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A large proportion of the Asian population fulfills their energy requirements from wheat

(Triticum aestivum L.). Wheat quality and yield are critically affected by the terminal heat

stress across the globe. It affects approximately 40% of the wheat-cultivating regions of

the world. Therefore, there is a critical need to develop improved terminal heat-tolerant

wheat varieties. Marker-assisted breeding with genic simple sequence repeats (SSR)

markers have been used for developing terminal heat-tolerant wheat varieties; however,

only few studies involved the use of microRNA (miRNA)-based SSR markers (miRNA-

SSRs) in wheat, which were found as key players in various abiotic stresses. In the

present study, we identified 104 heat-stress-responsive miRNAs reported in various

crops. Out of these, 70 miRNA-SSR markers have been validated on a set of 20

terminal heat-tolerant and heat-susceptible wheat genotypes. Among these, only 19

miRNA-SSR markers were found to be polymorphic, which were further used to study

the genetic diversity and population structure. The polymorphic miRNA-SSRs amplified

61 SSR loci with an average of 2.9 alleles per locus. The polymorphic information

content (PIC) value of polymorphic miRNA-SSRs ranged from 0.10 to 0.87 with a

mean value of 0.48. The dendrogram constructed using unweighted neighbor-joining

method and population structure analysis clustered these 20 wheat genotypes into

3 clusters. The target genes of these miRNAs are involved either directly or indirectly

in providing tolerance to heat stress. Furthermore, two polymorphic markers miR159c

and miR165b were declared as very promising diagnostic markers, since these markers

showed specific alleles and discriminated terminal heat-tolerant genotypes from the
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susceptible genotypes. Thus, these identified miRNA-SSR markers will prove useful in

the characterization of wheat germplasm through the study of genetic diversity and

population structural analysis and in wheat molecular breeding programs aimed at

terminal heat tolerance of wheat varieties.

Keywords: Triticum aestivum L., genetic diversity, simple sequence repeats, population structure, marker

assisted breeding, heat responsive genes

INTRODUCTION

Triticum aestivum L. is the most commonly used hexaploid
bread wheat (AABBDD; 6X = 2n = 42) with genome size of
approximately 17 GB. It is derived via crossing among tetraploid
Triticum turgidum (AABB) and diploid Aegilops tauschii (DD),
whereas T. turgidum (AABB) was derived via crossing between
Triticum urartu (AA) andAegilops speltoides (BB) (Petersen et al.,
2006). Wheat is the second principal staple food cereal of the
world fulfilling the maximal carbohydrates dietary requirement
(Kumar et al., 2013). To meet the food demand of the rapidly
growing population, wheat productivity should be enhanced by
40–50% by 2050 (Sharma et al., 2021). Terminal heat stress is
the serious issue in wheat-cultivating regions due to the rise
in temperature every year because of the global warming effect
(Mitra and Bhatia, 2008). Heat stress at the time of anthesis and
grain filling adversely affects wheat quality and yield in terms of
grain number and grain weight (Ferris et al., 1998; Kumar et al.,
2013). A reduction of 4–6% in wheat grain yield was observed
for every 1◦C increase in temperature (Zhao et al., 2017).
High temperature at the time of flowering reduces its fertility
and disrupts photosynthesis mainly through leaf senescence,
leading to heavy yield losses (Fábián et al., 2019). Substantial
variation for heat tolerance is available amongwheat cultivars and
breeding lines but remains relatively unexploited. In comparison
to the heat-susceptible lines, the genotypes maintaining yields
under higher temperatures must contain genes that prevent
degradation of chlorophyll molecules, maintain low canopy
temperature, and encode enzymes that can maintain activity
under elevated temperatures.

The heat tolerance capability of a genotype depends on
different physiological, biochemical, and genetic parameters,
which are directly or indirectly involved in providing defense
against heat stress (Kumar R. R. et al., 2017). The microRNAs,
transcription factors (TFs), signaling molecules, and heat-shock
proteins (HSPs) play key roles in providing thermotolerance
(Kumar et al., 2012). The microRNAs are small (19–24 bp),
non-coding RNA molecules synthesized endogenously from
microRNA (miRNA) genes and present in both prokaryotes
and eukaryotes (Rhoades et al., 2002; Tyagi et al., 2019). It
is well known that the miRNAs control the gene expression
either by direct cleavage of the target mRNA or its suppression
at translational level (Bej and Basak, 2014). These are vital
regulatory elements intricate in several biotic and abiotic
stress responses (Singh and Shah, 2014; Jatan and Lata,
2019). Numerous abiotic-stress-associated miRNAs have been
recognized and characterized in plants, whereas only few
reports are available in wheat (Ohama et al., 2017). In the

case of abiotic stress, a strong interaction between miRNAs
and TFs has been noticed. The miRNAs and TFs interaction
regulate the expression of a particular gene either by its
upregulation or downregulation in a significant manner (Chow
et al., 2016). Earlier studies have identified miRNAs in
response to different heat stress treatment at the grain filling
stage of several heat-affected and heat-tolerant wheat varieties
(Qin et al., 2008; Xin et al., 2010; Kumar et al., 2015;
Ragupathy et al., 2016).

Previous studies have also shown the association of simple
sequence repeats (SSRs) with heat-stress-responsive traits
(Hassan, 2016; Sharma et al., 2018; Al-Ashkar et al., 2020; Saha
et al., 2020). SSRs, also called as microsatellites are one- to six-
nucleotide long tandem repeats distributed randomly throughout
the genome (Gupta et al., 1996; Chen et al., 2009). SSRs have
been identified in the non-coding, coding, and untranslated
regions (UTRs), but their abundance was reported highest
in non-coding regions of the genomes (Madsen et al., 2008).
SSRs are widely used as molecular markers for genetic diversity
analysis, marker-assisted selection, and linkage mapping among
populations (Mir et al., 2012a,b, 2013; Gupta et al., 2013; Mir and
Varshney, 2013; Kumar et al., 2021). The following properties
of SSRs make them the best marker of interest in biological
researches: (1) codominant nature (able to distinguish between
homozygous and heterozygous); (2) divergence in number
of short tandem repeats; (3) presence of multiple alleles; (4)
polymorphic nature; and (5) high reproducibility (Brandström
et al., 2008; Heesacker et al., 2008; Mir and Varshney, 2013;
Mir et al., 2013). Genic SSR markers designed from heat-
stress-associated genes were screened over heat-tolerant and
heat-susceptible wheat genotypes to study the genetic diversity
and association between SSR markers and traits of heat stress
tolerance (Sharma et al., 2020; Manjunatha et al., 2021). Previous
reports confirmed the presence of SSRs in pre-miRNA sequences
of many plant species including Arabidopsis, rice, wheat, and
Brassica in response to different abiotic stresses (Ganie and
Mondal, 2015; Kumar A. et al., 2017; Singh et al., 2017; Tabkhkar
et al., 2020). There are very few reports for genetic diversity
studies in heat-tolerant and heat-responsive wheat genotypes
that used miRNA-SSR as molecular markers. Tyagi et al. (2021)
mined 96 heat-responsive miRNAs that led to the development
of 13 miRNA-SSR markers. These markers were used to study
the genetic diversity, population structure, and characterization
of 37 wheat genotypes for heat tolerance breeding. Sharma et al.
(2021) also designed 177 SSR markers from heat-responsive
genes and pre-miRNAs (11) of wheat genome and screened
over 36 wheat genotypes to study genetic diversity for heat
tolerance (Sharma et al., 2021). The results of the previous
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studies suggested the potential role of miRNA-derived SSR
markers in marker-assisted breeding (MAB), which aimed
to improve heat tolerance and adaptability developmental
traits in crop plants including wheat (Sharma et al., 2021;
Tyagi et al., 2021).

Keeping this in view, the present study was planned to
develop more miRNA-derived SSR markers for the identification
of additional promising markers for wheat molecular breeding
programs. We mined heat-responsive miRNA from different
plant species, including Arabidopsis, rice, and wheat, and
developed miRNA-SSRs markers from the flanking region of pre-
miRNA of wheat genome. The genetic diversity of 20 genotypes
of wheat that differs in temperature response was evaluated using
70 miRNA-SSR markers. We have also studied the target genes of
heat-responsive miRNAs and their role in heat stress. Our study
will help in the categorization of the terminal heat-tolerant and
heat-susceptible genotypes using miRNA-SSRs markers in the
early stages of wheat development.

MATERIALS AND METHODS

Plant Material and DNA Extraction
Twenty wheat genotypes comprising 13 terminal heat-tolerant
and 7 heat-susceptible genotypes were used in this study
(Table 1). One hundred milligrams of fresh leaves was used for
DNA isolation using cetyl trimethylammonium bromide (CTAB)
method (Doyle and Doyle, 1987). The samples were immersed in
liquid nitrogen and ground to fine powder using a Tissue Lyser
(Retsch Mixer Mill MM400) machine. CTAB buffer (containing
2% CTAB, 1.4 M NaCl; pH 8, 20 mM EDTA, and 100 mM
Tris Cl) was added to the ground powder and incubated at
65◦C for 1 h. Chloroform/isoamyl alcohol (24:1) was mixed
properly with lysed sample and centrifuged at 7,800 rpm for
10 min. The supernatant was collected in a fresh tube and added
prechilled iso-propanol to precipitate the genomic DNA. After
centrifugation, pellet was washed two times with 70% alcohol.
The DNA pellet was dried and dissolved in 100 µl Tris–EDTA
(TE) buffer. DNA quality and quantity were checked using
NanoDrop spectrophotometer (Thermo Scientific, United States)
along with 0.8% agarose gel separation. To perform polymerase
chain reaction, DNAwas diluted with nuclease-free water (NFW)
to 100 ng/µl concentration.

PCR Amplification
To study the polymorphism, DNA of all 20 wheat genotypes
was amplified using an Eppendorf thermal cycler. A reaction
mixture of 20 µl containing 10 µl 2× Promega green master
mix, 2 µl template DNA (200 ng), 0.4 µl of each forward and
reverse primer (0.2 µM), and 7.2 µl NFW was prepared. PCR
conditions were as follows: initial denaturation at 94◦C for 3 min,
35 cycles of denaturation at 94◦C for 50 s, annealing at 50–56◦C
(differ with primer pair) for 30 s, and extension at 72◦C for 40 s,
followed by the final extension at 72◦C for 7 min. Amplified PCR
product was resolved on 10% denaturing urea polyacrylamide
gel electrophoresis unit (urea PAGE) at 120 V for 4 h with 1×
Tris–acetate–EDTA (TAE) buffer. After staining with ethidium

bromide (EtBr), the gel was visualized in Vilber Fusion Solo S gel
documentation system.

Screening of Heat-Responsive miRNAs
and Designing of miRNAs-SSRs Markers
Heat-responsive miRNAs reported in different plants including
Arabidopsis, wheat, rice, maize, and Brassica were collected
based on extensive literature survey. Mature and stem loop
(pre-miRNA) sequences of these heat-responsive miRNAs were
obtained from miRBase v22 database1 in FASTA format
(Kozomara et al., 2019). In Ensembl Plants database,2 BLASTn
search was carried out against reference genome data of wheat
using pre-miRNA sequences to get the 500-bp downstream and
500-bp upstream sequence flanking pre-miRNA (Bolser et al.,
2015). BLASTn search resulted into multiple hits; among them,
the best sequence that aligned perfectly (100%) to the wheat
genome and has an e-value of 10−10 was selected for designing of
SSR markers. The microRNA-SSR markers were designed from
the pre-miRNA flanking sequence using BatchPrimer3 v1.0.3

For primer synthesis di-, tri-, tetra-, penta-, and hexa-SSRs of
minimum 12 bp length were chosen. The following parameters
were set for designing of SSR flanking primers: primer length
of 18–25 bp, melting temperature (Tm) in 50–65◦C range, 40–
60% GC content, and product size of 100–300 bp length (You
et al., 2008). A summary of the methods used for miRNA-SSR
development and validation in wheat is represented in Figure 1.

Allele Scoring and Genetic Diversity
Analysis
A total of 70 miRNA-SSR markers were screened on genomic
DNA of selected 20 wheat genotypes to study the polymorphism
pattern in terminal heat-tolerant and heat-susceptible wheat
genotypes. The scoring of all the polymorphic primers was
done based on the absence and presence of DNA band. The
absence and presence of DNA band was indicated as 0 and 1,
respectively. The size (bp) of each DNA band was determined
using Evolution Edge software based on the size of Quick-Load R©

Purple 50 bp DNA Ladder bands. A binary (0/1) allele scoring
matrix generated from polymorphic miRNA-SSR markers was
used to compute the polymorphic information content (PIC) and
genetic diversity among 20 wheat genotypes. PIC was calculated
using the GeneCalc online bioinformatics tool4 (Nagy et al.,
2012) according to the equation: PIC = 1−

∑
pi2, where

pi is the frequency of ith allele of a particular locus. The
phylogenetic relations between terminal heat-tolerant and heat-
susceptible genotypes were drawn using DARwin v6.0 software
(Perrier et al., 2003). Dissimilarity matrix was computed and
used for the grouping of 20 genotypes or for the construction
of dendrogram using unweighted neighbor joining followed by
bootstrapping with 1,000 replications (Gascuel, 1997). Principal
coordinate analysis (PCA) was also computed to categorize these
20 genotypes into different groups using DARwin v6.0.

1http://www.mirbase.org/
2https://plants.ensembl.org/
3https://wheat.pw.usda.gov/demos/BatchPrimer3/0
4https://gene-calc.pl/
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TABLE 1 | Details of 20 terminal heat-tolerant and heat-susceptible wheat genotypes used in this study.

S. no. Genotypes Tolerant/susceptible Pedigree Developing center

1 Cv. Raj3765 Tolerant HD2402/VL639 RAU, Durgapur

2 WH730 Tolerant CPAN2092/IMPROVED LOK1 CCSHAU, Hisar

3 WH1021 Tolerant GW296/SONAK CCSHAU, Hisar

4 WH1218 Tolerant KA/NAC//TRCH/3/VORB CCSHAU, Hisar

5 PBW533 Tolerant PBW343/PBW138//PBW343 PAU, Ludhiana

6 WH789 Tolerant – CCSHAU, Hisar

7 WH1142 Tolerant CHEN/Ae.Sq. (TAUS)//FCT/3/2*WEAVER CCSHAU, Hisar

8 WH1124 Tolerant MUNIA/CHTO/AMSEL CCSHAU, Hisar

9 WH1133 Tolerant BABAX/LR42//BABAX*2/3/VJV1TS1 CCSHAU, Hisar

10 WH787 Tolerant – CCSHAU, Hisar

11 WH147 Susceptible E4870-C303/S339-PV18 CCSHAU, Hisar

12 WH711 Susceptible ALD “S”’HUAC//HD2285/3/HFW-17 CCSHAU, Hisar

13 HD2967 Tolerant ALD/COC//URES/HD2160M/HD2278 IARI, New Delhi

14 WH157 Susceptible NP876/S308//CNO/8156 CCSHAU, Hisar

15 WH542 Susceptible JUP/BJY “S”//URES CCSHAU, Hisar

16 WH1140 Tolerant WBLLI*2/VIVITSI CCSHAU, Hisar

17 PBW550 Tolerant WH594/RAJ3858/W485 PAU, Ludhiana

18 WH283 Susceptible HD-1981/RAJ-821 CCSHAU, Hisar

19 HD2687 Susceptible Gene introgressed from Sr31 Lr26 Yr9 Pm8 IARI, New Delhi

20 HD2329 Susceptible HD1962/E4870/3/K65/5/HD1553/4/UP262 IARI, New Delhi

Population Structure Analysis
The total number of subpopulations present in a population of 20
wheat genotypes was identified using the Bayesian method with
binary data matrix of 19 polymorphic miRNA-SSRs. This analysis
was done using STRUCTURE 2.3.4 software (Pritchard et al.,
2010). The following parameters were set: (1) burnin iteration
length of 100,000, (2) Markov chain Monte Carlo (MCMC) value
of 100,000, and (3) the value of subpopulations number (k)
ranged from 1 to 10 with 3 repetitions (Chen et al., 2012). The best
fit value of subpopulations was derived with the Evanno method
(Evanno et al., 2005) using online STRUCTURE HARVESTER
software5 (Earl and Bridgett, 2012). Genotypes with more than
80% similarity were allocated in a distinct subpopulation, and
those with <80% were designated as admixture.

miRNA Target Identification and Gene
Ontology
The target genes of heat-responsive miRNAs were predicted
using the psRNATarget server6 (Dai et al., 2018). Mature miRNA
sequences in fasta format extracted from miRBase v22 were
used as a query to find the targets in the wheat cDNA library.
The following default parameters were used in search of target
genes: (1) expectation value was set 5; (2) range of translational
inhibition as 10–11 nucleotides; (3) G:U pair penalty, 0.5; (4)
seed region at 2–13 nucleotides and maximum two mismatches
were allowed in the seed region; (5) complementarity scoring
length (HSP size), 19; and (6) energy to unpair (UPE) the target
sequence, 25. Identified targets of heat-responsive miRNAs were
used for Gene Ontology (GO) studies with Web Gene Ontology

5http://taylor0.biology.ucla.edu/structureHarvester/
6http://plantgrn.noble.org/psRNATarget/

Annotation Plot (WEGO 2.07) database (Ye et al., 2018). The
Gene Ontology ID of the target genes for biological process,
molecular function, and cellular component were retrieved from
the Ensemble plant database and used for GO analysis in WEGO
2.0 using default parameters. A summary of the methods used for
miRNA target identification is represented in Figure 1.

Trait Data Recording and Analysis
The set of 20 genotypes including 13 heat-tolerant and 7 heat-
susceptible genotypes were also phenotyped for 5 most important
physiological/biochemical traits related to heat tolerance. The
data on these traits were recorded under normal and late
sown conditions at 10 and 20 days after anthesis. The
canopy temperature depression (CTD) and chlorophyll content
was recorded using an infrared thermometer and SPAD-502,
respectively, whereas relative water content (RWC), electrolyte
leakage to test cell membrane stability, and proline content were
measured using establishedmethods (Barr andWeatherley, 1962;
Bates et al., 1973; Dionisio-Sese and Tobita, 1998).

RESULTS

Development of Heat-Responsive
miRNA-SSRs
From the literature survey, 80 heat-responsive miRNA families
consisting of 104 members were recognized in Arabidopsis,
wheat, rice, maize, and sorghum crops (Supplementary Table 1).
Due to the lack of research on wheat miRNAs, very few wheat
miRNA sequences were deposited in the miRBase v22 database.

7https://biodb.swu.edu.cn/cgi-bin/wego/index.pl
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FIGURE 1 | Pipeline describing the process of identification and validation of miRNA-SSRs in wheat.

Therefore, along with T. aestivum, we also preferred the mature
miRNAs and pre-miRNAs sequences deposited for Oryza sativa
(osa), A. tauschii (ata), Arabidopsis thaliana (ath), Sorghum
bicolor (sbi), and Hordeum vulgare (hvu) with frequency shown
in Figure 2A. Mature sequences of five miRNAs (miR6941,
miR3182, miR2012, miR2020, and miR2006) were not found in
the miRBase v22 database. Primer designing using BatchPrimer3
v1.0 resulted in 70 significant miRNA-SSR primers pair, whereas
no SSR flanking primers were obtained for two miRNAs
(miR5071 and miR1122), and the absence of SSRs were noticed
in 27 pre-miRNA sequences. The number of SSRs varies from
dinucleotides to hexanucleotides with maximum dinucleotides
frequency, i.e., up to 27 times (NN)27 and tetranucleotides
repeated up to 10 times (NNNN)10. The maximum number
of miRNA genes was found to possess tetranucleotides (47%)
followed by trinucleotides (23%), pentanucleotides (14%),
dinucleotides (9%), and hexanucleotides (7%) SSRs (Figure 2B).
The highest number of miRNA-SSR markers was found to be
located on 6B wheat chromosome and lowest on chromosome
numbers 1D and 4D as shown in Figure 2C.

Validation of miRNA-SSR Markers and
Genetic Diversity Analysis
Out of 70 screened miRNA-SSR markers, 64 markers resulted
into clear, bright, and reproducible bands in all the 20
wheat genotypes (Supplementary Table 2). Among these, 19

polymorphic miRNA-SSR primers were chosen and used for
genetic diversity studies of 20 terminal heat-tolerant and heat-
susceptible genotypes (Table 2). Two polymorphic markers,
miR159c and miR165b, were found to be able to distinguish
terminal heat-tolerant and heat-susceptible wheat genotypes by
the presence of different alleles in them (Figure 3). A total of
61 SSR loci were identified using 19 polymorphic primers pair
with the range of 2–9 alleles, averaged 2.9 alleles per locus,
and the amplicon size of polymorphic alleles ranging from
130 to 470 bp. The PIC value ranged from 0.10 to 0.87, with
miR830 having the highest PIC (0.87) and miR159b and miR824
and miR2122 possessing the lowest PIC (0.10). The binary
scoring matrix data obtained from 19 polymorphic miRNA-SSRs
was used for phylogenetic studies of 20 terminal heat-tolerant
and heat-susceptible wheat genotypes using DARwin6 software.
The results clustered these 20 genotypes into 3 major clusters
represented as clusters I, II, and III. Clusters I and II were
found to consist of six terminal heat-susceptible and heat-tolerant
wheat genotypes, respectively, whereas cluster III comprises of
seven terminal heat-tolerant and one terminal heat-susceptible
wheat genotype (Figure 4A). The principal coordinate analysis
conducted using DARwin6 also distinctly separated the 20 wheat
genotypes from each other (Figure 4B).

Population Structure Analysis
The population structure of 20 genotypes was studied using
“STRUCTURE” software Bayesian clustering approach. The
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FIGURE 2 | Frequency and distribution of heat-responsive miRNA genes with SSR motifs. (A) Frequency of heat-responsive miRNAs submitted in miRBase reported

in various crops. (B) Frequency of wheat miRNA-SSR repeats present in miRNA genes. (C) Distribution of heat-responsive miRNA-SSRs on wheat.

binary scoring matrix data of 19 polymorphic miRNA-SSRs
screened on 20 genotypes was analyzed using this software, and
the best “K = 3” value was selected based on 1K value obtained
from “Structure Harvester” (Figure 5A). This analysis distributed
the population of 20 wheat genotypes into 3 subpopulations (P1,
P2, and P3). Among these three subpopulations, each of P1 and
P2 consists of six genotypes, and P3 contains four genotypes,
whereas four genotypes were found to be admixed (Figure 5B).
These results were obtained in accordance to the cluster analysis
and PCA results.

Identification of miRNA Target Genes
The target genes of heat-responsive miRNAs were identified
using psRNATarget server (Supplementary Table 3). The 80
target genes identified using this server will play a crucial role
in providing tolerance against heat stress at various stages of
wheat growth, whereas most of the targets were related to grain
filling stages. These miRNAs regulate the target genes either
by its cleavage or by suppressing the translational mechanism.
The four miRNAs, namely, miR1130a, miR528, miR1137a, and
miR159a, targeted the heat shock protein 17 (hsp17), heat shock
protein 90 (hsp90), heat stress associated 32-kD protein (hsa32),
and DnaJ heat shock family protein, respectively. Many heat-
responsive genes were found to have the common target of
more than two miRNAs such as peroxidase, glycosyltransferase,
phytochrome, phenylalanine, flavin containing monooxygenase,
and sucrose synthase. The miRNAs were also found to regulate
the signaling molecules including the mitogen-activated protein
kinase (MAPK), zinc finger protein (ZFP), cyclin-dependent
kinase inhibitor (CDKI), serine/threonine-protein kinase, CASP-
like protein, and TFs such as Auxin response factor (ARF),

WRKY, NAC 6A, ethylene responsive factor 5a (ERF 5A), and
R1R2R3-MYB. Heat stress induces oxidative damage, and plants
adapt to this by synthesizing antioxidants including peroxidase
(POX), superoxide dismutase (SOD), glutathione S-transferase
(GST), and glutathione synthetase (GS), which were also targeted
by the heat-responsive miRNAs.

Gene Ontology Analysis
Gene Ontology was conducted using WEGO to find the putative
functions of miRNA-targeted genes expressed due to heat stress.
These targeted genes were grouped into three classes: biological
process (30 GO terms), molecular function (27 GO terms),
and cellular component (28 GO terms) (Figure 6). GO analysis
showed the role of these genes mainly in biosynthetic, metabolic,
reproductive, and stress-responsive biological processes. Most
of the genes were found to be associated with molecular
functions such as carbohydrate binding, kinase regulator,
oxidoreductase, peroxidase, DNA binding TF, signal transducer,
SOD, thioredoxin disulfide reductase, transferase, and were
found to be located mainly in the intracellular organelle part,
apoplast, and in the membrane of the cell organelles (Figure 6).
Therefore, the Gene Ontology analysis explained the role of
miRNA-targeted genes in providing tolerance against terminal
heat stress. The calculated p-values for GO terms are given in
Supplementary Table 4.

Correlation of Trait and Genotypic Data
In order to understand the correlation between genotypic
and trait data of five heat-tolerance-related traits, efforts have
been made to analyze genotypic data of two most promising
diagnostic markers (miR159c and miR165b) showing association
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TABLE 2 | Details of 19 polymorphic miRNA-SSR markers used in the study of 20 terminal heat tolerant/susceptible wheat genotypes.

miRNA-

SSR

primer

SSR motif

repeat

No. of

alleles

Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′) Tm (◦C) Amplicon

size (bp)

PIC value

miR159 (TTCT)4 4 CTCACCCCTCTATAAAACGAC CTACATCTATGGGGCTAGGAG 50 140–260 0.62

miR159b (CTC)4 2 ATTTTCCTTTCAATGACACCT AAGAGATGGAACGGAAACTAC 51 165–169 0.10

miR159c (CT)27 3 CTTTCCCTCGTGCTTGGAT GCATAGTGATTTGATTTTCTTGTTAGC 52 180–250 0.61

miR159f (CT)27 3 ACCTGTATAGGTTTTGCATGA TTAGGTGCAGACTGAAAACAT 51.5 130–162 0.62

miR164a (GCCC)3 7 ACTGCACTGCACGTGTTCTT TTGAAGACGCATACCTCGTG 59.5 135–315 0.81

miR165b (ATAC)10 6 CAACGGTGTGATTGTAAAAA CGAAGTTTAATTTGGTTATGC 50 146–280 0.72

mir171b (ATTG)3 3 CTGAACGCTACTGAGCCACT CTACCAACACGGCAGCACTA 55 178–300 0.65

mir172c (TTC)5 3 CCTCTCTTTGTCTTCATCCA AAGAACCGACTGTGATCTGA 51.5 130–180 0.25

mir393a (GAGG)4 2 CCTATATAAGGACCTCACTGGA AGGCATTGTTGCTCTCTCT 52 157–175 0.49

mir396d (GTGC)3 6 AAGTTATATCGGACCGTGTG AGGAAGGGGTCGTATAAATAG 52 150–470 0.79

mir404 (TGCCGC)3 2 CTAAACCGGATAAAGGGTAGA CAGAGGAACGCACGTAGT 52 140–162 0.49

mir830 (AGGGA)3 9 AGTACGCCTTGATCTCCTCT CTACGTTACCTTCCTCTCTCC 53.5 130–320 0.87

mir824 (TTAA)3 2 GGCCTTTGACTGAATTAGTGT CCAGAAAGGAATTATTTTGGA 50 134–140 0.10

miR857 (TTTA)3 2 TTCTTGCCTACTTGTTTCTG GTCGCCGTCTTTGAATTT 50 267–272 0.10

mir1130a (TGCA)3 2 AGTTGCACTGCTACAAGCTAC ACTTTCGGATGTACTGTTCTG 52 146–165 0.48

mir2102 (GCC)4 2 ACCGCTGCTGTTGTATTG TCAAGTCCTCTGCAAACAC 52 167–175 0.48

mir2122 (TTCTT)3 2 GGGTGGACAGTAAAATCAGA CCATTTTTCAGGATCATTCTT 50 157–162 0.10

mir5384 (CCG)4 3 AGGGGATCCTCCTCAGAT AGGTGGTTGGTGGCCAAG 52 280–350 0.66

mir9662b (CGC)5 2 CCTTCACCAAACCCTCTT GAGATCCAGCAGAAGGAGAT 53 227–235 0.18

FIGURE 3 | Denaturing 10% urea-PAGE profile represents polymorphic pattern of miR159c miRNA-SSR marker over 20 terminal heat-tolerant/heat-susceptible

wheat genotypes. First lane represents 50 bp DNA ladder, and the white and red arrow denote terminal heat-tolerant and heat-susceptible wheat genotypes,

respectively.

FIGURE 4 | Phylogenetic studies of wheat genotypes with heat-responsive miRNA-SSRs. (A) Dendrogram showing clustering of 20 wheat genotypes using

polymorphic miRNA-SSR markers. Red color indicates heat-susceptible wheat genotypes, and black color indicates heat-tolerant wheat genotypes. (B) 2-D plot of

principal coordinate analysis (PCA) for all 20 wheat genotypes. Red and black colors were used for heat-susceptible and heat-tolerant genotypes, respectively.
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FIGURE 5 | Evaluation of number of subgroups based on “STRUCTURE” output. (A) Delta K, best value of K = 3. (B) Bar plot showing distribution of 20 wheat

genotypes into 3 subgroups as shown in green, blue, and red colors.

FIGURE 6 | The gene ontology analysis of the heat-responsive miRNAs-targeted genes in wheat. The red, yellow, and blue bars symbolize biological process,

molecular functions, and cellular components, respectively. The x-axis represents three GO categories; the right side of y-axis represents the number of miRNA

target genes, while the left side of y-axis represents the percentage of the target genes.

with heat tolerance. It was noticed that marker “miR159c”
showed the presence of allele in all the heat-tolerant genotypes,
while it is absent in heat-susceptible genotypes. Similarly,
marker “miR165b” showed the absence of alleles in heat-
tolerant genotypes, while it showed the presence of allele in
heat-susceptible genotypes. The 100% specificity of alleles in
these markers showing 100% association with heat tolerance is
considered important, and this association was further confirmed
by arranging trait data of heat-tolerant and heat-susceptible
genotypes and testing their mean difference. The analysis
of trait data of all the five traits (CTD, RWC, electrolyte
leakage to test cell membrane stability, SPAD chlorophyll
content, and proline content) recorded showed clear-cut mean
difference between heat-tolerant vs. heat-susceptible genotypes.

The heat-tolerant genotypes possessing specific alleles possess
superior trait performance than heat-susceptible genotypes
(Supplementary Table 5).

DISCUSSION

The environmental temperature increasing year by year due to
the global warming emerged as a significant threat of terminal
heat stress in wheat. Heat stress effect is more prominent
when wheat was sown late in December instead of November
due to delay in harvesting of wheat-preceding crop such as
cotton and rice. Late-sown wheat experiences heat stress at the
reproductive stages, which ultimately decreases the grain quality
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and productivity. In order to reduce the yield loss occurring due
to excessive heat effect, there is a strong need to develop enhanced
terminal heat-tolerant wheat varieties. Wheat plants also adapt to
terminal heat stress by shortening the grain filling period, which
causes a decrease in grain number, weight, and quality. Global
wheat production is estimated to have decreased by 6%with every
1◦C arise in temperature (Asseng et al., 2015).

Among the molecular markers, SSR markers were preferred
for genetic diversity analysis, markers-assisted breeding,
quantitative trait locus (QTL) mapping, etc., because of their
distribution throughout the genome (Mir and Varshney, 2013;
Mir et al., 2013; Kumar et al., 2021). Previous reports have
revealed the function of miRNAs in controlling the heat stress,
and a distinctive difference in miRNA families and their
expression level was found in control and heat-stressed wheat
genotypes (Kumar et al., 2015; Sailaja et al., 2017; Ravichandran
et al., 2019; Rangan et al., 2020). A vast number of SSRs were
reported within the protein-coding regions and their UTRs.
However, the data on SSRs from non-coding regions of genes
including miRNA genes in wheat genome are very limited.
In addition, some miRNAs families are extremely conserved
from millions of years. Therefore, SSRs derived from these
miRNAs (miRNA-SSR) can better serve as a functional marker
to differentiate closely related wheat genotypes as compared
to previously known markers including RAPD, RFLP, and
SSR (Ganie and Mondal, 2015; Tyagi et al., 2019, 2021). The
use of miRNA-SSR markers for genetic diversity studies have
become the hot topic during the last decade. Many studies have
been conducted to differentiate terminal heat-tolerant wheat
genotypes using SSR markers (Kumar et al., 2016; Hassan, 2016;
Al-Ashkar et al., 2020). Yet to our knowledge, only two studies
screened the miRNA-SSR for genetic diversity analysis and for
characterization of a terminal heat-tolerant and heat-susceptible
wheat genotypes (Sharma et al., 2021; Tyagi et al., 2021).

Polymorphism or PIC values were found to be important
parameters to study the genetic diversity among genotypes. If the
PIC value is>0.5, the marker is highly informative, and if the PIC
values between 0.25 and 0.5, the marker is assumed moderately
informative; therefore, markers with PIC value > 0.7 are
considered appropriate for diversity studies and genetic mapping
(Botstein et al., 1980; Bandelj et al., 2004). In this study, the 19
polymorphic miRNA-SSR markers showed a high polymorphism
with averaged 2.9 alleles per locus and the averaged PIC value
of 0.48, which was found to be higher than that reported by
Sharma et al. (2021) (averaged 2.58 alleles/locus and PIC value
of 0.35/locus), who screened 37 markers on 36 wheat genotypes,
and lower than that reported by Tyagi et al. (2021) (averaged 3.4
alleles/locus, however, lower PIC value ranged from 0.16 to 0.38),
who conducted genetic diversity studies using 13 miRNA-SSRs
on 37 wheat genotypes in response to heat stress.

The dendrogram and structure analysis performed with
19 heat-responsive polymorphic miRNA-SSRs divided the
population of 20 wheat genotypes into 3 clusters based on
their genetic makeup. Sharma et al. (2021) clustered 36 wheat
genotypes into 4 clusters using 37 cgSSR and miRNA-SSR
markers, whereas Tyagi et al. (2021) divided 37 wheat genotypes
into 4 clusters with 7 polymorphic miRNA-SSR markers.

Both dendrogram and population structure results showed
the presence of both heat-tolerant and heat-susceptible wheat
genotypes into one cluster, which can be either due to their
common ancestry or that an inadequate number of miRNA-
SSRs was used for genetic diversity analysis. Similar results were
obtained by Tyagi et al. (2021). However, the report of Sharma
et al. (2021) distinctly categorized the heat stress-tolerant and
heat stress-susceptible wheat genotypes. Moreover, the presence
of heat-susceptible wheat genotypes into cluster I and heat-
tolerant genotypes in cluster II highlighted the usefulness of these
polymorphic markers in screening of wheat genotypes for their
heat tolerance level.

The expression of heat-stress-responsive genes was found
to be regulated by various miRNAs in response to heat
stress. For example, an overexpression of miR156 was reported
in Arabidopsis, as it generates memory in response to heat
stress (Stief et al., 2014), whereas a downregulation of
miR159 was noticed under heat stress, as it regulates the
MYB TFs. In this study, the miRNAs (miR159c and 165b)
were found to target the peroxidase, phenylalanine ammonia-
lyase (PAL), RING-type E3 ubiquitin transferase, Xyloglucan
endotransglucosylase/hydrolase (XTH), etc., which provides heat
tolerance to plants by the process antioxidant metabolism and
phenolics accumulations and increased the expression of heat
shock proteins by degrading the suppressor proteins of heat-
responsive genes, respectively (Moura et al., 2017; Peng et al.,
2019). Transgenic rice plants overexpressing miR159 were more
susceptible to heat stress as compared to control plants (Wang
et al., 2012). Yan et al. (2016) showed the downregulation of
miR165/miR166 in Arabidopsis; these miRNAs target the ABA-
responsive genes, which are key players in providing tolerance
to abiotic stress. In addition, Ravichandran et al. (2019) revealed
the role of heat-responsive miR528 and miR9662 miRNAs in
wheat in regulating the antioxidants and mitochondrial proteins,
respectively. Our study also identified many miRNAs-targeted
genes codes for heat-responsive proteins, antioxidants, and TFs
including ARF, WRKY, hsp70, hsp17, POX, SOD, GST, and GS.
These results were also supported by earlier studies (Goswami
et al., 2014; Ravichandran et al., 2019; Su et al., 2019; Rangan et al.,
2020). Therefore, the identified miRNA-SSR markers (miR159c
and miR165b) that are able to differentiate heat-tolerant and
heat-susceptible wheat genotypes will play a significant role in
breeding programs. Additional support was provided by trait data
analysis of five most important traits (CTD, RWC, electrolyte
leakage to test cell membrane stability, SPAD chlorophyll content,
and proline content) related to heat tolerance. The analysis
clearly indicated that the marker loci miR159c and miR165b
showed linkage with heat tolerance and related five traits. The
results indicated that these two markers could be used in wheat
molecular breeding programs aimed at enhancing heat tolerance
of wheat varieties for the development of next-generation heat-
tolerant wheat varieties.

In conclusion, our study identified 19 polymorphic miRNA-
SSRs markers, but among these, only two miRNA-SSR markers
(miR159c and miR165b) were able to differentiate terminal
heat-tolerant genotypes from the susceptible one. Therefore, the
identified miRNA-SSR markers enable the studying of genetic
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diversity and MAB. As the physiological and phenotypic data are
not sufficient to distinguish the tolerant and susceptible cultivars,
the polymorphic miRNA-SSR markers will help the breeders to
select terminal heat-tolerant wheat genotypes or marker-assisted
selection at initial growth stages. This will further strengthen the
release of new terminal heat-tolerant wheat varieties.
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