells, we carried out a genome-wide RNA interference (RNAi) screen in Drosophila

D.Mel-2 cells using the 22,632-dsRNA DRSC 2.0 library designed and provided by the

Drosophila RNAi Screening Center (www.flyrnai.org)14. The screen was performed in

duplicate, assaying 45,264 infections, excluding controls. If either duplicate resulted in

fewer than 12,500 cells per well, the dsRNA was excluded from further analysis; a criterion

that excluded 2,343 dsRNAs. The remaining 20,224 dsRNAs were scored by their effect on

infection, which was determined by measuring expression of envelope protein

(Supplementary Fig. 3). Each pair of duplicate dsRNA was assigned a Sum Rank score and

those with scores expected with a frequency ≤ 0.065 by chance alone were selected for

further analysis (Supplementary Fig. 4 and Methods). Of the 218 (1.1%) that met this

criterion we were able to readily re-synthesize and re-screen 179 dsRNAs. We identified

118 dsRNAs, representing 116 unique DVHFs that inhibited infectivity by ≥ 1.5 fold with p

< 0.05 (Supplementary Table 1).

The screen identified DVHFs previously known to be required for dengue and/or other

flaviviral infection, such as an α-glucosidase and the V-ATPase proton pump (CG14476,

VhaPP1 and Vha14 in Figs. 1b,c)3-5, 9, 10. The effect on V0 and V1 subunits of the V-

ATPase provided strong evidence of a requirement for the holoenzyme. To obtain

independent evidence for this, we tested the effect of bafilomycin, a specific V-ATPase

inhibitor previously shown to inhibit flaviviruses3, 7, 9, on DENV infection of C6/36 Ae.

albopictus cells. Bafilomycin treatment induced a dramatic inhibition of both DEN2-S2 and

DEN2-NGC replication in these mosquito cells (Supplementary Fig. 5). These data

demonstrated the validity of the screen since they generalize the findings to a well-studied

DENV2 and cells of the natural vector Ae. albopictus.

The overwhelming majority of DVHFs (111/116) had not been previously identified as such.

Extant annotation (FlyBase: FB2008_05) predicted diverse cellular functions for DVHFs.

DnaJ-1 and CG3061 are predicted to be involved in the unfolded protein response, which is

activated upon DENV infection15, 16. α-Adaptin, cnir, lqf, synaptogyrin, Syx4, and Syx13,

are all involved in vesicular transport and endocytosis17, which have been implicated in the

entry and replication of a diverse group of viruses18, including DENV19. The novel DVHF

lqf interacts with the Drosophila homologue of human EPS15, which is required for West

Nile Virus (WNV) and DENV entry19-21. We posit that RNA binding proteins, such as bol,

Unr and CG5205, and the 3′-5′exonuclease-like CG6744, assist in genome expression,

replication and/or packaging (see below). Interestingly, the mosquito homologues of three

DVHFs identified in our screen (pxb, H15 and Cyp6a19) were found to be differentially

regulated after DENV infection in live mosquitoes22.

Gene Ontology (GO) annotation (GATHER, www.gather.genome.duke.edu/) of DVHFs

indicated a surprisingly high number (22) of nuclear proteins. Although DENV gene
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products are known to transit through the nucleus during the course of infection23-26, it is

also possible that DENV infection relocalizes many of these factors to the cytoplasm. Also

remarkable was the large number of gene products predicted to be membrane-associated: 17

with the plasma membrane and 10 with intracellular membranes (ER, Golgi, vesicles and

vacuole-like organelles) (Fig. 1d). The detection of many membrane bound gene products is

fully consistent with the observations that viral infections cause remodeling of cellular

membranes27.

In order to test whether DVHFs were required for propagation of DENV in the vector

mosquito Ae. aegypti we tested the impact of depleting mosquito homologues of lola

(AAEL009212), CG10320, a putative NADH dehydrogenase, (AAEL007054), and Cyp6a19

(AAEL009124) using an established method of RNAi-mediated gene silencing28. A dsRNA

targeting AAEL009212 reduced the DEN2-NGC capacity to infect the midgut tissue at

seven days after ingestion of infected blood (Fig. 2). The effect of DVHF gene silencing on

DENV infection was likely underestimated because of an aberrantly low titer of one group

of control GFP dsRNA injected mosquitoes (Fig. 2). A dsRNA targeting AAEL009124 did

not affect infectivity. Where as inhibition of infectivity upon depletion of AAEL007054 was

not statistically significant, exclusion of the point that appears to be an outlier leads to a

reduction of infectivity that approaches significance and suggests that this gene product

could be a DVHF in Ae. aegypti (Fig. 2). Given the complex spatio-temporal dynamics of

DENV infection in the mosquito, the fact that the mosquitoes are genetically polymorphic,

the inherent variability of blood meal infections29, and the uncertainty of achieving gene

product depletion in the appropriate tissue and time after dsRNA injection, it was

remarkable to obtain inhibition with these DVHFs. These data, together with those obtained

above with Ae. albopictus cells, validate the use of the Drosophila screen to identify

dipteran DVHFs.

The 116 DVHFs had 82 readily identifiable human homologues, which we targeted with a

library of siRNAs (Fig. 3a). We supplemented the library with siRNAs targeting gene

products that were functionally associated with the V-ATPase but had not scored as DVHFs

in the D.Mel-2 screen, for instance V-ATPase accessory proteins not found in insects. Of the

82 homologues of the dipteran DVHFs, 42 (51%) scored as human DVHFs (Fig. 3b, c;

Supplementary Table 2). The remarkably high number of dipteran DVHFs that also were

required for infection of human cells further validates the screen, and provides the first

evidence for widespread conservation of flavivirus-host interactions between invertebrates

and vertebrates (Supplementary Fig. 6 and Supplementary Table 3).

Knockdown of DVHFs in HuH-7 cells significantly reduced the formation of DEN2-NGC

infectious particles (Fig. 3d). Knockdown of DVHFs predicted to be involved in entry, post-

translational modifications and transcription accounted for the majority of those that resulted

in greater than 10-fold inhibition of viral propagation. In order to ascertain whether or not

the DVHFs were required for other viral infections we determined whether knockdown of

DVHFs led to alterations in the gene expression for Yellow Fever virus (YFV) (17D vaccine

strain), another flavivirus, and Coxsackie B3 (strain 20) (CB3), an enterovirus. Of six

DVHFs that showed ≥ 2 fold inhibition of DEN2-NGC E protein expression by at least two

independent siRNAs, only one (FLJ20254) scored by the same criteria as required for YFV

and three (CNOT2, FLJ20254, TAZ) as required for CB3 gene expression (Supplementary

Table 4). This suggests some shared host factors among these RNA viruses, but also points

to the existence of dengue specific host factors.

To determine whether we had identified DVHFs that affected both early and late steps in the

viral life cycle and to gain some early mechanistic insights we examined viral RNA

accumulation in HuH-7 cells treated with siRNAs targeting NPR2, SEC61B, FLJ20254,

Sessions et al. Page 3

Nature. Author manuscript; available in PMC 2012 October 02.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



TAZ, EXDL2, and CNOT2 transcripts. As expected, knockdown of these DVHFs reduced

both the number of cells expressing DENV E protein and the titer of infectious virus

recovered 48 hours post infection (pi) with DEN2-NGC (Fig. 4, a and b). Consistent with

this, we noted a decrease in viral transcripts measured by qRT-PCR (Fig. 4e). Accumulation

of viral transcripts at 18 and 24 hours pi was clearly decreased in cells depleted of

FLJ20254, TAZ, EXDL2, and CNOT2 (c, d), indicating that these DVHFs act on steps

required for the accumulation of RNA (e.g., early events). In contrast, knockdown of NPR2

did not result in lower RNA levels at early times pi, indicating that this DVHF acts at steps

downstream of RNA accumulation. Given its location in the plasma membrane30, it is likely

that NPR2 is involved in the assembly or exit of DENV.

It is difficult to draw definitive conclusions for the 40 human homologues of dipteran

DVHFs that did not recapitulate the effect on DENV infection (Supplementary Fig. 6). It is

likely that some of these failed merely because their knockdown in human cells was

ineffective. Nonetheless, these 40 genes that did not score in the human screen are not

enriched in the aforementioned processes (e.g., endocytosis), but show highly significant

enrichment for genes involved in immunity, suggesting that many represent dipteran-

specific DVHFs.

The availability of resources to carry out en masse analysis in D. melanogaster and human

cells permitted us to carry out a study that extended the known list of DVHFs by many fold.

Given the likelihood of some false positives and the certainty of false negatives, this work

represents an incomplete first version of what eventually will be a comprehensive DVHF

list. Nonetheless, this study could lead to new targets for vector intervention. Furthermore,

the information uncovered here should be used to explore the contribution of human DVHFs

to disease severity and their potential in the treatment of DF, and related illnesses such as

West Nile encephalitis/fever and yellow fever.

Methods Summary

The 22,632 dsRNA collection of the DRSC has been previously described 14. The DEN2-S2

virus used in the primary screen was isolated via serial passage of DEN2-NGC (a gift from

Dr. A. de Silva – UNC-CH) in D.Mel-2 cells (Invitrogen). The experimental schedule for

the primary and secondary screens is outlined in Fig. 1a. The human screen was done with

HuH-7 cells treated independently with two siRNAs (Qiagen) for each gene product and

DEN2-NGC according to the schedule outlined in Fig. 2a. Infected cells were labeled with

the anti-E, 4G2 primary antibody (isolated from the DI-4G2-4-15 hybridoma

(ATCC#HB-112)) and Alexa-488 anti-mouse secondary (Invitrogen), and counterstained

with Hoescht 33342 (Sigma). Imaging and analysis of infection was done with a Cellomics

ArrayScan Vti HCS machine.

Selection of candidates from the primary screen was done using a nonparametric approach,

the Sum Rank algorithm, in order to produce an appropriate summary statistic of each

dsRNA tested in duplicate. Briefly, within each plate, wells were ranked by the percentage

of infected cells, with the well with the lowest percentage infected cells given rank = 1. For

each dsRNA tested in duplicate, we calculated a Sum Rank (SR) statistic using the formula:

SR = Rank on plate #1 + Rank on plate #2. SRs at either extreme are less likely to be

observed by random chance. The number of times a given SR is expected to occur near the

lower extreme (SR = 2) for a single pair of duplicate plates is given by: E[SR] = (SR - 1) / (#

Valid Wells). SRs were calculated for every dsRNA in the Drosophila genome, with E[SR]

scores below 0.065 used to select potential targets (218 dsRNAs) for further analysis (See

Supplementary Fig. 4).
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Standard experimental procedures were used for all other experiments. Please see

Supplementary Information for more detail.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genome-wide RNAi screen for dipteran DVHFs. 22,632 dsRNAs were assayed in duplicate

for their effect on DEN2-S2 viral gene expression in D.Mel-2 cells. (a) Schematic of the

experimental protocol used in the screen. (b) Representative images of dsRNA treated

D.Mel-2 cells at 20× magnification with nuclei staining (blue) and dengue E protein staining

(green). (c) The percentage of DEN2-S2 infected (% Infected) cells is indicated for controls

and selected DVHFs. Error bars represent standard error of ≥ six independent observations.

(d) Cellular localization of the 116 DVHFs identified in the Drosophila screen according to

GO cellular component annotation (FlyBase: FB2008_05).
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Figure 2.
Injection of Ae. aegypti mosquitoes with dsRNA targeting a DVHF inhibits dengue virus

propagation. Four-day old female mosquitoes were injected with dsRNAs targeting GFP,

AAEL009212, AAEL007054, or AAEL009124. Three days after injection, mosquitoes were

fed on a DEN2-NGC supplemented blood meal. Seven days later, 30 mosquitoes for each

condition were randomly sorted into 6 groups of 5, their midguts removed, homogenized

and titered. Data points indicate the combined titer of five dsRNA-treated mosquito midguts.

Dashes indicate the median value of the six biological replicates. Significance at <0.05 level

was determined using a one-sided student's T-test of viral titres (dsDVHF vs. dsGFP).
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Figure 3.
Screen for Human DVHFs. siRNAs targeting 82 human DVHF homologues were screened

in HuH-7 cells for their ability to inhibit DEN2-NGC. (a) Schematic of the experimental

protocol. (b) Representative images of siRNA treated HuH-7 cells at 1× magnification with

nuclei staining (blue) and dengue E protein staining (green). (c) The percentage of DEN2-

NGC infected cells is indicated for controls and selected DVHFs. (d) Viral propagation after

treatment with control or DVHF siRNAs was measured 72 hours after DEN2NGC infection

and plotted on a logarithmic scale. Error bars in (c) and (d) indicate standard error of three

independent observations.
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Figure 4.
Analysis of DENV RNA accumulation after DVHF knockdown. (a) The percentage of

DENV2-NGC infected (% Infected) cells 48 hours post infection (MOI ∼ 1.4) is indicated

for controls and for six DVHFs. Error bars represent the standard deviation of six replicates.

(b) Viral propagation 48 hours post infection was calculated for controls and six DVHFs.

Error bars represent the range of duplicates. (c, d, e) Viral RNA accumulation was measured

by RTqPCR at 18, 24, and 48 hours post infection respectively and normalized to GAPDH.

Values represent the average of median qPCR measurements. Error bars represent the range

of duplicates.
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