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Abstract
High-resolution Nuclear Magnetic Resonance (NMR) spectroscopy in combination with
multivariate statistical methods has been widely used to investigate metabolic fluctuations in
biological systems. This study presents three feature selection methods for identifying the
metabolite features that contribute to the distinction of spectral samples among varying nutritional
conditions in human plasma. Loading vectors of Principal Component Analysis (PCA), the
optimal discriminant direction of Fisher discriminant analysis, and index values of the Variable
Importance in Projection (VIP) in a Partial Least Square Discriminant Analysis (PLS-DA) were
used to calculate the importance of individual metabolite feature in spectra. In addition, an
Orthogonal Signal Correction (OSC) filter was used to eliminate unnecessary variations in NMR
spectra and its effectiveness was demonstrated through PCA and kernel PCA. For the evaluation
of presented feature selection methods, we compared the ability of classification based on the
metabolite features selected by each method. The results have shown that the best classification
was achieved using VIP values from an OSC-PLS-DA model.
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1 Introduction
Development of advanced sensing technology has multiplied the sheer volume of spectral
data, which is one of the most common types of data in many research fields to which
multivariate statistical methods are applied. Examples of spectral data include Near-Infrared
(NIR), Mass Spectroscopy (MS), and Nuclear Magnetic Resonance (NMR) spectroscopy.
These spectral data increasingly are being used to determine concentrations of samples and
to infer other useful properties as a means to uncover patterns inherent in information-rich
data (Sun, 1997; Qin, 2003).

Metabolomics approaches that use NMR spectroscopy have been used to characterise
metabolic variations in response to physiological alternation, disease states, genetic
modification, and nutrition intake (Nicholson et al., 1999, 2002). NMR spectroscopy is
efficient and cost effective because the analysis is either noninvasive or minimally invasive
and requires little sample preparation (Lindon, 2004). The metabolic spectrum from high-
resolution NMR spectroscopy usually involves tens of thousands of metabolite features
whose intensity values are generated by the resonance of molecules in the sample. Often one
wishes to compare a set of spectra from different subjects, conditions, or time points. Such
combinations of multiple samples, each with tens of thousands of features, lead to a huge
number of data points and a situation that poses a great challenge to analytical capabilities.

A variety of multivariate statistical methods have been introduced to reduce the complexity
of metabolic spectra and thus, help identify meaningful patterns in high-resolution NMR
spectra (Holmes and Antti, 2002; Lindon et al., 2001). In general, multivariate statistical
methods in metabolomics can be divided into two categories, unsupervised and supervised.
Principal Components Analysis (PCA) and clustering analysis are examples of unsupervised
methods that have been widely used to facilitate the extraction of implicit patterns and elicit
the natural groupings of the spectral dataset without prior information about the sample class
(Jensen et al., 2004; Beckonert et al., 2003; Solanky et al., 2003). Supervised methods have
been applied to classify metabolic profiles according to their various conditions (e.g., time,
disease-induced stress, toxic stress, nutritional intake, etc.) (Wang et al., 2004; Beckonert et
al., 2003; Holmes et al., 2001; Bathen et al., 2000). The widely used supervised methods in
metabolomics include Partial Least Square (PLS) methods, k-nearest neighbours, neural
networks, and Fisher discrimination analysis. A comprehensive summary of multivariate
statistical methods in metabolomics can be found in Holmes and Antti (2002) and Lindon et
al. (2001).

In NMR spectra the number of metabolite features present usually greatly exceeds the
number of samples, which leads to ill-posed problems. Resolving this difficulty requires an
efficient method that can reduce the high dimensionality present to fewer characteristic
dimensions that retain most of information of the original data. Although supervised and
unsupervised methods have been successfully used for descriptive and predictive analyses in
metabolomics, relatively few attempts have been made to identify the metabolite features
that play an important role in discriminating between spectra among experimental
conditions. The widely used methods include PCA (Goodarcre et al., 2003; Wang et al.,
2003) and PLS (Tapp et al., 2003) that provide transformed variables and generally, the first
few transformed variables are sufficient to account for the majority variations (e.g., PCA) or
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to maximise separability (e.g., PLS) of the entire data. However, extracting meaningful
information of original metabolite features from these transformed variables is complicated
because these are linear combinations of a large number of original features. Furthermore,
selected variables from PCA may not always produce maximum discrimination between
classes because PCA does not take into account the class information. Recently, a two-stage
genetic programming was introduced for feature selection in metabolomics (Davis et al.,
2006). This method obviously compensates for the interpretation problems in PCA and PLS
and identifies individual metabolite features necessary for classification. However, genetic
programming often involves many parameters that may prevent us from obtaining robust
results.

This study presents three feature selection approaches that overcome limitation posed by the
transformed variables in PCA and PLS. Three approaches can be categorised into
unsupervised, supervised, and a mix of unsupervised and supervised. First, we present the
PCA loading method as an unsupervised approach. PCA loadings can be obtained by
decomposing transformed variables into components (i.e., loadings) that reflect the
contribution of each individual feature. This is a purely unsupervised approach because the
process of feature selection is performed without using designated labels of samples.
Second, we present an approach that combines unsupervised and supervised feature
selection processes. Fisher Discrimination Analysis (FDA) is applied in a reduced
dimensional space obtained from PCA. The derived weight vectors obtained through FDA
characterise an optimal discriminant direction and the components in weight vectors
determine important features for classification. Finally, we use the Variable Importance in
Projection (VIP) values from Partial Least Square Discriminant Analysis (PLS-DA) that
describes a quantitative estimation of the discriminatory power of each individual feature.
This method uses class labels of sample and identifies important individual features that
maximise an ability of classification, thus it is a supervised approach. Although the concept
of PCA loadings, FDA weight vectors, and PLS-DA VIP values was already introduced in
multivariate statistical analysis, their application to metabolomics is still premature. In
particular, our study conducts a comparison study of three approaches through real NMR
spectra to demonstrate the potential problem of using unsupervised feature selection
approaches, widely used in metabolomics.

In addition, we examine the feasibility of using the Orthogonal Signal Correction (OSC)
technique along with feature selection to determine whether classification and visualisation
could be improved. OSC is a preprocessing technique that removes unwanted spectral
variations of data that do not contribute to prediction or classification (Wold et al., 1998).
The presented feature selection methods and OSC technique are illustrated using real NMR
spectra in which the analytical objective is to identify the metabolite features that
characterise metabolic patterns in response to Sulfur Amino Acids (SAA) intake in human
plasma. SAA are highly variable in human food, and deficiency and excess are both risks.
They are required for physiologic processes in addition to their role in the maintenance of
protein synthesis and nitrogen balance.

The remainder of this paper is organised as follows. Section 2 briefly describes the
background of PCA, PLS, and OSC necessary for understanding the feature selection
approaches presented in Section 3. Section 3 gives detailed descriptions of feature selection
approaches. Section 4 describes the experimental data and preprocessing procedures.
Section 5 presents the results of the analysis. Finally, Section 6 contains the concluding
remarks.
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2 Background
2.1 Principal Component Analysis (PCA)

PCA is one of the most frequently used multivariate techniques for dimension reduction. It
defines lower-dimensional subspaces that capture as much variation of data matrix X (n × N)
as possible, where n and N denote the number of samples and features, respectively
(Johnson and Wichern, 2002). Mathematically, PCA relies on an eigenvector decomposition
of the covariance matrix of X, cov(X) = XTX/n − 1. If only the first A (A < N) dimension of
scores is needed, PCA decomposes X into the sum of the outer products of score vectors (or
principal components) ti and loading vectors pi plus a residual matrix E.

(1)

Here loading vectors pi obtained from the eigenvectors of the covariance of X account for
the contribution of individual features in each principal component dimension (Qin, 2003).
The obtained Principal Components (PCs) are uncorrelated with each other, and in general,
the first few PCs suffice to characterise the patterns of the spectra.

2.2 Partial Least Squares (PLS)
PLS is a multivariate projection method for modelling a relationship between independent
variables X and dependent variable(s) Y. PLS has been used in various disciplines such as
chemistry, economics, medicine, psychology, and pharmaceutical science where both the
independent and dependent variables are available (Blanco et al., 2000; Shao et al., 2004;
Kourti, 2005). PLS seeks to find a set of latent features that maximises the covariance
between X (n × N) and Y (n × M). It decomposes X and Y into the following forms
(Hoskuldsson, 1988):

(2)

(3)

where T and U are (n × A) matrices of the extracted A score vectors, P (N × A) and Q (M ×
A) loading matrices, and E (n × N) and F (n × M) residual matrices. The PLS method
searches for weight vectors w and c that maximises the sample covariance between t and u.
By regressing X (Y) on t (u), a loading vector p (q) can be computed as follows:

(4)

(5)

Then, the PLS regression model can be expressed as Y = XB + G, where B and G represent
regression coefficients and a residual matrix, respectively.

2.3 Orthogonal Signal Correction (OSC)
OSC is a preprocessing technique for removing undesirable systematic variation in data. It
was first developed in Wold et al. (1998) to remove systematic variation from the predictor
X that is orthogonal (or unrelated) to the response Y. The largest variation of X having zero
correlation with Y is selectively removed from X. The first step of OSC is to calculate the
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first PC score vector t from X. The score vector t is then orthogonalised with respect to Y,
producing the following actual correction vector t*:

(6)

Then PLS weight vector w is computed such that Xw = t*, followed by the calculation of a
new score vector, t = Xw. These processes are repeated until t has converged. Finally, a
loading vector, p, is computed, and the correction term tpT is subtracted from X giving a
residual. The next components can be calculated in such a way. Since the introduction of
OSC by Wold et al. (1998), several modified OSC algorithms have been reported (Sjoblom
et al., 1998; Fearn, 2000; Westerhuis et al., 2001). In the present study we used a direct
orthogonal signal correction algorithm and implemented using MATLAB codes available
from Westerhuis et al. (2001). It should be noted that there is a risk of overfitting when too
many OSC components are used. In this paper we used two OSC components because
previous studies (Wold et al., 1998; Westerhuis et al., 2001) and our own analysis from
cross validation indicated that one or two OSC components are sufficient.

3 Feature selection approaches
3.1 PCA loading

Each individual feature does not have the same degree of importance in defining a PCA
model. In general, PC, ti is the linear combination of the original features weighted by PCA
loading coefficients:

(7)

The PCA loading coefficients represent the importance of each individual feature in a
reduced dimension. For example, pi2 indicates the degree of importance of the second
original feature in the ith PC dimension. In general, two-dimensional loading plots (e.g., p1–
p2 loading plot) provide useful information to identify important features in the first and
second PC dimensions. However, such a use of PCA loading coefficients for feature
selection can be extended into A PC of interest. A PCA loading-based feature selection

index for the jth original feature  is given by

(8)

where N is the total number of metabolite features and EVi represents the proportion of total
variance explained by the ith PC.

3.2 FDA weights
FDA is a widely used technique for achieving optimal dimension reduction in classification.
FDA provides an efficient lower-dimensional representation of X for discrimination among
groups of data (Chiang et al., 2000). In other words, FDA uses the dependent variable to
seek directions that are optimal for discrimination. This process is achieved by maximising
the between-group-scatter matrix Sb (see equation (9)) while minimising the within-group-
scatter matrix Sw (see equation (9)) (Yang et al., 2004). Thus, FDA finds optimal
discriminant weight vectors ϕ by maximising the following Fisher criterion:
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(9)

It can be shown that this maximisation problem can be reduced to a generalised eigenvalue
problem: Sbϕ = λ Swϕ (Yang et al., 2004). The main idea of using FDA for feature selection
is to use its weight vector (i.e., ϕ =[ϕ 1, ϕ 2, …, ϕ N]T ). It has been known that feature
selection by FDA may encounter computational difficulty due to the singularity of the
scatter matrix when the number of samples is smaller than the number of features (Chen et
al., 2000). To address this problem, PCA was applied to reduce the number of features, and
resulting PC are used as the input features of an FDA classifier. Thus, an FDA weight-based

feature selection index for the jth original feature  is given by

(10)

3.3 VIP in PLS-DA
PLS-DA is a special form of PLS for a classification purpose, which explains maximum
separation between defined classes of samples. PLS-DA is performed by a PLS regression
against a dummy matrix Y that indicates class membership (Barker and Rayens, 2003). Each
sample is assigned a value of 1 or 0 depending on whether or not it belongs to a specific
class. The statistical information obtained from this PLS-DA model can be used to
determine which features of X are important in determining class membership of Y
(Musumarra et al., 2004). For this purpose a VIP-based feature selection index for the jth

original feature,  is computed as

(11)

where wij is a PLS-DA weight, RSSi a percentage of the explained residual sum of squares,
and RSST a total percentage of the explained residual sum of squares (Kourti and
MacGregor, 1996).

4 Experimental data
4.1 Sample collection

We used plasma samples obtained from four healthy subjects under controlled metabolic
conditions in the Emory General Clinical Research Center (GCRC). The subjects signed an
informed consent approved by the Emory Institutional Review Board and were screened
prior to admission with a physician-performed medical history and physical examination,
plasma chemistry profile, complete blood count and urinalysis. During the 12-day GCRC
admission, the subjects consumed defined diets at standardised intervals. For the first two
days (equilibration), the subjects consumed a balanced meal plan with foods selected to
ensure adequate energy, protein and SAA intake (SAA at 19 mg/kg/day). After this phase,
subjects were placed on constant semi-purified diets designed to alter SAA intake. The diets
provided adequate energy and amino acid nitrogen to meet estimated maintenance needs of
individual subjects. The semi-purified diet was provided in the form of cookies and
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beverages containing L-amino acids, sherbert, corn oil, butter, sugar, and corn starch
prepared in the GCRC metabolic kitchen. Daily micronutrient needs were provided in the
form of standardised oral doses of multivitamin-mineral supplements, choline, sodium
chloride, potassium, and magnesium. The L-amino acid component of the diet was altered to
provide zero sulphur amino acids during the initial five days and 117 mg/kg/day during the
latter five days of the GCRC stay. Blood was drawn serially 34 times from four subjects
over 10 days and proton (1H)-NMR spectra were obtained by a Varian INOVA 600 MHz
instrument, which is a high-resolution nuclear NMR spectrometer and used to obtain NMR
spectra from blood samples taken serially. During the first 17 time points, blood was
collected from subjects consuming zero SAA and 117 mg/kg/day SAA during the latter 17
time points. Figure 1 shows the data structure used for the analysis.

4.2 Preprocessing of NMR spectra
Spectral data generated by 1H-NMR spectroscopy require preprocessing steps prior to the
subsequent analyses in order to ensure the comparability of multiple spectra. Generally,
preprocessing includes phase and baseline corrections, spectra alignment, elimination of
redundant regions, and normalisation. Phase and baseline corrections were done using
NUTS software (Acorn NMR Inc., Livermore, CA). Variations in spectra caused by
concentration, pH, and temperature affect the spectra alignment and thus can interfere with
direct comparison between samples. We used a beam search algorithm (Lee and Woodruff,
2004), which determines the best alignment between the spectra by maximising their
correlation. Further, redundant regions (e.g., water and the regions containing no metabolite
signals) were removed.

A spectrum after removal of the redundant regions is shown in Figure 2(a). Finally, a
spectrum was segmented into 0.01 ppm chemical shift bins. The NMR spectrum was
reduced to 574 regions (i.e., bins) of equal width (0.01 ppm). The spectral area within bin
was integrated using MATLAB (MathWork Inc., Natick, MA). The reduced (binned)
spectrum is displayed in Figure 2(b), showing that it retains most of the spectral information
contained in the original spectrum.

5 Results
5.1 Effect of OSC

Before undertaking the feature selection process, OSC was performed to improve the
separability of the two different dietary phases (zero SAA and supplemented SAA) by
removing unwanted variation that does not contribute to discrimination. Figure 3(a) shows
PCA score plots from the NMR spectra not processed by OSC. The PC1 and PC2
components, respectively, in Figure 3(a) explained 68.1% and 14.1% of the total variation of
X.

Figure 3(b) and (c) show PCA and kernel PCA (KPCA) score plots obtained from OSC-
processed spectra. We attempt to use KPCA, expecting that visualisation is improved by
dealing with the nonlinear characteristics of spectra. The basic idea of KPCA is to first map
input data into a nonlinear feature space F and then to extract PC in that feature space.
Replacing canonical dot products in F by a kernel function (e.g., Gaussian, polynomial, and
sigmoid functions) eliminates the need to execute nonlinear mappings and dot products in F
(Cortes and Vapnik, 1995). To our best knowledge, this is the first work that attempts to
adopt KPCA in metabolomics.

The two-dimensional score plots of PCA and KPCA using the OSC processed data clearly
show better separation between the zero-SAA phase and the SAA-supplemented phase
(Figure 3(b) and (c)) compared with the results without OSC (Figure 3(a)). In OSC-KPCA, a
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Gaussian kernel k(x, y) = exp(−||x − y||2/c) was chosen with c = 6 because it yielded better
separation between the two dietary phases than other kernel functions and parameter values.
The use of the kernel function is to represent the nonlinearity of the NMR data and to find
out the separation between the two dietary phases in reduced score spaces. The OSC-KPCA
score plot seems to provide slightly better separation than OSC-PCA. Overall, clearer
separation between the two dietary phases was achieved in linear (OSC-PCA) and nonlinear
(OSCKPCA) PC reduced spaces processed by OSC. This most likely leads to less
misclassification rate in classification models discussed in later section. The PCA, OSC-
PCA, and OSC-KPCA models give an overall impression of how well the different classes
can be separated. The subsequent classification analysis of the NMR spectral data was
performed with the two dietary phases. Original features and PCs were used for calculating
classification results based on the k-Nearest Neighbour (k-NN) method. The experimental
data were split into four groups corresponding to four individuals; each group includes 17
spectra obtained during the zero-SAA phase and 17 samples obtained during the
supplemented-SAA phase. Three groups of the samples were used for training, and the one
remaining group was kept aside as testing data. This process was repeated three times more
to obtain an overall misclassification rate.

The classification results from the four different sets of testing were averaged (Table 1). The
best classification was achieved using OSC-PCA and OSC-KPCA, both of which yielded a
zero misclassification rate in both the training and testing samples. On the other hand, the
two classification methods not processed by OSC produced relatively less accurate
classification results. In k-NN, different values of neighbourhood parameters k were
examined to determine which has the lowest misclassification rate (minimum error at k = 4).
In addition, two PLS-DA models are built to investigate the OSC filtering effect, the results
of which are shown in Table 2. It turned out that the “OSC-processed PLS-DA” model has
better predictive power (i.e., discriminative, in this case) than the ‘PLS-DA’ model: 0.886
vs. 0.225. Such an improvement in discrimination can be also shown in score plots of the
two PLS-DA models (Figure 4). The “OSC-processed PLS-DA” (Figure 4(b)) shows two
distinct clusters that represent a well-defined discrimination of the two classes of dietary
SAA intake.

5.2 Feature selection and evaluation
The three feature selection approaches described in Section 3 were performed to find
important metabolite features that contribute to the discrimination between the zero-SAA
phase and the supplemented-SAA phase. For feature selection we used OSC-processed
spectra because they gave a well-defined discrimination of the NMR spectra with two

distinct classes. PCA loading values (  for j = 1, …, N), FDA weights (  for j

= 1, …, N), PLS-DA VIP scores (  for j = 1, …, N) for individual metabolite features
were obtained using equations (8), (10) and (11), respectively and they are plotted against
chemical shifts (Figure 5). To calculate PCA loading values, we used seven PCs, which
explain 96.5% of total variation of the entire data.

The calculation of  allows us to rank each of the 574 individual features according to
its contribution to the capability to discriminate different classes of the experimental data. A
total of 269 metabolite features with large VIP values (i.e., VIP > 1) were selected (see
Figure 5(c)). The features with VIP > 1 were considered to be important because the squared
sum of all VIP values is equal to the number feature and thus, the average VIP would be
equal to 1 (Umetrics, 2005).
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To ensure the comparability of the three feature selection methods, the same number of
features was selected for both the PCA loading approach and the FDA weight approach. The
threshold values to determine important features were 0.03332 for the PCA loading method
(see Figure 5(a)) and 3.08 × 10−4 for the FDA weight method (see Figure 5(b)). It can be
seen that the similar metabolite features were selected from the PCA loading and FDA
weight approaches because both approaches adopted an unsupervised manner. PLS-DA VIP
that uses a supervised feature selection process identified a different set of metabolite
features compared to other two approaches. More specifically, most of metabolite features
between 0.53 ppm and 2.53 ppm were selected as significant from PLS-DA VIP, while this
was not the case in PCA loading and FDA weight. Furthermore, it is interesting to note that
the PCA loading and FDA weight approaches identified all the metabolite features between
6.8 ppm and 7.8 ppm as significant, while none of them were selected as important from the
PLS-DA VIP approach.

To evaluate a set of metabolite features selected by three feature selection approaches,
classification models were developed with those features. The k-NN models with k = 4 were
developed with the experimental data. As before, the experimental data were split into four
groups corresponding to the four individuals. Three individuals were used for training the
models, and the one remaining individual was used for testing. This process was repeated
three more times to obtain the cross-validated error rate (misclassification rate).
Misclassification rates from three approaches were summarised in Table 3. The best
classification was achieved using the VIP values of the PLS-DA model: Average
misclassification rates are 0% in the training data and 0.7% in the testing data. This result
implies that an unguarded use of unsupervised feature selection approaches may mislead
features selection results.

6 Conclusions
Systematic application of the features selection approaches to metabolomics can provide a
basis for simultaneous determinations of multiple nutritional endpoints and the modelling
and analysis using individual features in complex high-resolution NMR spectra.

We have presented three feature selection approaches (PCA loadings, FDA weight vectors,
and PLS VIP values) for high-resolution NMR spectra to identify informative metabolite
features in human plasma that characterise metabolic perturbations induced by dietary SAA
intake. These approaches can offer advantages over conventional PCA and PLS techniques
because they take into account the decomposition of transformed variables that provide a
clear interpretation with respect to the original metabolite features. Furthermore, the effect
of using OSC as a preprocessing step has been illustrated in the PCA and the KPCA score
plots by showing significant improvement in the separation of samples. This led to more
accurate classification results. The overall result has shown that the better classification was
achieved using VIP values from an OSC-processed PLS-DA model than other two
approaches using unsupervised manners. This result implies that a mere use of unsupervised
features approaches in labeled data, widely used in metabolomics for feature selection, lead
to the potential problems. We hope that the approaches and comparison results presented in
this paper stimulate further investigation in the development of better analytic approaches
for feature selection in metabolomics.

Acknowledgments
The authors would like to thank the editor and three anonymous reviewers whose comments helped significantly
improve the quality of this paper. We are grateful to nursing and laboratory staff of the Emory General Clinical
Research Center for valuable helps in collecting samples. This study was supported by grants from the National

Cho et al. Page 9

Int J Data Min Bioinform. Author manuscript; available in PMC 2014 January 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Institutes of Health: R03 DK066008, R03 ES012929, R01 ES011195, R01 DK55850, and the Emory General
Clinical Research Center grant M01 RR00039.

Biographies
Biographical notes: Hyun-Woo Cho is a post-doctoral research associate in the Department
of Industrial and Information Engineering at the University of Tennessee at Knoxville. He
received his PhD in Industrial Engineering in 2003 from POSTECH in South Korea and
MS/BS in Chemical Engineering. He is a member of the Institute for Operations Research
and Management Sciences (INFORMS). His research interests include statistical pattern
recognition, NMR/NIR-based feature selection, and nonlinear kernel/wavelet-based analysis
for manufacturing, chemical, bio, and bioenergy processes.

Seoung Bum Kim is an Assistant Professor of Industrial and Manufacturing Systems
Engineering at the University of Texas at Arlington. He was a post-doctoral fellow at the
Emory University Medical School. He received his PhD in Industrial and Systems
Engineering in 2005 from the Georgia Institute of Technology. He was awarded the Jack
Youden Prize as the best expository paper in Technometrics for the Year 2003. He is a
member of the Institute for Mathematical Statistics. His research interests include statistical
and data mining modelling of high-resolution NMR spectra.

Myong K. Jeong is currently an Assistant Professor in the Department of Industrial and
Information Engineering, the University of Tennessee, Knoxville. He received the PhD
Degree in Industrial and Systems Engineering from the Georgia Institute of Technology,
Atlanta, Georgia, in 2004. His research interests include data mining, pattern recognition,
NMR/NIR spectral analysis, and wavelets. He is a member of IEEE and INFORMS. He won
the Freund International scholarship in 2002.

Youngja Park, PhD is an instructor in the Department of Medicine (Pulmonary, Allergy and
Critical Care Division) at Emory University, Atlanta, GA. She received a PhD in
Pharmacology and Toxicology from University of Texas at Austin, in 1990. Her central
research focus is on nutritional metabolomics using 1H-NMR. She is currently working in
the Emory Clinical Biomarkers Laboratory and the NMR Research Center to collect NMR
spectral data of human plasma. She has developed procedures for management and
statistical analysis of NMR spectra of human plasma.

Nana Gletsu is an instructor in the Department of Surgery (General and Gastrointestinal
Surgery at Emory University, Atlanta, GA. She received a PhD in Nutrition and Metabolism
at University of Alberta, Edmonton, Canada in 1998. Her research interests include
understanding the links between obesity and oxidative stress/insulin resistance/metabolic
syndrome. Her present studies include identifying biomarkers indicative of insulin resistance
using proteomics and metabolomics.

Dean P. Jones, PhD is a Professor in the Department of Medicine (Pulmonary, Allergy and
Critical Care Division) at Emory University, Atlanta, GA. He received a PhD in
Biochemistry from Oregon Health Sciences Univ., Portland, in 1976. His central research
focus is on redox mechanisms of oxidative stress. He currently directs the Emory Clinical
Biomarkers Laboratory, which is focused on oxidative stress biomarkers and applications
of 1H-NMR spectroscopy and Fourier-transform mass spectrometry for high-throughput
clinical metabolomic analyses of nutritional and environmental factors in human health and
disease.

Cho et al. Page 10

Int J Data Min Bioinform. Author manuscript; available in PMC 2014 January 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Thomas R. Zeigler is an Associate Professor in the Department of Medicine (Endocrinology,
Metabolism and Lipids Division) at Emory University, Atlanta, GA. He received his MD
Degree from the Michigan State University College of Human Medicine, E. Lansing, MI, in
1983. He is currently Associate Director of the Emory General Clinical Research Center.
His central research focus is in the area of enteral and parenteral nutrition support and
nutrient-growth factor interactions in clinical and translational models of malnutrition and
catabolic stress.

References
Barker M, Rayens W. Partial least squares for discrimination. Journal of Chemometrics. 2003; 17:166–

173.

Bathen TF, Krane J, Engan T, Bjerve KS, Axelson D. Quantification of plasma lipids and
apolipoproteins by use of proton NMR spectroscopy, multivariate and neural network analysis.
NMR Biomed. 2000; 13:271–288. [PubMed: 10960918]

Beckonert O, Bollard ME, Ebbels TMD, Keun HC, Antti H, Holmes E, Lindon JC, Nicholson JK.
NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-
neighbour approaches. Analytica Chimica Acta. 2003; 490:3–15.

Blanco M, Coello J, Eustaquio A, Iturriaga H, Maspoch S. Development and validation of a method
for the analysis of a pharmaceutical preparation by near-infrared diffuse reflectance spectroscopy.
Journal of Pharmaceutical Sciences. 2000; 88:551–556. [PubMed: 10229648]

Chen L-F, Lio H-YM, Ko M-T, Lin J-C, Yu G-J. A new LDA-based face recognition system which
can solve the small sample size problem. Pattern Recognition. 2000; 33:1713–1726.

Chiang LH, Russell EL, Braatz RD. Fault diagnosis in chemical processes using Fisher discriminant
analysis, discriminant partial least squares, and principal component analysis. Chemometrics and
Intelligent Laboratory Systems. 2000; 50:243–252.

Cortes C, Vapnik VN. Support vector networks. Machine Learning. 1995; 20:273–297.

Davis RA, Charlton AJ, Oehlschlager S, Wilson JC. Novel feature selection method for genetic
programming using metabolomic 1H NMR data. Chemometrics and Intelligent Laboratory Systems.
2006; 81:50–59.

Fearn T. On orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems. 2000;
50:47–52.

Goodarcre R, York EV, Heald JK, Scott IM. Chemometric discrimination of unfractionated plant
extracts analyzed by electrospray mass spectrometry. Phytochemistry. 2003; 62:859–863.
[PubMed: 12590113]

Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical
solutions to characterising and interpreting complex biological NMR spectra. Analyst. 2002;
127:1549–1557. [PubMed: 12537357]

Holmes E, Nicholson JK, Tranter G. Metabonomic characterization of genetic variations in
toxicological and metabolic responses using probabilistic neural networks. Chemical Research in
Toxicology. 2001; 14:182–191. [PubMed: 11258967]

Hoskuldsson A. PLS regression methods. Journal of Chemometrics. 1998; 2:211–228.

Jensen JJ, Hoefsloot HCJ, Boelens HFM, Greef JVD, Smilde AK. Analysis of longitudinal
metabolomics data. Bioinformatics. 2004; 20:2438–2446. [PubMed: 15087313]

Johnson, RA.; Wichern, DW. Applied Multivariate Statistical Analysis. Prentice-Hall; New York:
2002.

Kourti T. Application of latent variable methods to process control and multivariate statistical process
control in industry. International Journal of Adaptive Control and Signal Processing. 2005;
19:213–246.

Kourti T, MacGregor JF. Multivariate SPC methods for process and product monitoring. Journal of
Quality Technology. 1996; 28:409–428.

Leardi R. Genetic algorithms in chemometrics and chemistry: a review. Journal of Chemometrics.
2001; 15:559–569.

Cho et al. Page 11

Int J Data Min Bioinform. Author manuscript; available in PMC 2014 January 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lee GC, Woodruff DL. Beam search for peak alignment of NMR signals. Analytica Chimica Acta.
2004; 513:413–416.

Lindon JC. Metabonomics – techniques and applications. Business Briefing: Future Drug Discovery.
2004; 2004:1–6.

Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical
magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy. 2001; 39:1–40.

Musumarra G, Barresi V, Condorelli DF, Fortuna CG, Scire S. Potentialities of multivariate
approaches in genome-based cancer research: identification of candidate genes for new diagnostics
by PLS discriminant analysis. Journal of Chemometrics. 2004; 18:125–132.

Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity
and gene function. Nature Reviews Drug Discovery. 2002; 1:153–161.

Nicholson JK, Lindon JC, Holms E. Metabonomics: Understanding the metabolic responses of living
systems to pathophysiological stimuli via multi-variate statistical analysis of biological NMR
spectroscopic data. Xenobiotica. 1999; 29:1181–1189. [PubMed: 10598751]

Qin SJ. Statistical process monitoring: basics and beyond. Journal of Chemometrics. 2003; 17:480–
502.

Shao X, Wang F, Chen D, Su Q. A method for near-infrared spectral calibration of complex plant
samples with wavelet transform and elimination of uninformative variables. Analytical and
Bioanalytical Chemistry. 2004; 378:1382–1387. [PubMed: 14735278]

Sjoblom J, Svensson O, Josefson M, Kullberg H, Wold S. An evaluation of orthogonal signal
correction applied to calibration transfer of near infrared spectra. Chemometrics and Intelligent
Laboratory Systems. 1998; 44:229–244.

Solanky KS, Bailey NJC, Beckwith-Hall BM, Davis A, Bingham S, Holmes E, Nicholson JK, Cassidy
A. Application of biofluid 1H nuclear magnetic resonance-based metabonomic technique for the
analysis of the biochemical effects of dietary isoflavones on human plasma profile. Analytical
Biochemistry. 2003; 323:197–204. [PubMed: 14656525]

Sun J. Statistical analysis of NIR data: data pretreatment. Journal of Chemometrics. 1997; 11:525–532.

Tapp HS, Defernez M, Kemsley EK. FTIR spectroscopy and multivariate analysis can distinguish
geographical origin of extra virgin olive oil. Journal of Agricultural and Food Chemistry. 2003;
51:6110–6115. [PubMed: 14518931]

Umetrics. SIMCA-P and SIMCA-P+ User Guide and Tutorial. 2005.

Wang YL, Bollard ME, Keun H, Antti H, Beckonert O, Ebbels TM, Lindon JC, Holmes E, Tang HR,
Nicholson JK. Spectral editing and pattern recognition methods applied to high-resolution magic-
angle spinning H-1 nuclear magnetic resonance spectroscopy of liver tissues. Analytical
Biochemistry. 2003; 322:26–32. [PubMed: 14705776]

Wang YL, Holmes E, Nicholson JK, Cloarec O, Chollet J, Tanner M, Singer BH, Utzinger J.
Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for
biomarker identification. Proc Natl Acad Sci USA. 2004; 101:12676–12681. [PubMed: 15314235]

Westerhuis JA, de Jong S, Smilde AK. Direct orthogonal signal correction. Chemometrics and
Intelligent Laboratory Systems. 2001; 56:13–25.

Wold S, Antti H, Lindgren F, Öhman J. Orthogonal signal correction of near-infrared spectra.
Chemometrics and Intelligent Laboratory Systems. 1998; 44:175–185.

Yang J, Frangia AF, Yang J. A new kernel Fisher discriminant algorithm with application to face
recognition. Neurocomputing. 2004; 56:415–421.

Cho et al. Page 12

Int J Data Min Bioinform. Author manuscript; available in PMC 2014 January 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A schematic diagram of data structure used in the experimental study
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Figure 2.
1H NMR spectral data for (a) original (number of metabolite features = 8,445) and (b)
reduced (binned) spectrum (number of metabolite features = 574)
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Figure 3.
Score plots obtained from (a) PCA; (b) OSC-processed PCA and (c) OSC-processed KPCA
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Figure 4.
Score plots for (a) PLS-DA and (b) OSC-processed PLS-DA models
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Figure 5.
Feature selection results based on (a) OSC-PCA loading; (b) SC-PCA loading with FDA
weights and (c) VIP of OSC-PLS-DA
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Table 3

Comparison of misclassification rates (%) using a set of metabolite features selected by OSC-PCA loading,
OSC-PCA loading with FDA weights, and VIP of OSC-PLS-DA

OSC-PCA loading OSC-PCA loading with FDA weights VIP of OSC-PLS-DA

Training Zero SAA 1.5 1.5 0.0

SAA supplement 0.0 0.0 0.0

Total 0.7 0.7 0.0

Testing Zero SAA 2.9 2.9 1.5

SAA supplement 4.4 4.4 0.0

Total 3.7 3.7 0.7
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