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ABSTRACT

Recent technology has made it possible to
simultaneously perform multi-platform genomic
profiing (e.g., DNA methylation, and gene
expression) of biological samples, resulting in
so-called “multi-dimensional genomic data”. Such

data provide unique opportunities to study the
coordination between regulatory mechanisms on
multiple levels. However, integrative analysis of
multi-dimensional genomics data for the discovery
of combinatorial patterns is currently lacking.

Here, we adopt a joint matrix factorization
technique to address this challenge. This
method projects multiple types of genomic data
onto a common coordinate system, in which
heterogeneous variables weighted highly in the
same projected direction form a multi-dimensional
module. Genomic variables in such modules
are characterized by significant correlations and
likely functional associations. We applied this
method to the DNA methylation, gene expression,
and microRNA expression data of 385 ovarian
cancer samples from the TCGA project. These
multi-dimensional modules revealed perturbed
pathways that would have been overlooked with
only a single type of data, uncovered associations
between different layers of cellular activities, and
allowed the identification of clinically distinct patient

subgroups. Our study provides an useful protocol

for uncovering hidden patterns and their biological

implications in multi-dimensional “omic” data.

INTRODUCTION

Cells are complex systems with multiple levels of orgarndarat
thatinteract and influence each other. The precise codidima
among epigenetic status, transcriptions, translations,
transportation, and metabolic reactions are essential in
maintaining the function and robustness of cellular system
However, study of the coordination among such multilevel
cellular activities has been hindered by a lack of approgria
data resources; most genomic research has focused on global
profiling at only 1 level (e.g., profiling of gene expressian o
protein abundance).

The recent development of high-throughput genomics
technologies, especially sequencing technology, has
significantly facilitated the characterization of biologi
systems at multiple levels. For example, The Cancer Genome
Atlas (TCGA) project is generating multi-dimensional maps
of the key genomic changes (e.g. SNP, DNA methylation,
gene expression, and microRNA [miRNA] expression) for
the same set of tumor samples (1). The NCI60 project has
profiled 60 human cancer cell lines in terms of drug responses
(2, 3, 4), gene expression (5), protein expression (6), and
miRNA expression. With the expected drop in sequencing
cost, multi-dimensional genomics characterizations a@ th
same set of samples will soon become a standard practice.

Emerging multi-dimensional genomics data pose new
challenges for data analysis. In particular, becauserdifite
types of genomics data have different scales and units, we
cannot simply aggregate multiple datasets for analysis. Fo
a specific type of 2-dimensional genomics dataset congistin
of SNP and expression data, various eQTL approaches have
been developed to identify regulatory SNPs (7). However,
eQTL approaches cannot be applied to datasets with
dimensions, nor can they be used for datasets with a moderate
sample size, which include most future multi-dimensional
datasets generated by individual laboratories (rathen tha
consortiums). Multivariate regression is another ancdyti
method applicable to 2-dimensional genomics datasets to
infer correlative relationships (e.g., between gene esgioa
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Figure 1. (A) An example ofmulti-dimensionalmodules (md-modules In the 3 data matrices, rows correspond to the samplescalnchns correspond to
different measurements. And-moduleonsists of- rows andn; (I =1,2,3) columns for gene expression (GE), miRNA expression (Mg, BNA methylation
(DM) data, respectively. These subsets of DMs, MEs, and GRibi¢ correlated profiles across a subset of samples. (BpRae for the joint NMF approach.
Input matrices of methylation, miRNA, and gene expressiata dre projected onto a new common space, where the 3 tedrglatterns containing different
types of genomic measurements are uncovered. (C) llligstraf joint NMF factorization and the 3 identifiedd-modules

and transcription factor binding data (8) or between geneignored if only data of the single dimensions were used. In
expression and proteomic data (9)). More recently, Kutalikaddition, the multi-dimensional modules can stratify pats

et al. (10) proposed a powerful modular analysis approach,(samples) into clinically distinct groups, which facitiéathe
called the Ping-Pong algorithm, to uncover tt@modules identification of the complex molecular mechanisms that
across gene expression and drug response data. Undoubtedigderlie different clinical phenotypes.

these studies have identified important relationships &etw

pair-wise genomics variables. We believe that the time has

come to simultaneously explore the coordination patterndATERIALS AND METHODS

across more than 2 types of genomics variables. Data preparation and preprocessing
In this paper, we apply a powerful matrix factorization

dimensional genomics data (Figure 1). As the testingo" April 27, 2009. We used 3 types of data, as follows:
system, we used data from the TCGA project, including DNA gene expression data (Agilent G4502A), DNA methylation
methylation, miRNA, and gene expression profiles of 3g5data (lllumina 27K), and miRNA expression data (Agilent
ovarian cancer samples. These 3 types of genomics variabldd-MIRNA_8x15K v2). In total, 385 samples are shared by
was to identify subsets of mMRNAs, miRNAs, and methylation matrices, and then we scaled all the matrices so that sum of
markers for which all or a subset of the samples exhibitSquares of each matrix is the same. .
correlated profiles across different types of measurements 10 make the input data fit the constraints of nonnegativity,
(Figure 1A). These subsets are termedmsiti-dimensional ~ We employed the method suggested by (11). We doubled the
modules(md-modulek. columns of each matrix, so that each variable (gene, miRNA)
By identifyingmd-moduleswe can break down the massive Was represented with 2 (_:olumns in the_ r_espective matrikelf t
sets of data into smaller building blocks that exhibit sanil ~ Original value of the variable was positive, then it was etbr
patterns across certain rows and columns (Figure 1). Thidn the first column; otherwise, its absolute value was stared
coherent features across multiple data sets reduces the
complexity of the data and facilitates a global overview Brief overview

of the inherent structure of the data. More importantly : . N I A

- o ' Nonnegative matrix factorization (NMF) is increasing|lyirme
this ‘modular approach captures the associations amongseqd tg analyze high-dimensior(lal ge)nomics data%] {11, 12).
sets of different types of variables (mRNA, miRNA, and NMF factorizes a matrixXX 5/ into 2 nonnegative matrices

metrylaton) The Ml dimensiona, moduies can en X~y 1 nereil fsanf by matnecontaing thebasi
P 9 yle vectors, and{ is a K by N matrix containing the coefficient

can reveal significantly disrupted pathways that would bevectors. Each element ifi’ and H must be>0. Thus, a
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key feature of NMF is the ability to identify nonsubtractive joint factorization framework was used to decompose the 3
patterns that together explain the data as a linear coniinat data matrices into a common basis mafiix and different
of its basis vectors. ThE basis vectors i’ can be regarded coefficient matricesi; (I =1,2,3):
as the “building blocks” of the data, and thé coefficient
vectors describe how strongly each “building block” is s X;~WHj.
in the data.

Recently,. an NMF-type method has bee_n pro_posed Qyjith the nonnegativity constraints:
analyze pair-wise genomics data (13, 14), including gene
expression and transcription factor-binding data (13). We
have developed a semi-supervised framework for combing
miRNA/genes expression profiles and networked data to ) )
extract miRNA-gene regulatory programs (15). Here, weWhere W is an M x K matrix, and each column ofV’
adopt the powerful NMF-type method for the discovery of fepresents a basis vector of the reduced systdin.is a
multi-dimensional modules by integrative analysis of ganc Matrix of size K'x N, and each row ofH; represents a
genomic data, all profiled on the same samples. We introduc€0€fficient vector. Then, the objective function of joint M
the idea using a 3-dimensional dataset, but it is applicable s formulated as:
higher-dimensional datasets. 3

min > || X, —WH]|%.
=1

W>0, H;>0, [=1,23.

The NMF problem

Given a data set consisting oV measurements of\/

nonnegative scalar variables, we let thdé-dimensional Several algorithms have been developed to optimize
measurement vectors; (j=1,---,N) form the data matrix the NMF problem (19). Lee and Seung (18) devised a
Xumxn. For each columnz;, a linear, nonnegative multiplicative algorithm that is simple to implement and

approximation of the data is given by performs well. Like the standard NMF, we employed the
“multiplicative update” equations to minimize the Euclate
K error function. Specifically, given a desired rark, the
x.jzzw.khkj:Wh.ja or X=WH algorithm iteratively computes the approximations ¥f,

k=1 X9, and X3 in the same manner. The method starts by

randomly initializing matrice$V andH1, Ho, andH3, which
where W is an M x K matrix containing the basis vectors are iteratively updated to minimize the Euclidean distance
w, as its columns, and? is an K x N matrix containing  function. Specificallyl/, Hy, Hs, andH3 are updated at each
the coefficient vectoh ; corresponding to the measurement step by using the generalized multiplicative update rukes a
vectorz ;. Note that each measurement vector is written infollows:
terms of the same basis vectors. TKéasis vectors ;. can T T T
be thought of as the “building blocks” of the data, and the W — W, (X1Hy +XoHy +X3H3 )iq
K-dimensional coefficient vectdr ; describes how strongly N W(HHE + HyHY + H3HY )i
each building block is present in the measurement vector
Given a nonnegative data matriX, the optimal choices
of matricesW and H are defined to be those nonnegative _ Iap _
. .. . . (Hl)a,u—(HI)au T I 1_17253
matrices that minimize the reconstruction error between (WEWHT)ap
X and WH. Although several error functions have been , . Lo
The above algorithm is a local optimization procedure,

Eﬁjcﬁ%sézdn (ej}?or%ngﬁ())nthe most widely used is the square%nd thus, found only a local minimum. To address this

limitation, we repeated the procedure for 50 times with
F(W,H)=|| X -WH|2%. different initial solution matrices. The factorization igh

leads to the lowest objective function value was used as
the final solution for further analysis. The solutions found
were reproducible, since that of different runs of the répea
algorithm showed strong correlations. The time complexity
the joint NMF decomposition i€ (t K (M + N1+ Ny + N3)?)

The resulting WH is called the nonnegative matrix
factorization of X. The choice of K is often problem-
dependent. In most case# is chosen such thaf <
ggtrzzl(]i\r{’)](\])Bi/ndn?{gl é\?v?;zsﬁggsaﬁvgogﬁ)rrizzsﬁ;/ fg:g I(}f the which is similar to that of the original NMF model, whete

NMF enables a non-subtractive combination of parts to form'S € number of iterations. The key to use this procedure is
awhole (17) the computer memory. Generally, if we have enough memory

space, it shall be applicable to even millions of featuresel

- . . . do not have enough memory space, we can consider reducin
The joint NMF framework for integrative analysis the dimension of i%put data gy gata—reduction techniquels su ’
Let X1, X9, X3 be M x N1, M x Ny, and M x N3 matrices  as the PCA-select tool used for decreasing the feature nrumbe
representing 3 types of genomic profiling of the same samplesn population structure studies (20).

e.g. the methylation profiles av; DNA markers and the In this way, the 3 data matrices are projected into a common
expressions ofV, genes andVs miRNAs of M samples. To  coordinate system to explore the correlative relatiorship
extractmd-modulescross the 3 data matrices, the following among the 3 types of variables (Figure 1B and C). Using
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this procedure, we obtained coefficient matricHs, Ho, Cancer gene and protein interactions enrichment analysis

%nadrlgi;’sthri}Rcl\?RsbznlésegntgsI?nemlgtifgsn%t:w(esrizwglsn% dg:\gsThe protein-protein interaction network data was downémhd
t" v | tr; 9 I licati f NME (11, 12 from BioGRID (release 2.0.54). The final network has 7682
respectively. In the general application o (11, 12), proteins and 33165 interactions. The cancer gene list was

rﬁferg\r; r:)efr;/hagedg? eercrjnitrr:g rrr1n§r)r(1ll;neurrsnhi0f Fna(t:r:]isch;mIZ;éh obtained from the CGC Website (21). All cancer genes that are
( ) P Y not included in our input gene list were excluded. The firsdl i

gene (or other object) can belong to one and only one modulé, -ins 590 cancer genes. We also collected an epigehetica
However, some markers/miRNAs/genes may not be activ

in anv module or mav be active in multiole modules with E‘regulated gene list of ovarian cancer, which includes 4@gen
Y : Yy D€« P (22). All of the enrichment analyses for a gene set are asdess
multiple functions. Considering these facts, basedignHs,

and Hs, we calculated the-score for each element in each by the right-tailed Fisher's exact test.

row of H by:
y “Vertical” implications of identified regulatory

i — i md-modules
T For eachmd-modulewe investigated the vertical associations
between different dimensions by the following “overlagpin
analysis”: we first identified overlapping genes betweess¢ho
from the GE dimension and those adjacent to methylation
markers in the DM dimension, or between those from the
GE dimension and those targeted by miRNAs in the ME
dimension, and then performed the enrichment significance
assessment.

where p; is the average value for featurg (DM
markers/miRNA/gene) inH; (/=1,2,3), and o; is the
standard deviation. We assigned featyras a member of
modulek, if z;; was greater than a given threshdld Each
DM marker/miRNA/gene may be assigned rial-modules
which allows the identification of multiple functional agties

of DM markers/miRNAs/genes. We have implemented the = . o
method as a Matlab software package, which is availableClinical characterization

from the Supplementary file. Mathematically, the multi- Based on the signals for all samples in each column of the
dimensional data of same samples are modeled using multipleommon basis matri%l’, we can characterize their level of
matrices that share the same rows. Therefore, the techniqugssociation with the discoveredd-modulesFor eachmd-
cannot be applied to different types of data from different module we divided the set of samples into 2 groups: module-
samples. specific and not module-specific, by employing thecore for
each column of¥” with a threshold of 1. The clinical data were
downloaded from the TCGA portal. Kaplan-Meier curves
were computed by using R. Survival distributions between
groups were computed via the log-rank test. Age differences
We expect that, within amd-modulethe profiles of genes, between groups were compared by the Wilcoxon signed-rank
DM markers, and miRNAs are highly (anti-)correlated. test.

To determine whether such relationships are statistically

significant, we performed the following assessment. We

calculated the “between-correlation” between 2 matricits w RESULTS

the same row dimensions as the sum of the absolute valugsigure 2 illustrates an example using simulated data (see
of Pearson’s correlations between any 2 columns (1 columihe Supplementary file). In a matrix representation, a multi
from each matrix). We derived the statistical significanee ( dimensional module consists of rows andn; (I=1,2,3)
value) of the correlation between 2 matrices by comparingcolumns for mRNA, miRNA, and methylation markers,

it to the distribution of between-correlations between @00 respective|y_ Within these rows (Samp|es) in each matrix,
random matrix pairs. Each pair is composed of 2 matriceshe n; (I=1,2,3) columns exhibit correlated measurements
with dimensions identical to the ongmalones,wlhose eletsie  (Figure 2). In biological applications, permutation teats

are extracted from randomly permuted matrices based operformed to evaluate the statistical significance of eadh

the original onesp-values of <0.05/200 were considered moduleaccording to the “between” correlations of different
significant. For ammd-moduleif all 3 p-values for the pair-  types of variables. Details and parameter selections are
wise submatrices are 3|gnlflcant, then the vertical caiicaia described in the Methods section and in the Supp]ementary
of this module is considered to be statistically significant file.

Before describing the application of this method, we
briefly show how the md-module discovery is related to, but
different from, several typical data mining tasks. Mostérig
For eachmd-modulewe identified 3 gene sets, as follows: (1) techniques for module identification were applicable owly t
genes from the GE dimension; (2) genes in the 20-kb regiorone or two matrices at a time. For example, the goal of
around the methylation markers in the DM dimension; (3) clustering methods is to identify a group of relevant rows or
genes targeted by miRNAs in the ME dimension (based orcolumns in a data matrix. A more related task “biclustering
the miRNA targets from the Microcosm database). For eachco-clustering)” refers to a class of clustering technijtreat
gene set, we performed 2 types of enrichment analyses: GQerform simultaneous clustering of rows and columns in a
biological process and KEGG pathway analyses. data matrix (23). More recently, Kutalit al. (10) extended

Statistical significance of vertical correlations in
md-modules

Functional analysis of identifiedmd-modules
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Figure 2. lllustration of the patternsngd-modulegidentified by the adopted
method. A simulated dataset with the same number of samples) and

N W

Orignial space

e
different number of features (columns) was generated. dihelNMF method ° s
can accurately discover the patterns embedded in theseAlatttern may 1 g
involve as many as all 3 datasets simultaneously or onlyrcovwe datasets. ol 0
These different patterns may share the same samples (@verland the same 4 3 0 5 10

features.

the traditional modular analysis approach from one to two
data matrices that share one common dimension, and applie 5
their method to identifying drug-gene co-modules. We stioul O : =
note that this method is not directly applicable to three Recenstructed X, Reconstructed X3 Reconstructed Xs
matrices. Sheret al. (24) have proposed a joint clustering _ _ o
model for muItipIe genomic datasets. but it was designedF|gure 3. (A) Box-plot of sample-wise correlations of original and
f | lusteri d bt a d econstructed methylation, miRNA, and gene expressiofilgsaacross 385
,Or Samp € clustering _a_n subtype 'SCOV,erY and canno amples. (B) Original data are plotted against the recoctstl methylation,
|denF|fy modules comprising of correlated variables. V\/Ed]a miRNA, and gene expression profiles for 3 samples.

previously proposed a NMF-type method to analyze paired

matrices subjected to network constraints (15). Howetleas

not been applied to more than two data matrices and tested for

multi-dimensional modules analysis.

Tignial space

162.3, and 13.8, respectively. Size distribution and other

Identification of Multi-dimensional Modules Involved in characteristics of these modules are described in the
Ovarian Cancer Supplementary file.

The TCGA ovarian cancer dataset consisting of gene

expression, DNA methylation, and miRNA expression profilesMulti-dimensional modules reveal multilevel vertical
across 385 samples (patients) was used as a testing systeamsociations and cooperative functional effect® assess

to show the discovery of multi-dimensional modules. After the biological relevance of the identified multi-dimensbn
parameter optimizations (details in Methods), the 3 largemodules, we first tested the functional homogeneity of
matrices were broken down int& =200 basic building members within individual dimensions. A set of genes is
blocks, from which 200multi-dimensional modules (md- defined to be functionally homogenous if it is enriched in
modules)vere derived. The dimension reduction captures theat least 1 gene ontology (GO) biological process category
major information embedded in the original data; the averag (25), with a g-value of <0.05 (the g-value is thep-value
sample-wise correlations of the reconstructed data ubieggt  after a False Discovery Rate multiple testing correction).
building blocks (based o and H;) and the original data Among the 200 md-modules 80%, 62.7%, and 12.5%
were 0.90, 0.92, and 0.91 in the methylation, miRNA, andwere functionally homogenous in the gene expression (GE)
gene expression dimensions, respectively. The smallnegg&  dimension with respect to member genes, in the DNA
of those correlations further demonstrate the robustrfdgbeo  methylation (DM) dimension with respect to genes directly
method (Figure 3A). The correlated profiles for the 3 samplesadjacent to the member DNA methylation markers, and in

are plotted in Figure 3B. miRNA expression (ME) dimension with respect to member
Each of the 200md-modulescomprises a set of genes, miRNAs, respectively. The functions of the miRNAs were
methylation markers, and miRNAs. In total, the 26al- predicted based on the functions of the target genes. These

modulescover 2985 genes, 2008 DNA methylation markers, values are significantly higher than those obtained after
and 270 miRNAs. The average module sizes in the generandomization (5%, 13.1%, and 3.9% for GE, DM, and ME,
methylation markers, and miRNA dimensions are 239.6,respectively) (Figure 4A).
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A dimensions, we observed that 9 modules showed significant
! ¥ Modules ¥ Random perturbations in at least 1 KEGG pathwayv@lue< 0.05)
that were not shown otherwise. These pathways include
TGF-5 signaling, Hedgehog signaling, bladder cancer, and
cytokine-cytokine receptor interaction pathways, all dfiet
have been confirmed to be closely associated with ovarian
cancer (27, 28, 29, 30, 31, 32). For 11.5% of thé-modules
the pathway enrichment for combined members from all 3
dimensions are more significant than that for any individual
dimension.
Combination According to the model principle, and-moduleshould
capture vertical associations, i.e., associations betwee
0.0008 P = 0.000055 P oo variables of different dimensions (e.g. GE and DM) in
—_— 0.020 it. Indeed, compared to randomly permuted modules, the
Pearson’s correlation coefficients between variables gf an
0.015 2 of the GE, DM, and ME dimensions are significantly
high (p-value<0.05/200) in 65.5% of the modules (details
0.010 see Materials and Methods). This result indicates that
the probability of identifying these modules by chance
0.0002 0.005 is close to zero. The strong statistical correlations acros
different dimensions imply the coordinated activities ehgs,
0,000 0,000 methylations, and miRNAs. _ . o
Random Gene set Random Gene set To explore further the biological implications of these
Protein Interaction Enrichment Cancer Gene Enrichment vertical correlations, we tested whether genes in naah-
Figure 4. (A) Enrichment ratio oind-modulesn each dimension (GE, DM, mOdUIeW.ere likely to be located close to the methyl.atlon
and ME), with respect to the GO biological process terms.déonparison, _markers in the same mOdUIe_ Or_/a_-nd targeted by miRNAs
the mean ratio of functional enrichment for 100 correspogdandom runs i the same module. At a significance level of 0.1, we
is also plotted. (B) and (C) Examples of protein interacteomichment and ~ found that 75 of the 200nd-modulesshowed significant
cancer gene enrichment, which were calculatechidrmodulest73. Thep- — gyerlap between genes adjacent to methylation markers and
values were determined by right-tailed Fisher’s exact test genes within the same module. This result confirms the
strong influences of DNA methylation on the expression of
adjacent genes. Likewise, 146 modules wittvalue<0.1
show significant overlap between genes targeted by miRNAs
Although all 3 dimensions showed significant enrichmentand genes within the sanmed-moduleBecause the targeting
in developmental processes that are known to be tightlyrelationship between miRNAs and genes is far from complete,
associated with cancer pathogenesis, this preference isur overlap assessment can only serve as an underestimate.
most obvious in the DM dimension, with additional strong These data show that thed-modulesan elucidate the vertical
participation in embryonic development. This result is association mechanisms between different layers of gene
consistent with the previous report that polycomb complexregulation. Table 1 showcases 12 of thé-modulesncluding
targets in the embryonic stem cell are predisposed to cancethe overlap between different dimensions within the same
specific hypermethylation (26). The most frequently acéida modules, and the over-represented functions and pathvfays o
biological processes in the GE dimension are responsethe modules.
to external stimuli (e.g., chemotaxis, locomotor behavior Interestingly, among the 3733 genes overlapping at least
and inflammatory responses). This observation points tdwo dimensions from alind-modulesgenes related to ovarian
the flexibility of gene expression programs upon externalcancer are significantly enricheg-yalue=0.000087). Note
perturbations. The ME dimension shows a distinct preferenc that the overlapping genes are those on which regulatory
for participation in transcriptional regulation (as exfget) and  perturbations were observed at multiple levels. It is not
cell differentiation. surprising that those genes are especially concentrated
Although the individual dimensions of these modulesin the biological processes of “positive regulation of
exhibit a significant level of functional homogeneity, developmental processes,” “positive regulation of cell
combining all dimensions reveals an even stronger funation differentiation,” “inflammatory response,” and “regutati of
synergy. When the GE dimension genes, methylation adjacergell development."Md-module173 contained 6, 9, and 9
genes, and miRNAs of a module were combined, 93% of thegenes overlapping the GE and DM, GE and ME, and DM
md-modulesvere functionally homogenous, compared to only and ME dimensions, respectively. Among these geN&32
7.9% after randomization (Figure 4). This result shows the(Nidogen-2) was overlapped by all 3 dimensioi¢lD2
power of current integrative analysis of muilti-dimensabn recently was defined as a new biomarker for ovarian cancer by
data in identifying genomic variables of different natutlest =~ comparing its concentration in the serum of healthy women
are involved in the same functional pathways. with that in women with ovarian carcinoma (33). More
The ability of the modules to capture multilevel interestinglyNID2 gene promoters are aberrantly methylated
synchronicity was also observed relative to perturbedin human gastrointestinal cancer (34), and methyl&tdo?
KEGG pathways. For example, simply by combining multiple has been defined as a marker for primary bladder cancer (35).

0.6 1

0.0006]

0.0004
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Table 1. Summary of the 12nd-modules detected by the joint NMF method in TCGA Ovariaradiip.: the index of thend-module. Ge: number of genes in
GE dimension. Me(Ge): number of DM markers and their adjagenes. Mi(Ge): number of miRNAs and their targeting gefs. overlap between gene set
and DM markers adjacent gene set; Ob: overlap between geardsaiR target gene set.

No. Ge Me(Ge) Mi(Ge) Oa Ob Selected overrepresented fumatiets

34 248 195(174) 11(715) 16 12* embryonic morphogenesis; glutamate signaling pathgeywth factor activity;

48 243 209(171) 18(437) 10117 pattern specification process; embryonic morphogenesis

67 220 189(153) 12(1561) 16 19* endopeptidase inhibitor activity; G-protein-coupledeptor binding; cell communication

68 297 179(170) 9(320) 18 9t embryonic morphogenesis; positive regulation of transpegulation of cytokine secretion
71 215 207(171) 18(1946) 17 23* homophilic cell adhesion; cell-cell adhesion; calcidependent cell-cell adhesion

81 195 77(62) 16(1261) {4 167 cell-cell adhesion

112 239 217(201) 16(697) 76 12* cytokine activity; inflammatory response

116 235 217(175) 16(545) 5* 10* keratinization; calciunpdedent cell-cell adhesion; homophilic cell adhesion

123 217 216(176) 16(459) {6 8* proteinaceous extracellular matrix; embryonic morpesis; homophilic cell adhesion

154 238 192(162) 15(1030) 76 17* cytokine activity; heparin binding; inflammatory resyse; tumor necrosis factor receptor binding
169 204 245(218) 15(1065)18 14* organ morphogenesis; regulation of leukocyte chenista@productive structure development

193 200 178(146) 21(809) 4* 15homophilic cell adhesion; calcium-dependent cell adlresmbryonic morphogenesis
where *(0.05-0.1)}(0.01-0.05);(1.0e-03-0.01) angi1.0e-03-0) represent thevalue ranges for the hypergeometic test respectively.

In 44 modules, the genes from the GE and DM dimensiondDNA methylation markers adjacent RASSFAndCDKN2A
are enriched in protein-protein interactions (Figure 4B) ( were negatively correlated with the expression of these 2
value<0.05; we skipped the ME dimension, due to the genes g-value <0.0001). Figure 5A shows thaRASSF1
large number of potential miRNA targets). Among these could be additionally inhibited by the increased exprassio
44 modules, 18 are enriched in protein-protein interastion its predicted posttranscriptional regulatair-130in ovarian
bridging the GE and DM dimensions (i.e., 1 protein belongs totumors, compared to normal tissueRASSFlencodes a
the GE dimension and another belongs to the DM dimension)protein similar to the effector proteins of the oncogétiRAS
(p-value <0.05 with right-tailed Fisher's exact test). This Thus, promoter hypermethylation will silencRASSF1
finding highlights the different regulatory effects on @bs  thereby upregulating the activity diRAS The effector of
adjacent molecules of the same pathway. HRASon the pathwayARAF is also a potential target of

Finally, we hypothesized that the identifiedd-modules mir-218and, thus, would also be activated.
might play a role in cancer. Indeed, 22 combined sets of The next 2 neighbors on the pathway]APK1 and
genes (from the GE and DM dimensions) are enriched withRPS6KA5 are potentially targeted by another onco-miRNA
the cancer gene reference get/élue< 0.05 with right-tailed mir-130h whose elevation is known to be associated with
Fisher’'s exact test) (Figure 4C) (i.e., the Cancer Gene@ens a variety of cancers (36, 37, 38Mir-130b is predicted
[CGC] list (21)). The results of the large-scale enrichmentto target several downstream molecules in this pathway,
analysis support the biological relevance of the regwator including CDKN1Aand E2F2/3 both of which are reported
programs detected by our method. to be critically involved in the pathogenesis of ovarianaam

(39, 40). In fact, the multiple potential targets wiir-130b

Multi-dimensional modules capture multilevel synchrorgd in the bladder cancer pathway suggest timat130b could
disruptions on pathways: Two case studi@his section be a key regulatory factor of this dysfunctional pathway in
provides in-depth descriptions of 2 case studies (modulesvarian cancer. The GE dimension of our module includes 2
119 and 5) to demonstrate how multilevel regulatory changesmportant genes on this pathway, the oncogehC and the
cooperatively perturb pathways. tumor suppressd®B1 An interesting gene€CCNDJ, connects

Md-module 119The individual dimensions of module 119 MYC RB1, and another tumor suppressor geBBKN1A in
do not show significant enrichment in any KEGG pathway. this pathway. Mutations, amplification, or overexpressién
However, when all 3 dimensions were considered, the bladdeECNDJ, which alter the cell cycle progression, are observed
cancer pathway emerged as a significantly disrupted pathwayrequently in a variety of tumors (41, 42). ThuSCND1may
This pathway, which is frequently altered in bladder cancer be an important contributor to tumorigenesis. This example
shares a set of known oncogenes and tumor suppressoesearly shows that the multi-dimensional modules captiee t
with many other cancers (e.g., prostate, ovarian, and lungssociations among epigenetic regulation, gene expressio
cancers, etc). Module 119 overlaps with the bladder canceand posttranscriptional regulation on various parts of the
pathway in 3 genes in the GE dimensidiNiP1, MYC, and  pathway. Such synchronized effects from multiple regujato
RBJ), 3 genes adjacent to markers in the DM dimensionlevels are otherwise difficult to identify.
(CDKN2A RASSF1 and TYMP), and 4 miRNAs in the Md-module 5 As another examplend-modules captures
ME dimension (nir-130h mir-149, mir-196h and mir-218). the significant dysfunction of the TGF-signaling pathway
Figure 5A provides a snapshot of perturbation positionsin ovarian cancer, which, again, only become obvious by
for some of these molecules along the pathway. Promotecombining perturbations in all 3 dimensions. Genes in this
hypermethylations of 2 identified tumor suppressor genesmodule that participate in the TGFpathway includéNHBA,
CDKN2A and RASSF] are thought to be involved in the INHBB, COMP, andMYCin the GE dimensionPPP2R2C
development and progression of ovarian cancer (22). ThéNHBE, andGDF5 adjacent to markers in the DM dimension,
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A (27). More interestingly, a recent study suggests that the
[HRAS ]’—[ "‘55“1} accumulation of epigenetic modifications, including DNA
m l l \ methylation, leads to the suppression of T@Fsignaling
o . and contributes to ovarian carcinogenesis (52). Our multi-
[ ARAF ] [CDKNM } [CDKMA] e dimensional module facilitates the discovery of the abradrm
], J_ functions of this pathway at multiple regulatory levels.ush
[MAm ] [ CCND1 [EZFZ/S ] this method can aid a holistic approach to drug intervestion
that can simultaneously correct the effects of varioussygfe
1' T | dysfunctions.
[RPSGKAS ]—)[ MYC } [ RB1 }
Clinical associations of the multi-dimensional modulels

B the NMF framework, the decomposed component vector
I T (i.e., column of thelWW matrix) can provide information on

> the association of each sample/patient with an individual

£ ] [ e J'_‘[M"'m] module. This information, combined with the available

| clinical characterizations of each patient, can aid in the
Emm/s/%»—i SMAD7 ] ----- 4| EP300 ]li discovery of phenotype-specificd-modulesAn md-module

that stratifies patients into clinically distinct groupsicghed
light on the molecular mechanisms of the respective clinica
SMURF1/2 ----;1[ppp2n2c i phenotypes.

Mir-768-5p

1

Based on the information from tH& matrix, we compared
the survival time of ovarian cancer patients that are stgong

T

1
comp associated with a specifimd-modulevs. those that are
not. We found patients in severaid-modulesvho showed

. . _ significantly shorter or longer median survival time (log-
Figure 5. Multilevel factors cooperatively perturb pathways. (A)aBter

cancer pathway and (B) TGF-signaling pathway, which are enriched in the ran_k testp<0.05, Supplem_entary _flle)' For example’ 13
combination of molecules in all 3 dimensions, but not in edichension. In  Patients are strongly associated witid-modulel66. They

both subfigures, molecules in this module participatinghi ¢corresponding ~ show significantly worse outcome, with a median survival
pathways include those from the gene expression dimenisigngen), DNA  of 26.4 months compared to 34.1 months for other patients
methylation dimension (red), miRNA expression dimensiblug), miRNA (p=0.0006, log-rank test) (Figure 6A). In fact, in all 3
targets (white). dimensions of thisnd-modulethese 13 patients show distinct
characteristics compared to the rest of the patients. For
example, genes/miRNAs in this module are over/under-
expressed in these 13 samples compared to other samples,
andmir-363, mir-768-5p andmir-451in the ME dimension as are the methylation levels of the markers. The module
(Figure 5B shows a snapshot of perturbation positions forcontain numerous cell cycle check-point genes (BgB1B
some of these molecules among the pathway). The TGFCENPF MAD2L1, CCNB1 BUB1, CCNA2 CHEK1, and
0 signaling pathway normally exerts anticancer activitigs b TTK), and is significantly enriched in genes from the “nuclear
arresting the G1-S transition. However, its abnormal fiamct ~ division” functional category if-value <10~%). In another
reverts to promote tumorigenesis, especially in terms ofcase, the patients imd-module3 are associated with an
metastatic progression, a functional switch known as themproved survival, with a median survival of 38.2 months
“TGF-g paradox” (44). In fact, in this module, 60% of tumors vs. 33.8 months in the remaining patients<(0.02, log-rank
with characterized recurrences sites have metastasized. test). This module reveals the significant perturbationhef t
The “core” metastasis-associated gene expression signatuendometrial cancer pathway with several key genes related t
is manifested in this module, mainly through the increasedtumorigenesis, e.&EGFR CTNNA2 andARAF
expressions 0€EOMP and INHBA (45). This finding further We identified 20md-modules each of which contains
confirms the strong metastasis characteristics of samplepatients with significantly different age characteristiasm
in the module. Interestinglymir-363, mir-768-5p and mir- patients outside the module. For example, patients in neodul
451 all potentially targetEP30Q a metastasis suppressor 28 had an older median age compared to other patients (66.3
whose decreased expression and protein abundance hayears vs. 58.7 yearg;=0.009, rank-sum test) (Figure 6C),
been detected in many highly metastatic cancer tissues (46andmd-module’8 was associated with significantly younger
Another tumor suppressoP,PP2R2C not only appeared in patients (median age of 54.1 years vs. 60.2 years for the rest
the methylation dimension of the module, but also may be aof patients) p=0.002, rank-sum test) (Figure 6D).
potential target omir-363 In addition,mir-363targets a set of Finally, in addition to tumor samples, our study samples
SMADmolecules, which play important roles in the metastasisinclude eight normal fallopian tube samplegld-module
transition contributed by TGPB- (47, 48, 49). Furthermore, 120 contains 6 samples, all of which are normal fallopian
mir-768-5pis predicted to inhibiE2F5 andBMPR1A both  tube samples (enrichmept=6.4 x 10~ 2 based on Fisher’s
of which support the original anticancer activities of TGF- exact test). This is an extreme example demonstrating that
pathway (50, 51). our modules can distinguish phenotypically distinct patie
The TGF{# signaling pathway has been regarded as agroups. A number of miRNAs, e.gnir-143 mir-145 mir-
potential therapeutic target in ovarian cancer metastase®24, andmir-424, are reported to be down-regulated in ovarian

-
-




Nucleic Acids Research, 2012, Vol. XX, No. XX

A - B-.
- — Not module-specific - — Not module-specific
— Module-specific — Module-specific
o | @ ]
o o
p=0.0006 p=0.019
® ®
z o] z o]
g < g <
=3 =3
@ @
I I
T = s ]
= O = O
S S
o ™~
o o
f=2 f=2
o o
T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (months) Time (months)
C w 1 D -
p=0.009 T 0 . p=0.002
: i :
80 ! ! 80 i
i i - i
| ! i
70 H 70 :
1
[o) " 1
(=) (=]
< 60 : < 60
i
1
1
50 i T 50 1
4 : - |
1 1 1
: : :
40 ! 40 - !
4 -
Module-specific Not module-specific Module-specific Not module-specific

Figure 6. (A) and (B) Kaplan-Meier survival analysis for patients@sated with module 166 (A) or module 3 (B) compared to othatigmts. Thep-values of
the log-rank test werp=0.0006 andp=0.019, respectively. Median survivals for patients in module b6&nodule 3 compared to other patients were 26.4 vs.
36.1 years and 38.2 vs. 33.8 years, respectively. (C) an8¢®)plot for the ages of patients associated with module@&¢ module 78 (D) compared to other
patients. The-values of the rank-sum test wepe=0.009 andp =0.002, respectively. Median ages for patients in module 28 or rfeo@8 compared to other
patients were 66.3 vs. 58.7 years and 54.1 vs. 60.2 yeapeatesly.

carcinomacells (53, 54, 55). Not surprisingly, all of thdmw different layers of cellular activity (e.g., DNA methylati,
high expression values in this module containing only ndrma gene, or miRNA expression), even if these associations exis

samples. only in a subgroup of samples. (3) Amd-modulean identify
clinically distinct patient (sample) subgroups that share
DISCUSSION subsets of multi-dimensional genomic features (methytesti

gene expressions, etc). Cancer in particular is charaetéri

Recent technology has enabled the simultaneous multiby the existence of many subtypes with heterogeneous geneti
platform genomic profiling of biological samples, resultin origins, and one type of genomic feature is often not
in so-called multi-dimensional genomic data. With the sufficient to characterize the clinical subgroup. We should
rapid decline of sequencing costs, such data will soomnote that the md-modules were constructed based on variable
accumulate rapidly. However, systematic analysis of suchcorrelations/associations, which do not necessarily ympl
multi-dimensional data for discovering biologically red@t  causal relationships among the variables. However, since
combinatorial patterns are currently lacking. A great nemb many identified md-modules are of significant biological
of tools designed for 1- or, at most, 2-dimensional datarelevance, we believe that such modules can be a good start
have been developed, and many of which have been applietb uncover further underlying causal mechanisms of gene
for genomic data analysis in the past. In this paper, weregulation.
attempted to adopt powerful data analysis technique tossddr Identifying coordinated patterns across multiple regariat
the sophisticated modular structures embedded in multidayers is a vital step towards revealing the high-order
dimensional genomics data. We proposed the novel concepirganization of complex gene regulatory systems. In this
of multi-dimensional modulesi{d-modules study, we attempted to reveal the coordinated subspace

Using the TCGA ovarian cancer dataset comprising genepatterns comprising the epigenetic, transcription, anst-po
expression, DNA methylation, and miRNA expression in transcription levels, yet the real picture can be much more
385 samples, we showed thatd-modulesprovide several complex, given the many other levels of regulatory controls
unique insights. (1) By considering several different aspe (e.g., copy number changes, single nucleotide polymonpdis
of genomic modulationmd-modulescan reveal perturbed protein transport, and localization). For example, gengyco
pathways that would be overlooked with only a single type number losses ofmiR-210 have been found in ovarian
of data. (2) Anmd-moduleidentifies associations between



10 Nucleic Acids Research, 2012, Vol. XX, No. XX

carcinomas (56), and mutationsph3are the most common 14. Badea,L. (2008) Extracting gene expression profilesncomto colon
gene mutations in human cancer, inc|uding ovarian cancers and pancreatic adenocarcinoma using simultaneous nadiveegaatrix

(57). In future studies, it will be worthwhile to apply the
proposed method to more data sources simultaneously,

factorization.Pac Symp Biocompu67-78.
Jf5' Zhang,S., Li,Q., Liu,J. and Zhou,X.J. (2011) A novel patational
O framework for simultaneous integration of multiple types genomic

uncover more sophisticated “factories” that comprise many data to identify microRNA-gene regulatory modul@&oinformatics 27,
layers of regulatory factors.
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