
Discovery of Multi-Perspective

Declarative Process Models

Stefan Schönig1, Claudio Di Ciccio1, Fabrizio M. Maggi2, and Jan Mendling1

1 Vienna University of Economics and Business, Austria
{stefan.schoenig,claudio.di.ciccio,jan.mendling}@wu.ac.at

2 University of Tartu, Estonia
f.m.maggi@ut.ee

Abstract. Process discovery is one of the main branches of process
mining that allows the user to build a process model representing the
process behavior as recorded in the logs. Standard process discovery
techniques produce as output a procedural process model (e.g., a Petri
net). Recently, several approaches have been developed to derive declara-
tive process models from logs and have been proven to be more suitable
to analyze processes working in environments that are less stable and
predictable. However, a large part of these techniques are focused on the
analysis of the control flow perspective of a business process. Therefore,
one of the challenges still open in this field is the development of tech-
niques for the analysis of business processes also from other perspectives,
like data, time, and resources. In this paper, we present a full-fledged
approach for the discovery of multi-perspective declarative process models
from event logs that allows the user to discover declarative models tak-
ing into consideration all the information an event log can provide. The
approach has been implemented and experimented in real-life case studies.

Keywords: Process Mining, Process Discovery, Multi-Perspective Pro-
cess Model, Declarative Process Model, Declare

1 Introduction

Process mining, and specifically process discovery, is driven by the ambition to
understand how a process is truly executed, why certain activities are executed
and under which circumstances. It aims at constructing a process model from an
event log consisting of traces, such that each trace corresponds to one execution
of the process. Each event in a trace consists as a minimum of an event class (i.e.,
the activity to which the event corresponds) and generally a timestamp. In some
cases, other information may be available such as the originator of the event (i.e.,
the performer of the activity) as well as data produced by the event in the form
of attribute-value pairs. Discovery is of particular value for processes that offer
various options to execute them. Those processes are often referred to as flexible,
adaptive, unstructured or knowledge-intense. Often, procedural process models
resulting from discovery are colloquially called Spaghetti models due to their
complex structure [1]. Therefore, discovered process models can be represented
as a set of declarative constraints for directly representing the causality of the
behavior [25].

The benefits of declarative languages such as Declare [24], DPIL [32] or DCR
Graphs [12] have been emphasized in the literature. It is also well known that
behavior is typically intertwined with dependencies upon value ranges of data

parameters and resource characteristics [27,15]. Therefore, Declare has been
extended towards Multi-Perspective Declare (MP-Declare) [5]. However, state-
of-the-art mining tools such as MINERful [8,9] and DeclareMiner [19,16] do not
support MP-Declare at this moment.

In this paper, we address this problem by proposing a mining technique
for discovering MP-Declare models. We show that the discovery of MP-Declare
allows for the acquisition of knowledge that goes beyond the classical declarative
mining, which is focused only on the behavioral perspective in the vast majority
of cases. Furthermore, we present the first foundational categorization of the
conditions that are posed on declarative constraints with a special focus on
how these categories are reflected into discovery metrics. We implemented our
approach starting from the SQL-based process mining approach described in
[29], relying on RXES, a standardized architecture for storing event log data in
relational databases [11]. The approach has been validated with several real-life
event logs provided by a large academic hospital, by five Dutch municipalities
and by an Italian local police office for managing fines for road traffic violations.

The paper is structured as follows. Section 2 presents a typical discovery
problem that we tackle with our research, and the notions both of Declare and
MP-Declare modeling. Section 3 defines the framework we propose to delineate
the boundaries of the process discovery task. Section 4 describes the approach
developed on top of SQL. Section 5 presents the evaluation of our technique with
3 real-life cases. Section 6 discusses related work before Section 7 that concludes
the paper.

2 Research Background

In this section, we first illustrate the research problem that we are addressing.
We then summarize concepts of Declare and MP-Declare.

2.1 Research Problem

Declarative constraints are strong in representing the permissible behavior of
business processes. Modeling languages like Declare [2] describe a set of constraints
that must be satisfied throughout the process execution. Constraints, in turn,
are based on templates. Templates are patterns that define parameterized classes
of properties, and constraints are their concrete instantiations. Their semantics
can be formalized using formal logics such as Linear Temporal Logic over finite
traces (LTLf) [23].

A central shortcoming of languages like Declare is the fact that templates are
not directly capable of expressing the connection between the behavior and other
perspectives of the process. Consider the example of a loan application process.
The process analyst would be interested to learn about constraints such as the
following:

1. Activation conditions: When a loan was requested and account balance >
4,000 EUR, the loan was subsequently granted in 95% of the cases.

2. Correlation conditions: When a loan was requested, the loan was subsequently
granted and amount requested = amount granted in 95% of the cases.

3. Target conditions: When a loan was requested, the loan was subsequently
granted in 95% of the cases by a specific member of the financial board.

2

Table 1: Semantics for Declare templates in LTLf .
Template LTLf semantics Activation activity Target activity

existence ⊤ → F(A) ∨ O(A) − A

responded existence G(A → (OB ∨ FB)) A B

response G(A → FB) A B
alternate response G(A → X(¬AUB)) A B
chain response G(A → XB) A B

precedence G(B → OA) B A
alternate precedence G(B → Y(¬BSA)) B A
chain precedence G(B → YA) B A

not responded existence G(A → ¬(OB ∨ FB)) A B
not response G(A → ¬FB) A B
not precedence G(B → ¬OA) B A
not chain response G(A → ¬XB) A B
not chain precedence G(B → ¬YA) B A

4. Temporal conditions: When a loan was requested, the loan was subsequently
granted within the next 30 days in 95% of the cases.

Standard Declare only supports constraints like the ones shown in Table 1.
Here, the F, X, G, and U LTLf future operators have the following meanings:
formula Fψ1 means that ψ1 holds sometime in the future, Xψ1 means that ψ1

holds in the next position, Gψ1 says that ψ1 holds forever in the future, and,
lastly, ψ1Uψ2 means that sometime in the future ψ2 will hold and until that
moment ψ1 holds (with ψ1 and ψ2 LTLf formulas). The O, Y and S LTLf past
operators have the following meaning: Oψ1 means that ψ1 holds sometime in the
past, Yψ1 means that ψ1 holds in the previous position, and ψ1Sψ2 means that
ψ1 has held sometime in the past and since that moment ψ2 holds. Consider,
for example, the response constraint G(A→ FB). It indicates that if A occurs,
B must eventually follow. Therefore, this constraint is fully satisfied in traces
such as t1 = 〈A,A,B,C〉, t2 = 〈B,B,C,D〉, and t3 = 〈A,B,C,B〉, but not for
t4 = 〈A,B,A,C〉 because, in this case, the second occurrence of A is not followed
by a B. In t2, it is vacuously satisfied [13,4], i.e., in a trivial way, because A
never occurs.

An activation activity of a constraint in a trace is an activity whose execution
imposes, because of that constraint, some obligations on the execution of other
activities (target activities) in the same trace (see Table 1). For example, A is an
activation activity for the response constraint G(A → FB) and B is a target,
because the execution of A forces B to be executed, eventually. An activation of
a constraint leads to a fulfillment or to a violation. Consider, again, G(A→ FB).
In trace t1, the constraint is activated and fulfilled twice, whereas, in trace t3,
it is activated and fulfilled only once. In trace t4, it is activated twice and the
second activation leads to a violation (B does not occur subsequently).

2.2 Multi-Perspective Declare

The importance of more complex constraints that integrate activation, correlation,
target and temporal dependencies has been emphasized by prior research and
has led to the definition of a multi-perspective version of Declare [5]. Table 2

3

Table 2: Semantics for MP-Declare constraints in LTLf .
Template LTLf Semantics

existence ⊤ → F(e(A)∧ϕa(x)) ∨ O(e(A)∧ϕa(x))

responded existence G((A∧ϕa(x)) → (O(B∧ϕc(x,y) ∧ ϕt(y)) ∨ F(B∧ϕc(x,y) ∧ ϕt(y))))

response G((A∧ϕa(x)) → F(B∧ϕc(x,y) ∧ ϕt(y)))
alternate response G((A∧ϕa(x)) → X(¬(A∧ϕa(x))U(B∧ϕc(x,y) ∧ ϕt(y)))
chain response G((A∧ϕa(x)) → X(B∧ϕc(x,y) ∧ ϕt(y)))

precedence G((B∧ϕa(x)) → O(A∧ϕc(x,y) ∧ ϕt(y)))
alternate precedence G((B∧ϕa(x)) → Y(¬(B∧ϕa(x))S(A∧ϕc(x,y) ∧ ϕt(y)))
chain precedence G((B∧ϕa(x)) → Y(A∧ϕc(x,y) ∧ ϕt(y)))

not responded existence G((A∧ϕa(x)) → ¬(O(B∧ϕc(x,y) ∧ ϕt(y)) ∨ F(B∧ϕc(x,y) ∧ ϕt(y))))
not response G((A∧ϕa(x)) → ¬F(B∧ϕc(x,y) ∧ ϕt(y)))
not precedence G((B∧ϕa(x)) → ¬O(A∧ϕc(x,y) ∧ ϕt(y)))
not chain response G((A∧ϕa(x)) → ¬X(B∧ϕc(x,y) ∧ ϕt(y)))
not chain precedence G((B∧ϕa(x)) → ¬Y(A∧ϕc(x,y) ∧ ϕt(y)))

shows the semantics of Multi-Perspective Declare (MP-Declare) formally defined
using LTLf .

This semantics build on the notion of payload of an event. Consider again
the loan request example. Henceforth, we write e(credit check) to identify the
occurrence of an event, in order to distinguish it from the activity name
(credit check) when it is not clear from the context. At the time of credit
check, i.e., when the timestamp τecredit check elapses, the attributes Req.ID, Re-
source, Applicant, AgeOfApplicant, and Debt have the values 20160202, Finan-
cialBoardU001, John, 40, and 10,000, respectively. We refer to pecredit check =
(20160202,FinancialBoardU001, John, 40, 10,000) as its payload. To denote the
projection of the payload peA = (x1, . . . , xn) over attributes x1, . . . , xm with
m 6 n, we use the shorthand notation peA[x1, . . . , xm]. In the example,
pecredit check[Req.ID] is (20160202), and pecredit check[Applicant,AgeOfApplicant]
is (John, 40).

In Table 2, we use a shorthand notation for n-ples of attributes xi, namely
x. Referring to the formal specification of constraints in LTLf (cf. Tables 1
and 2), we call activation φa the sub-formula that lies on the left-hand side
of the implication → operator, whereas the target φt is the formula that lies
on its right-hand side. Templates in MP-Declare extend standard Declare with
additional conditions on attributes: given events e(A) and e(B) with payloads
peA = (x1, . . . , xn) and p

e
B = (y1, . . . , yn), we define the activation condition ϕa,

the correlation condition ϕc, and the target condition ϕt. The activation condition
is part of the activation φa, whilst the correlation and target conditions are part
of the target φt, according to their respective time of evaluation.

The activation condition is a statement that must be valid when the ac-
tivation occurs. In the case of the response template, the activation con-
dition has the form ϕa(x1, . . . , xn), meaning that the proposition ϕa over
(x1, . . . , xn) must hold true. For example, to express that whenever credit
check is executed and Debt is < 20,000, then eventually grant follows, we
write: G((e(credit check) ∧ pecredit check[Debt] < 20,000) → F(e(grant))). In this
example, activation φa consists of a statement about the occurrence of an
event (e(credit check)) and of a condition over an attribute of such event
(ϕa = pecredit check[Debt] < 20,000). In case credit check is executed but Debt

4

is > 20,000, the constraint is not activated. Target φt remains in the form of a
standard Declare definition, because it specifies only the occurrence of the target
event (e(grant)).

The correlation condition is a statement that must be valid when the
target occurs, and relates the values of the attributes in the payloads both of
the activation and the target event. It has the form ϕc(x1, . . . , xm, y1, . . . , ym)
with m 6 n, where ϕc is a propositional formula on the variables both of the
payload of e(A) and the payload of e(B). For instance, whenever credit check
is executed, then eventually grant must follow and the Req.ID attribute value
associated with e(credit check) must be the same as for e(grant). We write:
G((e(credit check) → F(e(grant) ∧ pecredit check[Req.ID] = pegrant[Req.ID])). In
the example, target φt is the conjunction of e(grant), specifying the occurrence
of the event, and pecredit check[Req.ID] = pegrant[Req.ID], correlating the attribute
values of activation and target events. The activation remains defined as in the
form of a standard Declare constraint.

Target conditions exert limitations on the values of the attributes that
are registered at the moment wherein the target activity occurs. It has
the form ϕt(y1, . . . , ym) with m 6 n, where ϕt is a propositional formula
involving variables in the payload of e(B). As an example, when activity
credit check is performed, then eventually grant is executed and the Re-
source associated with e(grant) must be FinancialBoardU001. We write
G((e(credit check) → F(e(grant) ∧ pegrant[Resource] = FinancialBoardU001)).
As before, activation φa only consists of a statement about the occurrence of an
event (e(credit check)), as for standard Declare. Target φt specifies what the
value of an attribute of the target event (pegrant[Resource] = FinancialBoardU001)
is, when it occurs (e(grant)). As shown in Table 2, declarative templates like
existence have an activation which is meant to be always satisfied (φa = ⊤).
Therefore, only the target is meant to be enriched with target conditions.

In MP-Declare, also a temporal condition can be specified through an inter-
val (I = [τ0, τ1)) indicating the minimum and the maximum temporal distance
allowed between the occurrence of the activation and the occurrence of the corre-
sponding target. It plays a fundamental role process modeling through constraints,
thus we consider it as a first-class citizen in the categorization of conditions in
MP-Declare. However, it falls in the category of correlation conditions, as it is
based on the comparison of values associated to both activation and target events.
In the light of Table 2, for example, the response constraint with a temporal
condition indicates that, if the credit check occurs at time τecredit check, grant must
occur at some point τegrant ∈ [τeA + 1day, τeA + 7days), hence G((e(credit check) →
F(e(grant) ∧ τecredit check + 1day 6 τegrant < τecredit check + 7days)).

Until now, no mining approach that can fully support MP-Declare is available.

3 Multi-Perspective Declare Discovery Framework

In this section, we describe our proposed framework for the discovery of MP-
Declare models. In particular, we introduce the requirements and discuss how
constraints are distinguished between the ones that are fulfilled and the ones
that are not fulfilled throughout the log. An implementation of the framework is
described in Section 4.

5

3.1 Requirements for the Discovery of Multi-Perspective Declare
Constraints

The requirements presented in this paper concern the discovery of MP-Declare
constraints like the ones introduced in Section 2.2. In particular, the requirements
describe different types of multi-perspective conditions that can be discovered
from a log and used to specify valid MP-Declare constraints. In line with the
semantics introduced in Section 2.2, the conditions that can be discovered are
activation, correlation, target, and time conditions.

Activation Conditions. An activation condition can be used for two different
purposes, i.e., to build discriminative constraints or to build descriptive con-
straints. Suppose that, for a given standard Declare constraint, in an event log,
there are both activations corresponding to fulfillments and activations corre-
sponding to violations. The payloads of fulfillments and violations can be used
as positive and negative examples to train a classifier that solves the following
classification problem: “What is the (activation) condition to be specified on
the payload of an activation of a constraint to guarantee that that activation
corresponds to a fulfillment for that constraint?”. In this case, the activation
condition is a condition that is only valid in the positive cases and not in the
negative cases (or vice versa) and is used to discriminate between fulfillments and
violations for a given constraint. For example, consider the response constraint
between loan request and grant. Suppose that when attribute Amount associated
to e(loan request) is lower than 100,000, e(loan request) is eventually followed
by e(grant), and when attribute Amount associated to e(loan request) is greater
than or equal to 100,000 e(loan request) is not eventually followed by e(grant).
In such a case, the activation condition pegrant[Amount] < 100,000 discriminates
between fulfillments and violations for the given response constraint. This is the
type of constraints that is possible to discover with the approach presented in
[18].

Nevertheless, activation conditions can also be descriptive. For example, it is
possible to find the distribution (or the average) of the values of each attribute
connected to the fulfillments of a constraint, regardless of their values when the
constraint is violated. Notice that in all the examples mentioned so far, activation
conditions consist of a binary proposition between a variable and a constant.
These are the conditions we deal with in this paper. However, in general, these
conditions can be more complex, because they can involve 2 or more variables.

Target and Correlation Conditions. Positive constraints, corresponding to
the templates in rows 2–8 in Tables 1 and 2, are characterized by the fact
that a fulfillment has always a correlated target and a violation never has a
correlated target. In contrast, for negative constraints, a fulfillment never has a
correlated target and a violation has always a correlated target. Therefore, target
and correlation conditions can only be defined for positive constraints in case
of fulfillment, whereas for negative constraints a correlation/target condition
can only be defined in case of violation. For this reason, target and correlation
conditions cannot discriminate between fulfillments and violations and can only
be descriptive. Note that, for negative constraints, we talk about “negative
correlations,” i.e., conditions that should disconnect a forbidden target from a
possible corresponding activation.

6

Complex correlation conditions can be discovered from an event log, i.e.,
every relation involving variables belonging to the payload of the activation
and the target of a constraint. Here, we focus on relations between homologous
attributes of activations and targets. For example, in the precedence constraint
specifying that activity check report must be preceded by write report, it can be
the case that the resource associated to e(check report) is in 95% of the cases
different from the one associated to e(write report) and in 5% of the cases is the
same. Note that we are here connecting homologous attributes, i.e., the resource
associated to the activation and the same attribute associated to the target of
the precedence constraint.

Time Conditions. Finally, time conditions relate to the time distance between
the activation and corresponding targets. For example, for the response con-
straint between make diagnosis and surgery, the time distance between these
two activities can be between 7 days and 14 days in 30% of the cases, between
15 days and 30 days in 60% of the cases, and higher than 30 days in 10% of the
cases.

To summarize, the requirements we identify for the discovery of MP-Declare
are:

1. discovering discriminative activation conditions;
2. discovering descriptive activation conditions;
3. discovering (descriptive) target and correlation conditions;
4. discovering time conditions.

3.2 Support and Confidence.

In this subsection, we describe the metrics that we use to discriminate those
constraints that are fulfilled in the majority of cases, from those that are rarely
satisfied, namely support and confidence. We consider two notions of support
already defined in the literature, namely the event-based support [9] and the
trace-based support [19]. The former is meant to be used for all constraints
wherein both activation and target do not correspond to ⊤. For all the others,
we use the second notion of support.

We denote the set of events in a trace t of an event log L that fulfill an LTLf

formula3 ψ as |=e
t (ψ). The set of all the events in log L that fulfill ψ are denoted

as |=e
L (ψ). All the traces in log L consisting only of events that fulfill ψ are

indicated as |=t
L (ψ). Given a constraint Ξ comprising activation φa and target

φt, we formally define the event-based support Se
L and the trace-based support

St
L as follows:

Se
L =

|L|
∑

i=1

∣

∣|=e
ti
(Ξ)

∣

∣

||=e
L (φa)|

(1) St
L =

∣

∣|=t
L (Ξ)

∣

∣

|L|
(2)

The confidence metric scales the support by the fraction of traces in the log
wherein the activation condition is satisfied. According to the adopted notion of
support, we have that:

(i) Ce
L = Se

L × ||=e
L (φa)| / |L|, and (ii) Ct

L = St
L × ||=e

L (φa)| / |L|.
St
L counts the number of events that fulfill the constraint in every trace and sums

3 We recall that a propositional formula is an LTLf formula.

7

such numbers up along the log. In the example of Section 2.1, the four occurrences
of A fulfill response(A,B), out of which 2 occur in t1, 1 in t3 and 1 in t4.
Thereupon, it scales the number of events fulfilling the constraint by the number
of events that fulfill the activation only. In the example, the five occurrences of
A satisfy the activation. Therefore, the event-based support of response(A,B)
is equal to 4/5, namely 0.8. Its confidence amounts to 4/5× 3/4 = 0.6, because
A occurs in 3 traces over 4. St

L counts instead the number of traces that fulfill
the constraint. In the example, t1, t3 and t3 fulfill existence(A). Thereafter,
such quantity is scaled by the number of traces in the log, which are four in the
example. Thus, the trace-based support of existence(A) is 3/4, i.e., 0.75. In the
next section, we show how these notions apply to MP-Declare.

4 Multi-Perspective Declare Discovery with SQL

Our proposed discovery framework has been implemented using the SQL-based
process discovery approach described in [29] because of its versatility towards
customization. The approach has been adopted for the realization of a proof-of-
concept software module and relies on the use of RXES. RXES is a standardized
architecture for storing event log data in relational databases introduced in [11].
The RXES architecture uses a database to store the event log where traces
and events are represented by tables with identifiers. RXES provides a full
implementation of all OpenXES interfaces using the database as a backend. In [29],
it has been shown that it is possible to discover commonly used process constraints
by means of conventional SQL queries. Queries can be tailored to arbitrary aspects
of a process, e.g., control flow, data attributes, and organizational issues.

4.1 Declarative Process Discovery with SQL

First, we describe the general functionality of SQL-based process discovery. The
following query represents the basic structure of an SQL-query that discovers all
constraints instantiation of the standard template Response with two thresholds
minSupp and minConf. Here, subqueries are marked with brackets.

SELECT ‘Response’, A, B, [Support], [Confidence]
FROM Log l1, Log l2, [ActivityCombinations] c
WHERE l1.Activity = c.A AND l2.Activity = c.B AND

l2.ID IN(SELECT TOP 1 ID
FROM [Log] l2
WHERE b.Activity = c.B AND l2.case = l1.Trace AND

l2.Time > l1.Time
ORDER BY Time ASC)

GROUP BY c.A, c.B
HAVING [Support] > minSupp AND [Confidence] > minConf

The SQL expression for calculating the support of response constraints is
given as:

COUNT(*) / (SELECT COUNT(ID) FROM Log WHERE Activity = A)

The query tests if at least one occurrence of activity B exists that follows
the currently observed occurrence of A. In case the logical EXISTS term in
the WHERE clause evaluates to true, the currently observed tuple corresponds
to a fulfillment of the constraint. The resulting set of tuples represents all the
fulfillments of the response template.

8

Event ID Case ID Activity Name Timestamp x1 x2 ... xn

1 1 a 2015-11-06 15:31:00 id1 3 ... 5
2 1 b 2015-11-06 15:35:00 id1 2 ... 4
3 1 c 2015-11-06 15:37:00 id2 3 ... 4

4 2 b 2015-11-06 16:22:00 id2 4 ... 4
5 2 c 2015-11-06 16:45:00 id2 3 ... 4
...

Table 3: Event log excerpt stored in a denormalized relational database table.

4.2 The Multi-Perspective Case

Consider the event log excerpt given in Table 3. In addition to the columns for
Event ID, Case ID, Activity Name and Timestamp the table contains n columns
for different data attributes x1, x2,..., xn. SQL queries like the response query can
be enhanced to comprise data attributes as well. For example, the MP-Response
query below discovers all the response constraints for each value combination of
the involved data attributes x1, x2,..., xn. Therefore, the GROUP BY and the
SELECT clause additionally contain the list of event parameters. Each query can
be adjusted to the analyst’s needs, i.e., additional constraint activation, target
or correlation conditions like l1.x1 = l2.x1 or l1.x2 > l2.x2 can be added to
the WHERE clause of the query. Note, that l1 and l2 respectively refer to the
events assigned to the first and the second parameter of the response template.
Consequently, the result set provides a fine-grained resolution of the constraints
that hold for certain activities specifying information about the data perspective,
e.g., by providing the distribution or the average of the values of the considered
data attributes when a fulfillment of the constraint occurs.

SELECT ‘MP-Response’, A, B, l1.x1, ..., l1.xn, [Support], [Confidence]
FROM Log l1, Log l2, [ActivityCombinations] c
WHERE l1.Activity = c.A AND l2.Activity = c.B AND

l2.ID IN(SELECT TOP 1 ID
FROM [Log] l2
WHERE b.Activity = c.B AND l2.Trace = l1.Trace AND

l2.Time > l1.Time
ORDER BY Time ASC)

GROUP BY c.A, c.B, l1.x1, ..., l1.xn
HAVING [Support] > minSupp AND [Confidence] > minConf

The subquery to compute the support value implements the event-based
support definition in Eq. 1 as described in Section 3. The subquery is given by:

COUNT(*) / (SELECT COUNT(ID)
FROM Log
WHERE Activity = A AND Log.x1 = l1.x1 AND ... AND Log.xn = l1.xn)

Similar to the MP-Response query also other templates can be discovered
with SQL queries considering the data perspective. The following MP-Existence
query, e.g., discovers the values of the data attributes when a certain activity is
performed.

SELECT ‘MP-Existence’, A, l1.x1, ..., l1.xn, [Support], [Confidence]
FROM Log l1, [ActivityCombinations] c
WHERE l1.Activity = c.A
GROUP BY c.A, c.B, l1.x1, ..., l1.xn
HAVING [Support] > minSupp AND [Confidence] > minConf

9

Here, the support value is computed with the subquery below. SQL queries
for other MP-Declare constraints can be formulated in a similar way.

COUNT(Distinct Instance) /
(SELECT COUNT(*) FROM (SELECT Trace FROM Log GROUP BY Trace))

5 Evaluation

In order to assess our approach, we have applied it on several well-known bench-
marks in the process mining field. The evaluation shows that important informa-
tion would be most likely neglected if perspectives other than the pure behavioral
one were not taken into account.

5.1 Activation Conditions: Road Traffic Fine Management Log

We first evaluated our approach for the discovery of activation conditions using
the publicly available real-life event log of a Road Traffic Fine Management
Process.4 The event log records executions of the process enacted in an Italian
local police office for managing fines for road traffic violations. It contains 150,370
traces and 561,470 events for 11 different activities. We first queried the event
log for standard response constraints without considering data attributes. Using
the thresholds minSupp=0.7 and minConf=0.3 we extracted five constraints.
In order to discover data conditions, we exemplarily focus on the constraint
C = response(add penalty, send for credit collection). After the discovery phase,
it was found Se

L(C) = 0.74 and Ce
L(C) = 0.39, i.e., in 74% of the cases where a

penalty was given, the case was sent for credit collection.
We then discovered MP-Existence and MP-Response constraints. In particular,

we incorporate data in the form of the data attribute Amount that indicates the
amount of money an accused person has to pay as a penalty. First, we mined the
event log for MP-Existence constraints on the activity add penalty. The results
(Fig.1a) show the support of the existence of the activity in correlation with the
occurring values of the penalty amount. The distribution reveals that, in most
of the cases, when add penalty was performed, the penalty amount had a value
between 470 and 795. Furthermore, we discovered the influence of the penalty
amount on the probability that the case is sent for credit collection by applying an
MP-Response query for discovering activation conditions over the data attribute
Amount. Fig. 1b shows that the support of MP-Response constraints between
add penalty and send for credit collection on average increases with an increasing
amount of the penalty, i.e, the higher the penalty amount is, the lower the
probability that the fine is paid is.

5.2 Time Conditions: Building Permit Process in Municipalities

Next, we applied our approach to the event logs pertaining to an administrative
process in five Dutch municipalities for evaluating the time differences between
activations and correlated targets of a constraint. The different event log files5

contain all building permit applications over a period of approximately four years.

4 DOI: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
5 DOI: 10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

10

10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

Support

0.73

0.76

Note that "Amount" is an event attribute 0.75

and not a case attribute. 0.73

0.74

0.82

0.85

0.81

0.88

0.85

0.84

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

3
9

0

4
4

0

4
7

0

6
5

6

7
4

0

7
9

5

1
3

1
2

1
4

8
0

1
5

9
0

2
6

2
4

2
8

6
5

3
1

2
0

3
7

5
6

4
0

9
5

6
8

7
7

1
3

7
5

5

S
U

P
P

O
R

T
 E

X
IS

T
E
N

C
E

PENALTY AMOUNT

(a) MP-Existence(add penalty)

Support Amount

0.73 313

0.76 470

 0.75 655

 0.73 740

0.74 775

0.82 1310

0.85 1312

0.81 2624

0.88 3756

0.85 6259

0.84 12519

0.73

0.76
0.75

0.73
0.74

0.82

0.85

0.81

0.88

0.85
0.84

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

S
U

P
P
O

R
T
 R

E
S

P
O

N
S

E

PENALTY AMOUNT

(b) MP-Response(add penalty,
send for credit collection)

Fig. 1: Support values of MP-Existence and MP-Response constraints.

Activity A Activity B TimeDiff [d] Support Confidence

MunA Assessment Completed Generating Decision 8 1 0.06
Register Date Request Phase Appl. Received 5 0.92 0.92

MunB Assessment Completed Generating Decision 18 1 0.90
Register Date Request Phase Appl. Received 25 1 1

MunC Assessment Completed Generating Decision 5 0.97 0.78
Register Date Request Phase Appl. Received 15 1 1

MunD Assessment Completed Generating Decision 6 1 0.06
Register Date Request Phase Appl. Received 3 0.8 0.82

MunE Assessment Completed Generating Decision 12 0.98 0.34
Register Date Request Phase Appl. Received 6 0.95 0.95

Table 4: MP-Response constraints discovered with average time differences.

The processes in the five municipalities are almost identical. The event log MunA
contains 1,199 cases, MunB 832 cases, MunC 1,409 cases, MunD 1,053 cases and
MunE 1,156 cases. For each event log, we executed an MP-Response query that
discovers response constraints considering the time perspective and evaluating
the time difference (with the granularity of days) between activation and target
activities. Table 4 shows an excerpt of the results for each log, i.e., the constraints
over activity pairs (assessment of content completed, generating decision environ-
mental permit) and (register submission date request, phase application received).
There are two conclusions that can be drawn from these results:

(i) The time between activation and target activities in the different event
logs is significantly different. While for MunA and MunD the average time from
the completion of the content assessment to the generation of the permit decision
is only 8 and 6 days respectively, for MunB the difference is 18 days on average.
A similar observation can be made for the time between the registration of the
request date and the notice of application received. Here, the difference is on
average even bigger between MunB (25 days) and MunA (5 days), MunD (3
days) and MunE (6 days).

(ii) There is a clear discrepancy between the constraint fulfillment (support)
in case of big and small time differences between activation and target activities.

11

Activity A Activity B Support Confidence

Calcium Speed Test Receiving Laboratory Analysis 0.95 0.13
Chloride Speed Test Receiving Laboratory Analysis 0.96 0.06
Bicarbonat Test Receiving Laboratory Analysis 0.96 0.22
Phosphate Speed Test Receiving Laboratory Analysis 0.96 0.03

Table 5: Standard response constraints for selected activities.

Activity A Activity B Resource(B) Support Confidence

Calcium Speed Test Rec. Lab Analysis Gen. Lab 0.91 0.12
Chloride Speed Test Rec. Lab Analysis Gen. Lab. 0.96 0.06
Bicarbonat Test Rec. Lab Analysis Gen. Lab. 0.96 0.22
Phosphate Speed Test Rec. Lab Analysis Gen. Lab. 0.96 0.03

Table 6: Target resource conditions extracted with MP-Response.

Consider the response constraints between the registration of the request date
and the notice of application received. In those municipalities where the time
difference between activation and target activity is high, i.e., MunB (25 days)
and MunC (15 days), the constraint has been fulfilled in every case (support=1).
For MunA (5 days, support=0.92), MunD (3 days, 0.8) and MunE (6 days, 0.95)
on the other hand, the time differences are lower and the constraint has only
been fulfilled in a considerably smaller amount of cases. A potential conclusion
might be that a more thorough and systematic way of work leads to a higher
degree of constraint satisfaction, i.e., more compliant process executions.

5.3 Target and Correlation Conditions: Hospital Log

Finally, we validated the approach with an event log6 that records the treatment
of patients diagnosed with cancer from a large Dutch hospital. The event log
contains 1,143 cases and 150,291 events distributed across 623 activities.

We first queried the event log for standard response constraints without
considering the data perspective. Then, we discovered conditions considering the
the Resource attribute of the target activity (denoted as Resource(B)) using an
MP-Response query. Finally, we discovered correlation conditions taking into
consideration the resources of both activation (denoted as Resource(A)) and
target activities by querying the log with an MP-Response query. All queries have
been specified with the following thresholds: minSupp=0.9 and minConf=0.02.
We explain the results by means of four constraints referring to different blood
test activities and the activity receiving laboratory analysis. Table 5 shows the
results for standard response. After tests for chloride, bicarbonate and phosphate
the laboratory analysis results have been received in 96% of all cases, while for
calcium they have been received in 95% of the cases. Note, that these constraints
do not consider the data perspective.

Let us now take into account the resources performing activities. Table 6
shows the target conditions for these constraints. The results reveal that after
most of the considered blood tests the receipt of the analysis results has always
been performed by General Lab Clinical Chemistry. This is highlighted by the

6 DOI: 10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

12

10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

Activity A Activity B Res(A) Res(B) Support Confidence

Calcium Speed Test Rec. Lab Analysis Gen. Lab. Gen. Lab. 0.91 0.12
Chloride Speed Test Rec. Lab Analysis Gen. Lab. Gen. Lab. 0.96 0.06
Bicarbonat Test Rec. Lab Analysis Gen. Lab. Gen. Lab. 0.96 0.22
Phosphate Speed Test Rec. Lab Analysis Gen. Lab. Gen. Lab. 0.96 0.03

Table 7: Correlation resource conditions extracted with MP-Response.

Activity Resource Cases Support Confidence

Receiving Laboratory General Lab Clinical Chemistry 797 0.697 0.697
Analysis Medical Microbiology 315 0.276 0.276

PharmacyLaboratory 5 0.004 0.004
Special Lab Radiology 3 0.002 0.002
Special Lab Nurosensory 2 0.001 0.001

Table 8: Resource-based MP-Existence constr. for Receiving Laboratory Analysis.

fact that the support values of the MP-Response constraints are identical to the
standard response constraints, i.e., support=0.96. Only in case of calcium the
support decreased to 0.91, which indicates that in this case also other resources
performed the target activity. An even more specific result set is given in Table 7
that shows the correlation conditions for the constraints, i.e., the support values
in case of identical resources for both activities. The results for the MP-Response
query highlight that in most of the cases wherein the analysis results have been
received after the blood tests, the performing resources of the two corresponding
activities are identical and equal to General Lab Clinical Chemistry. For calcium,
again, this fact only applies to 91% of the cases. In order to get an insight
into the set of resources involved in activity receiving laboratory analysis, we
applied an MP-Existence query. The results in Table 8 show a diverse set of
resources performing this activity, which explains why the support is lower in
case of calcium. The evaluation reported hitherto shows the range of disclosing
previously unknown relationships between behavioral constraints and all the
additional perspectives that can be analyzed using the information contained in
an event log.

6 Related Work

Several approaches have been proposed in the literature for the discovery of
declarative process models. In [19], the authors present an approach that allows
the user to select from a set of predefined Declare templates the ones to be used
for the discovery. Maggi et al. propose an evolution of this approach in [20] to
improve performances. Other approaches to improve the performances of the
discovery task are presented in [10,31]. Additionally, there are post-processing
approaches that aim at simplifying the resulting Declare models in terms of
redundancy elimination [21,9,7] and disambiguation [3].

The approaches proposed in [14,6] allow for the specification of rules that go
beyond the traditional Declare templates. An approach similar to the SQL-based
one used in this paper is presented in [26] and is based on temporal logic query
checking. In [30], the authors define Timed Declare, an extension of Declare that
relies on timed automata. In [17], an approach for analyzing event logs with

13

Timed Declare is proposed. The DPILMiner [28] exploits a discovery approach
to incorporate the resource perspective and to mine for a set of predefined
resource assignment constraints. In [22], the authors introduce for the first time
a data-aware semantics for Declare and [18] first covered the data perspective in
declarative process discovery, although this approach only allows for the discovery
of discriminative activation conditions.

7 Conclusions

In this paper, we proposed a framework for the discovery of MP-Declare models.
We implemented our approach using SQL queries tailored to analyze a process
from different perspectives, e.g., control flow, data attributes as well as organi-
zational and time perspectives. The approach has been validated with several
real-life event logs provided by a large academic hospital, by five Dutch munici-
palities and by an Italian local police office for managing fines for road traffic
violations. The application of our technique to these real-life process event logs
revealed dependencies and correlations with additional parameters such as data
values, time conditions and resource specifications.

The approach at hand serves as a building block for a variety of extensions in
future work. For example, we plan to ease the interpretation of multi-perspective
mining results by applying preprocessing methods to event logs and postprocess-
ing methods to the discovered multi-perspective models. Furthermore, the full
specification of a new, domain-independent and user-customizable SQL-based
framework for mining MP-Declare constraints is in our plans for future research.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing
Between Flexibility and Support. Computer Science - R&D pp. 99–113 (2009)

3. Bose, J.C., Maggi, F.M., van der Aalst, W.: Enhancing Declare Maps Based on
Event Correlations. In: Business Process Management. pp. 97–112 (2013)

4. Burattin, A., Maggi, F.M., van der Aalst, W.M., Sperduti, A.: Techniques for a
Posteriori Analysis of Declarative Processes. In: EDOC. pp. 41–50. IEEE, Beijing
(Sep 2012)

5. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. CoRR abs/1503.04957 (2015)

6. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
Inductive Logic Programming Techniques for Declarative Process Mining. Transac-
tions on Petri Nets and Other Models of Concurrency (ToPNoC), Special Issue on
Concurrency in Process-Aware Information Systems 5460, 278–295 (2009)

7. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Ensuring model consistency
in declarative process discovery. In: BPM. Lecture Notes in Computer Science, vol.
9253, pp. 144–159. Springer (2015)

8. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery
of declarative workflows. In: CIDM. pp. 135–142. IEEE (April 2013)

9. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM TMIS 5(4), 24:1–24:37 (2015)

10. Di Ciccio, C., Schouten, M.H.M., de Leoni, M., Mendling, J.: Declarative process
discovery with MINERful in ProM. In: BPM Demos. pp. 60–64 (2015)

14

11. van Dongen, B.F., Shabani, S.: Relational XES: data management for process
mining. In: CAiSE Forum 2015. pp. 169–176 (2015)

12. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. J. Log.
Algebr. Program. 82(5-7), 164–185 (2013)

13. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking.
International Journal on Software Tools for Technology Transfer 4, 224–233 (2003)

14. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming
to process mining. In: Inductive Logic Programming, 17th International Conference,
ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers. pp.
132–146 (2007)

15. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs. Inf.
Syst. 56, 235–257 (2016)

16. Maggi, F.M.: Declarative process mining with the declare component of prom. In:
BPM Demo sessions 2013, 26-30, 2013 (2013)

17. Maggi, F.M.: Discovering metric temporal business constraints from event logs.
In: BIR. Lecture Notes in Business Information Processing, vol. 194, pp. 261–275.
Springer (2014)

18. Maggi, F.M., Dumas, M., Garćıa-Bañuelos, L., Montali, M.: Discovering data-aware
declarative process models from event logs. In: BPM. pp. 81–96 (2013)

19. Maggi, F.M., Mooij, A., van der Aalst, W.: User-Guided Discovery of Declarative
Process Models. In: CIDM. pp. 192–199 (2011)

20. Maggi, F., Bose, J., van der Aalst, W.: Efficient discovery of understandable
declarative models from event logs. In: CAiSE. pp. 270–285 (2012)

21. Maggi, F., Bose, R., van der Aalst, W.: A knowledge-based integrated approach for
discovering and repairing declare maps. In: CAiSE (2013)

22. Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints
in declare. In: SAC. pp. 1391–1396. ACM (2013)

23. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari,
S.: Declarative Specification and Verification of Service Choreographies. ACM
Transactions on the Web 4(1) (2010)

24. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-
structured processes. In: IEEE International EDOC Conference 2007. pp. 287–300
(2007)

25. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative
versus declarative process modeling languages: An empirical investigation. In: BPM
Workshops. pp. 383–394 (2011)

26. Räim, M., Di Ciccio, C., Maggi, F.M., Mecella, M., Mendling, J.: Log-based
understanding of business processes through temporal logic query checking. In:
OTM Conferences. vol. 8841, pp. 75–92. Springer (2014)

27. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

28. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A Framework for Efficiently
Mining the Organisational Perspective of Business Processes. Decision Support
Systems (2016)

29. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient
and Customisable Declarative Process Mining with SQL. In: CAiSE (2016)

30. Westergaard, M., Maggi, F.M.: Looking into the future: Using timed automata to
provide a priori advice about timed declarative process models. In: OTM. LNCS,
vol. 7565, pp. 250–267. Springer (2012)

31. Westergaard, M., Stahl, C., Reijers, H.: UnconstrainedMiner: Efficient Discovery of
Generalized Declarative Process Models. BPM CR, No. BPM-13-28 (2013)

32. Zeising, M., Schönig, S., Jablonski, S.: Towards a Common Platform for the Support
of Routine and Agile Business Processes. In: Collaborative Computing: Networking,
Applications and Worksharing (2014)

15

	Discovery of Multi-Perspective Declarative Process Models

