Discovery of new quinoline and isatine derivatives as potential VEGFR-2 inhibitors: Design, Synthesis, Antiproliferative, Docking, and MD simulation studies

Mohammed S. Taghour^a, Hazem Elkady^a*, Wagdy M. Eldehna^b, Nehal El-Deeb^{c,d}, Ahmed M. Kenawy^e, Abeer E Abd El-Wahab^{f,d}, Eslam B. Elkaeed^g, Bshra A. Alsfouk^h, Ahmed M. Metwaly^{i,c}* Ibrahim H. Eissa^a*

^a Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt.

^b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt.

^c Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt.

^d Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA city), Alexandria, New Borg El-Arab City, 21934, Egypt ^eNucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute. City of Scientific Research and Technological Applications (SRTA-City). Alexandria 21934, Egypt

^f Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Egypt.

^gDepartment of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.

^h Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

ⁱ Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.

*Corresponding authors:

Ibrahim H. Eissa

Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. Email: <u>Ibrahimeissa@azhar.edu.eg</u>

Ahmed M. Metwaly

Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. **Email:** <u>ametwaly@azhar.edu.eg</u>

Hazem Elkady:

Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-

Azhar University, Cairo 11884, Egypt. **Email:** <u>Hazemelkady@azhar.edu.eg</u>

	Content	
1	Biological testing	
	✓ Safety assay	
	✓ <i>In vitro</i> anti-proliferative activity.	
	✓ In vitro VEGFR-2 kinase assay.	
	✓ Selectivity index (SI)	
	✓ Wound healing assay (Migration assay).	
	\checkmark Gene expression pattern alternation of cancer cell after 9 treatment	
2	In silico studies	
	✓ Docking studies	
	✓ ADMET studies	
	✓ Toxicity studies	
	✓ MD simulation	
	✓ MMPBSA	
3	Chemistry and materials	
4	Characterization of the target compounds 8,9, 12, 13, and 14	
5	Spectral data	
6	Molecular docking of compound 9, 12, 13, and 14	
7	Raw data for biological testing	

1- Biological testing

a- Mammalian cell lines culture

CaCo-2, and A549 cell lines were cultured on DMEM media, meanwhile MDA-MB-231 and hepG-2 cell line were cultured on RBMI media. The cultured media were supplemented with 200 mM L-glutamine, 10.0% fetal bovine serum (Lonza), and 1.0% penicillin/streptomycin. Cells were seeded into 25.0 cm tissue culture flasks and incubated at 37°C in a 5.0% CO₂ incubator for 24 h or till confluency.

b- Safety assay

The safety profiles of the tested compounds were checked on one non-cancerous cell line (Vero and WI-38) to determine the treatments concentrations that do not depict toxic effects against the tested cells. A portion of 100.0 μ l of 6×10⁴ cell/ml cells was seeded into each well of a 96-well plate and then the plates were incubated at 37°C in a humidified 5.0% CO₂ incubator for 24 h. At the end of incubation period, the exhausted medium was replaced with 100.0 μ l of different concentrations of the designated treatment (prepared in RPMI medium starting from 1.0 mM). The inoculated plates were incubated at the same growth conditions for another 24 h. At the end of incubation, cellular viability was assessed using MTS assay kit (Promega) according to the manual instruction.

c- In-vitro anticancer activity

Anticancer activities of the tested compounds against CaCo-2, A549, MDA-MB-231, and hepG-2 cell lines were quantified using MTS assay kit (Promega) as described by the Manufacturer.

d- Selectivity index (SI)

The selectivity index values of the tested compounds on cancer cells were calculated as described by Koch et al with slight modifications; $SI=IC_{50}nc/IC_{50}cc$, where $IC_{50}nc$: the IC_{50} value of the tested compound on normal cells and $IC_{50}cc$: IC_{50} of the tested compound on cancer cell line.

e- Wound healing assay (Migration assay)

CaCo-2 cells were grown to 95.0% confluency in a complete DMEM medium and then the wounds were formed using a plastic tip. After washing with pre-warmed PBS, the cells were incubated in

the specific medium or the **9** treatment. After incubation at 37° C and 5.0% CO₂ for 24h, the cells were washed with PBS and the wounds distance was determined as the scratch width of the treated and untreated groups using ImageJ software.

f- Gene expression pattern alternation of cancer cell after 9 treatment

The molecular anticancer mode of action of **9** was investigated by screening their ability to affect the gene expression levels of Bcl2, Bcl-xl, TGF and Survivin genes using specific forward and reverse primers and RTq-PCR technique (Table 1) in CaCo-2 cells (chosen as the most sensitive cancer cell line). After cellular treatment, CaCo-2 cell line was cultured into 12 well plates (6×10³ cell/ml) for 24 h. with the sub-IC50 concentration of **9**. After treatment, total RNA extraction was performed using RNA extraction kit (Qiagen, Germany). Then, 1 ug of the obtained RNA was used to synthesiz cDNA using cDNA synthesis kit (Promega Corp., Madison, WI) as recommended by the manufacturer. Simultaneously, GAPDH forward and reverse primers (Table 1) were used to amplify the house keeping gene as internal control for standardization of PCR products. The RTq-PCR was done using SYBR Green dye (QuantiTect SYBR Green PCR Kits) and Light Cycler fluorimeter (Bio-RAD S1000 Tm thermal cycler). The PCR cycling program was as follows: 95°C for 2 min, followed by 40 cycles of 95°C for 30s, 55°C for 30 s, and 60°C for 45s, and finally 60°C for 5 min.

g- Flow cytometry analysis for cell cycle

To determine the role of the synthesized compounds in cell cycle distribution, cell cycle analysis was performed using propidium iodide (PI) staining and flow cytometry analysis for compound **9**. Flow Cytometry Kit for Cell Cycle Analysis (ab139418_Propidium Iodide Flow Cytometry Kit/BD) was used in this test. HepG2 cells were treated with compound **9** (13.90 µM) for 24 h. Then, the cells were fixed in 70% ethanol at 4 °C for 12 h. After that, the cells were washed with cold PBS, incubated with 100 µl RNase A at 37 °C for 30 min, and stained with 400 µl PI in the dark at room temperature for further 30 min. The stained cells were measured using Epics XL-MCLTM Flow Cytometer (Beckman Coulter), and the data were analyzed using Flowing software (version 2.5.1, Turku Centre for Biotechnology, Turku, Finland).

-Sequence of the primers

Primer ID	Sequence
Bcl-F	5'-TATAAGCTGTCGCAGAGGGGGCTA-3'
Bcl-R	5'-GTACTCAGTCATCCACAGGGCGAT-3'
Bcl-Xlf	5'CAGAGCTTTGAACAGGTAG-3'
Bcl-XlR	5'GCTCTCGGGTGCTGTATTG-3'
Surv-F	5'-TGCCCCGACGTTGCC-3'
Surv-R	5'-CAGTTCTTGAATGTAGAGATGCGGT-3'
TGF-F	5'CAAGGGCTACCATGCCAACT3'
TGF-R	5'AGGGCCAGGACCTTGCTG3'
β-actin-F	5'-GTGGGGCGCCCCAGGCACCA-3'
β-actin-R	5'-CTCCTTAATGTCACGCACGATTTC-3'

2- In silico studies

a- Docking studies

The docking studies were performed utilizing MOE 2019 software to explore the binding mode of the synthesized compounds towards VEGFR-2. The 3D crystal structure of the target macromolecules VEGFR-2 were downloaded from the protein databank, <u>http://www.pdb.org</u> (PDB ID; 2OH4). Sorafenib was used as reference ligand. To prepare the target protein, water molecules were removed, and the valances of atoms were corrected through protonation of the whole molecule. Then energy minimization was carried out by applying CHARMM and MMFF94 force fields. After that, the active binding site was defined and prepared for docking. The validation process was performed by redocking the co-crystallized ligand. The designed compounds together with sorafenib were drawn using ChemBioDraw Ultra 14.0 and saved as MDL-SD format. The sketched compounds were constructed from fragment libraries in MOE program, protonated,

followed by energy minimization then prepared for docking. Docking process was carried through Triangle matcher placement inserted in compute window, and the scoring function was London dG. Ten conformers (poses) for each molecule were generated using genetic algorithm searches. The free energies and binding modes of the designed molecules against VEGFR-2 were determined. The most ideal pose was selected according to its binding free energy as well as its binding mode with target molecule.

b- ADMET studies

ADMET descriptors (absorption, distribution, metabolism, excretion and toxicity) of the synthesized compounds were determined using Discovery studio 4.0. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol. Then ADMET descriptors protocol was applied to carry out these studies.

c- Toxicity studies

The toxicity parameters of the synthesized compounds were calculated using Discovery studio 4.0. Sorafenib was used as a reference drug. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol. Then different parameters were calculated from toxicity prediction (extensible) protocol.

d- Molecular dynamics simulation

Molecular dynamics simulation of the protein-ligand complexes was performed using GROMACS 2021 and Linux 5.4 package. The GROMOS96 54a7 forcefield was selected as the force field for proteins and the ligand topologies were generated from the PRODRG server. All the complexes were solvated using simple point charge (SPC) water molecules in a rectangular box. To make the simulation system electrically neutral, required number of Na⁺ and Cl⁻ ions were added while 0.15 mol/L salt concentrations were set in all the systems. Using the steepest descent method, all the solvated systems were subjected to energy minimization for 5000 steps. Afterwards, NVT (constant number of particles, volume, and temperature) series, NPT (constant number of particles, pressure, and temperature) series, and the production run were conducted in the MD simulation. The NVT and the NPT series were conducted at a 300 K temperature and 1 atm pressure for the duration of 300 ps. V-rescale thermostat and Parrinello-Rahman barostat were

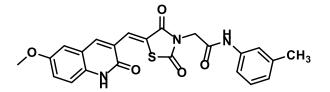
selected of the performed simulation. Finally, the production run was performed at 300 K for a duration of 100 ns (nanoseconds). Thereafter, a comparative analysis was performed measuring root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA) and hydrogen bonds to analyze their stability. The Xmgrace program was used to represent the analyses in the form of plots.

e- MM/PBSA

The g_mmpbsa package of GROMACS was utilized to calculate the MM/PBSA (Molecular Mechanics/Poisson Boltzmann Surface Area) binding free energies followed by final MD production run to get a detailed overview of the molecular interactions between the protein and ligand. The free solvation energy (polar and nonpolar solvation energies) and potential energy (electrostatic and Van der Waals interactions) of each protein-ligand complex were analyzed to determine the total ΔG_{bind} of the complex. The binding energies were calculated using the following equation in this method:

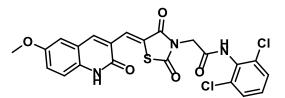
$$\Delta G_{binding} = G_{complex} - (G_{protein} + G_{ligand})$$

Here, the $\Delta G_{\text{binding}}$ = the total binding energy of the protein-ligand complex, G_{protein} = the binding energy of free protein, and G_{ligand} = the binding energy of unbounded ligand.


3- Chemistry and material

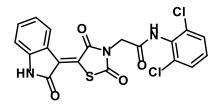
Melting points were measured with a Stuart melting point apparatus and were uncorrected. Infrared (IR) spectra were recorded as KBr disks using an FT-IR Spectrum BX apparatus (Perkin Elmer, CT, USA). NMR spectra were recorded on a Bruker NMR spectrometer (Bruker, Reinstetten, Germany).¹H spectra were run at 500 MHz and ¹³C spectra were run at 125 MHz in deuterated dimethyl sulfoxide (DMSO- d_6). Chemical shifts are expressed in values (ppm) using the solvent peak as an internal standard. All coupling constant (*J*) values are given in Hz. The abbreviations used are as follows: s, singlet; d, doublet; m, multiplet. Analytical thin layer chromatography (TLC) on silica gel plates containing a UV indicator was employed routinely to follow the course of reactions and to check the purity of the products. All reagents and solvents were purified and dried by standard techniques. The microspheres were prepared with poly (D, Llactide co-glycolide) PLGA (50:50, mol. wt 30,000–60,000), which was purchased from Sigma-

Aldrich (St. Louis, USA). The emulsifier, low molecular weight polyvinyl alcohol (PVA) was obtained from Alfa Aesar (Karlsruhe, Germany). Dichloromethane (DCM) was purchased from Avonchem (United Kingdom). Dimethyl sulfoxide (DMSO) was obtained from Loba Chemie (Mumbai, India). All ingredients used were of analytical grade. All cell lines have been purchased from the American Type Culture Collection (ATCC).

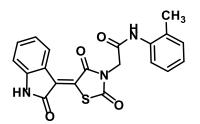

4- Characterization of the target compounds 8,9, 12, 13, and 14

4.1.(Z)-2-(5-((6-Methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2,4-dioxothiazolidin-3yl)-N-(m-tolyl)acetamide 8

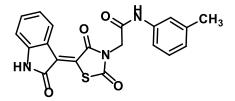
White powder (yield, 71%); m. p. = 255-257°C; IR (KBr, cm⁻¹): 3270, 3225 (NH), 3084 (aromatic CH) 2992, 2910 (aliphatic CH), 1671 (C=O); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.40 (s, 1H), 10.25 (s, 1H), 8.45 (s, 1H), 8.20 (s, 1H), 7.98 (t, *J* = 15.8 Hz, 2H), 7.40 (d, *J* = 2.5 Hz, 2H), 7.32 (m, 3H), 4.51 (s, 2H), 3.82 (s, 3H), 2.29 (s, 3H) ; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 190.39, 171.60, 161.56, 157.02, 155.00, 142.27, 138.62, 136.50, 132.64, 129.00, 128.83, 127.68, 126.20, 124.34, 124.18, 119.18, 117.30, 111.58, 56.04, 46.47, 21.30 for C₂₃H₁₉N₃O₅S (449.48).


4.2. (Z)-N-(2,6-dichlorophenyl)-2-(5-((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2,4-dioxothiazolidin-3-yl)acetamide 9.

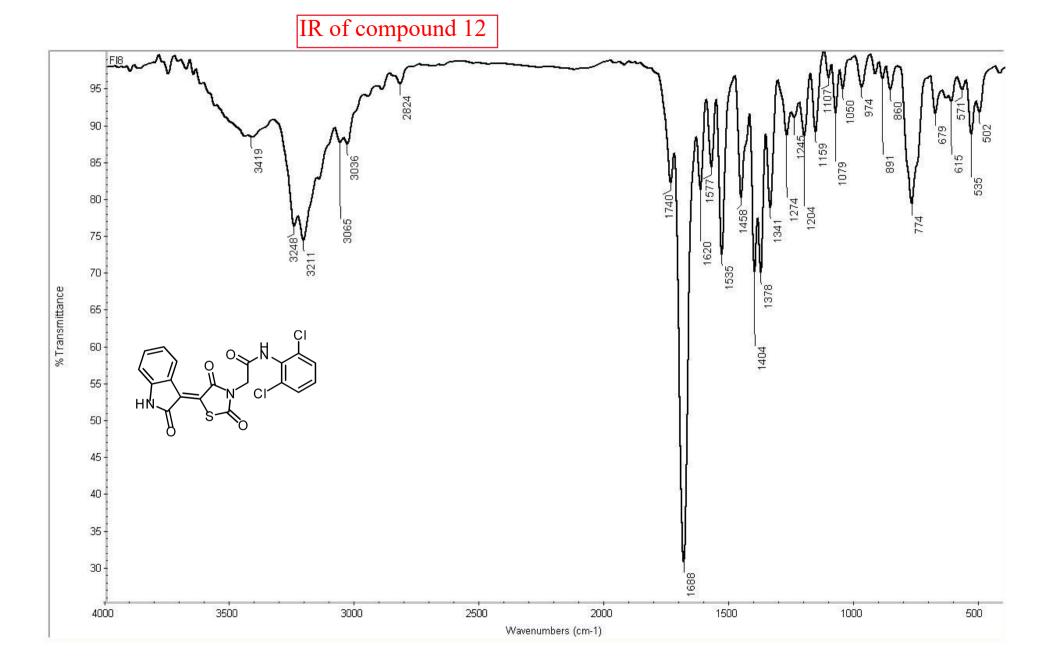
White powder (yield, 73%); m. p. = 249-250°C; IR (KBr, cm⁻¹): 3243, 3209 (NH), 2991, 2905 (aliphatic CH), 1684 (C=O); ¹H NMR (400 MHz, DMSO-d6) δ 10.65 (s, 1H), 10.25 (s, 1H), 8.45 (s, 1H), 7.47 (s, 1H), 7.43 (d, J = 2.7 Hz, 2H), 7.26 (d, J = 6.8 Hz, 2H), 7.21 (t, J = 5.4 Hz, 2H), 4.31 (s, 2H), 3.79 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 190.37, 161.55, 154.98, 142.24,

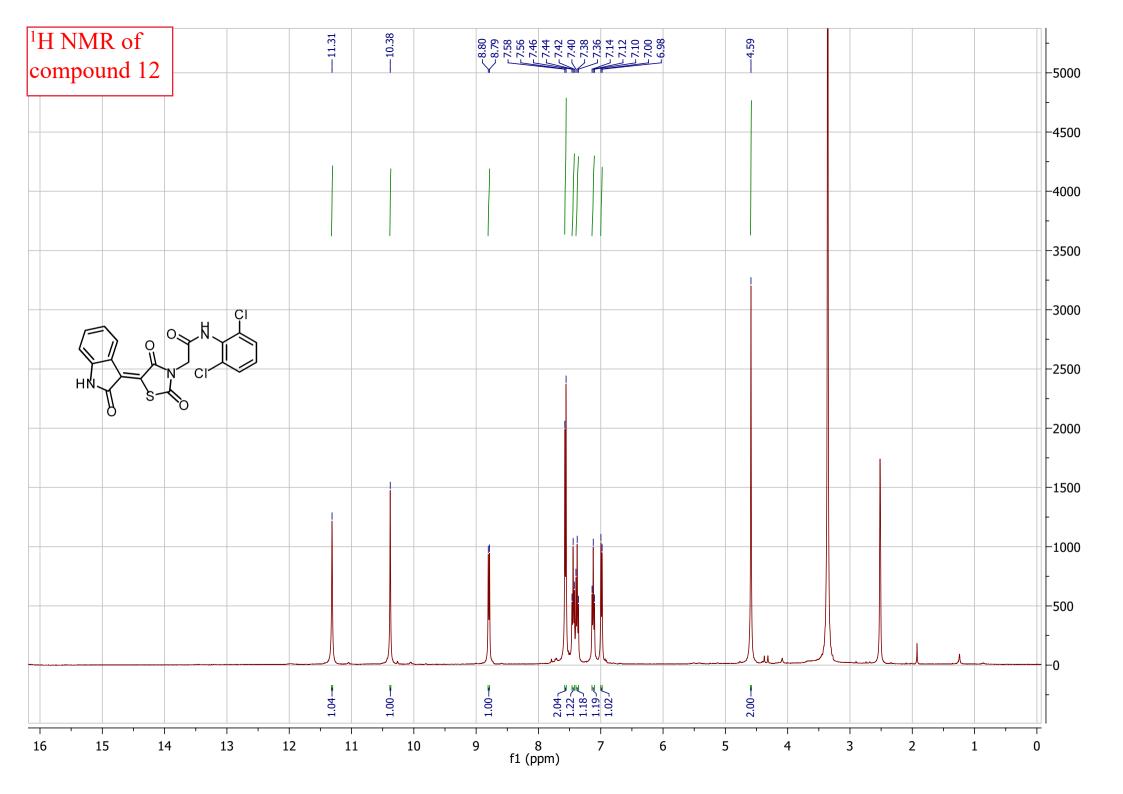

136.50, 134.90, 132.57, 129.36, 128.98, 126.19, 124.16, 119.16, 117.29, 111.57, 56.03, 46.90 for C₂₂H₁₅Cl₂N₃O₅S (504.34).

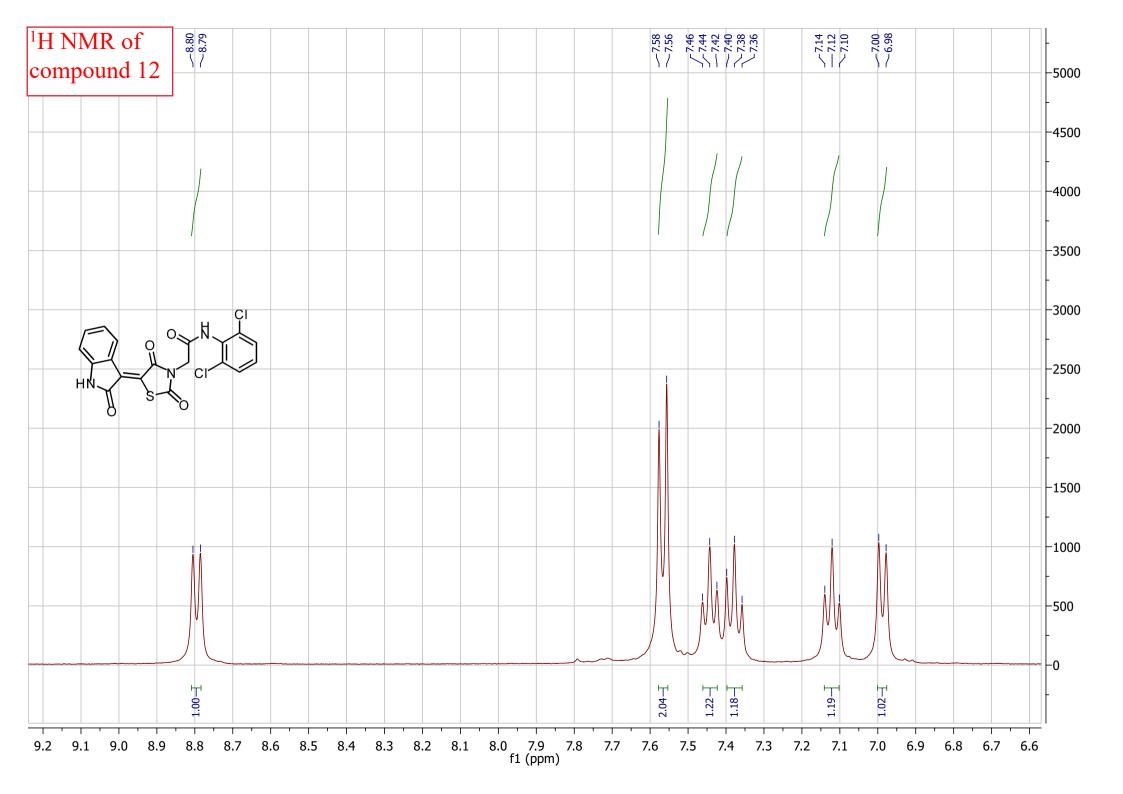
4.3. (Z)-N-(2,6-Dichlorophenyl)-2-(2,4-dioxo-5-(2-oxoindolin-3-ylidene)thiazolidin-3-yl)acetamide 12.

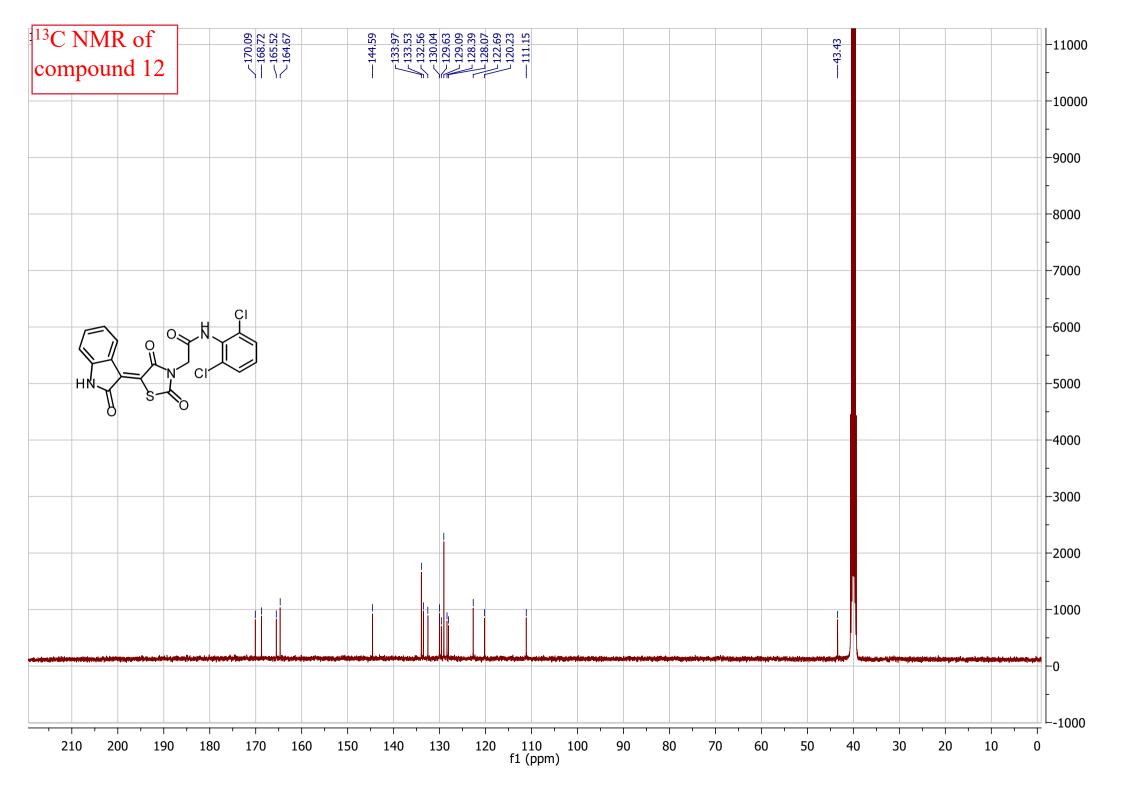

Yellowish crystals (yield 89%); mp: 166-168 °C; IR (KBr) v cm⁻¹: 3248, 3211 (NH), 3065 (aromatic CH), 2824 (aliphatic CH), 1740, 1688 (C=O); ¹H NMR (400 MHz, DMSO) δ 11.31 (s, 1H, NH), 10.38 (s, 1H, NH), 8.80 (d, J = 7.9 Hz, 1H, Ar-H), 7.57 (d, J = 8.1 Hz, 2H, Ar-H), 7.43 (d, J = 7.6 Hz, 1H, Ar-H), 7.37 (d, J = 8.1 Hz, 1H, Ar-H), 7.13 (d, J = 7.7 Hz, 1H, Ar-H), 6.99 (d, J = 7.7 Hz, 1H, Ar-H), 4.59 (s, 2H, CH₂); ¹³C NMR (101 MHz, DMSO) δ 170.09, 168.72, 165.52, 164.67, 144.59, 133.97 (2), 133.53, 132.56, 130.04, 129.63, 129.09 (2), 128.39, 128.07, 122.69, 120.23, 111.15, 43.43 for C₁₉H₁₁Cl₂N₃O₄S (448.27).

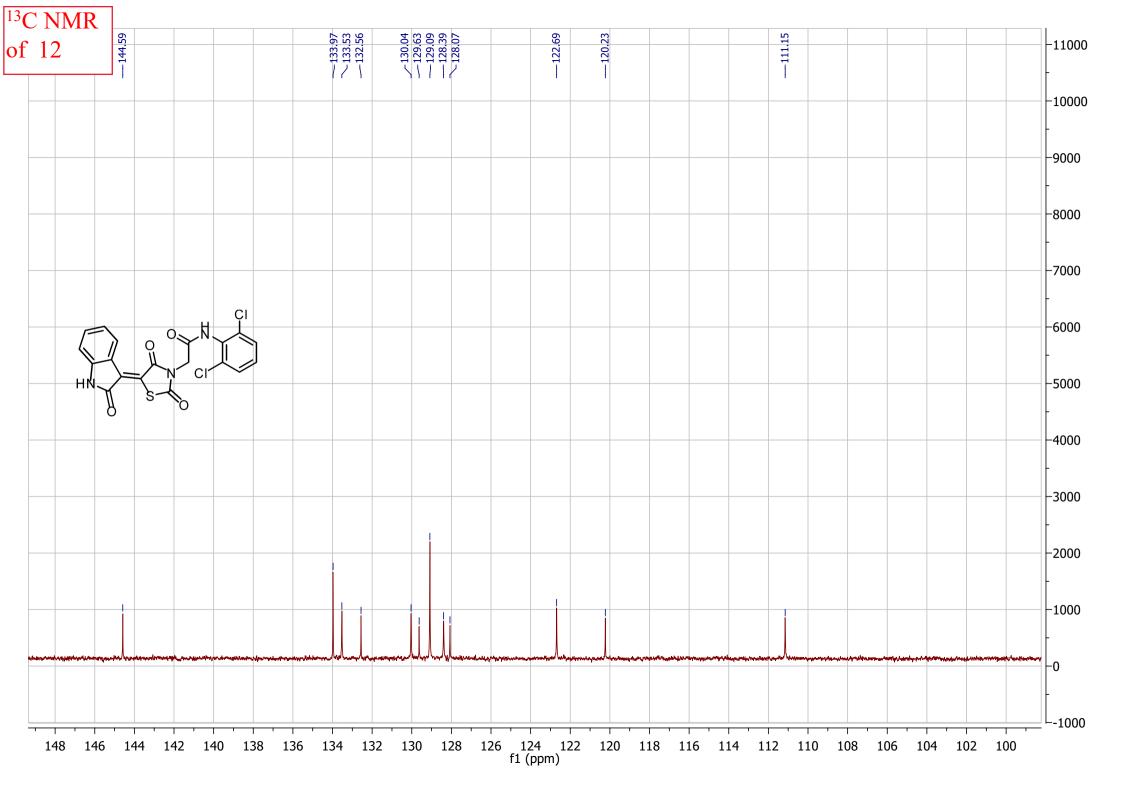
4.4.(Z)-2-(2,4-Dioxo-5-(2-oxoindolin-3-ylidene)thiazolidin-3-yl)-N-(o-tolyl)acetamide 13.

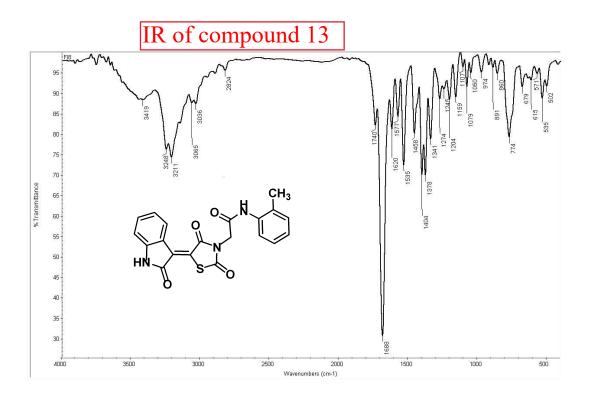


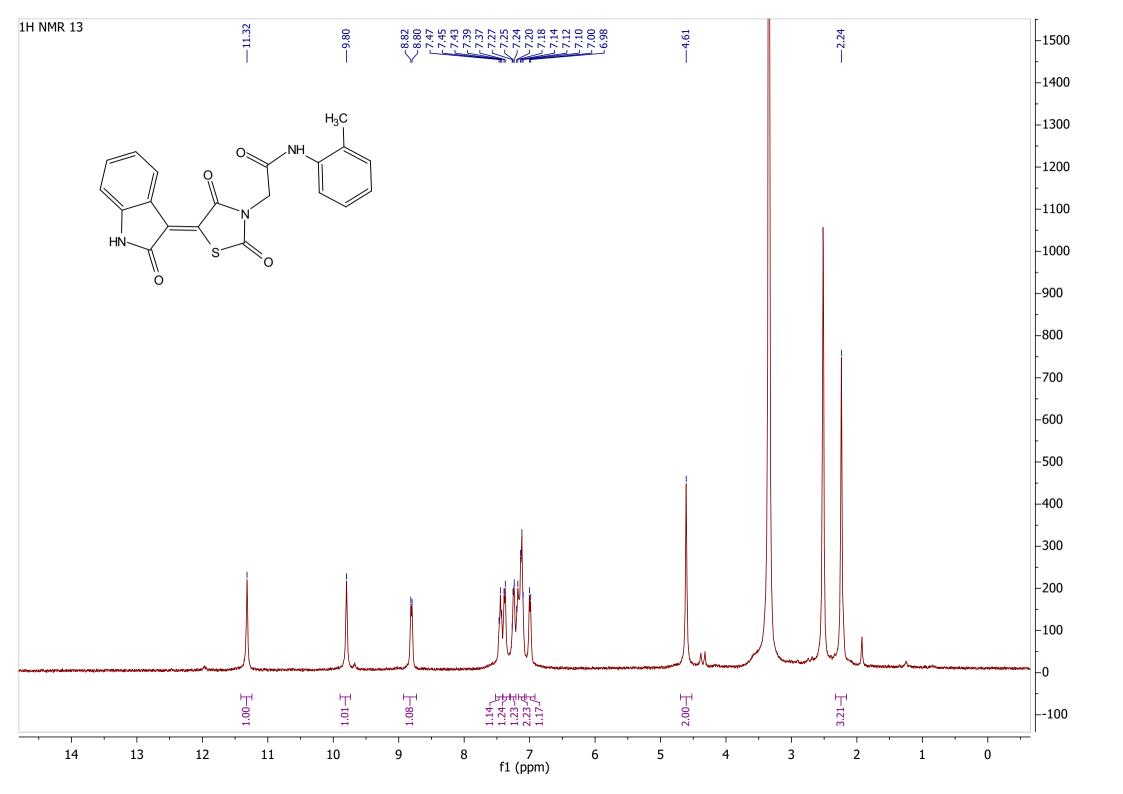

Off-white powder (yield, 76%); m. p. = 160-162°C; IR (KBr, cm⁻¹): 3289, 3178 (NH), 3065 (aromatic CH) 2953 (aliphatic CH), 1745, 1695 (C=O); ¹H NMR (400 MHz, DMSO- d_6) δ 11.32 (s, 1H), 9.80 (s, 1H), 8.81 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 7.3 Hz, 1H), 7.12 (t, J = 7.9 Hz, 2H), 6.99 (d, J = 7.9 Hz, 1H), 4.61 (s, 2H), 2.24 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 170.30, 168.75, 165.74, 164.49, 144.58, 135.96, 133.55, 132.43, 130.91, 129.68, 128.40, 128.05, 126.56, 126.17, 125.48, 122.70, 120.24, 111.17, 43.90, 18.25 for C₂₀H₁₅N₃O₄S (393.42).

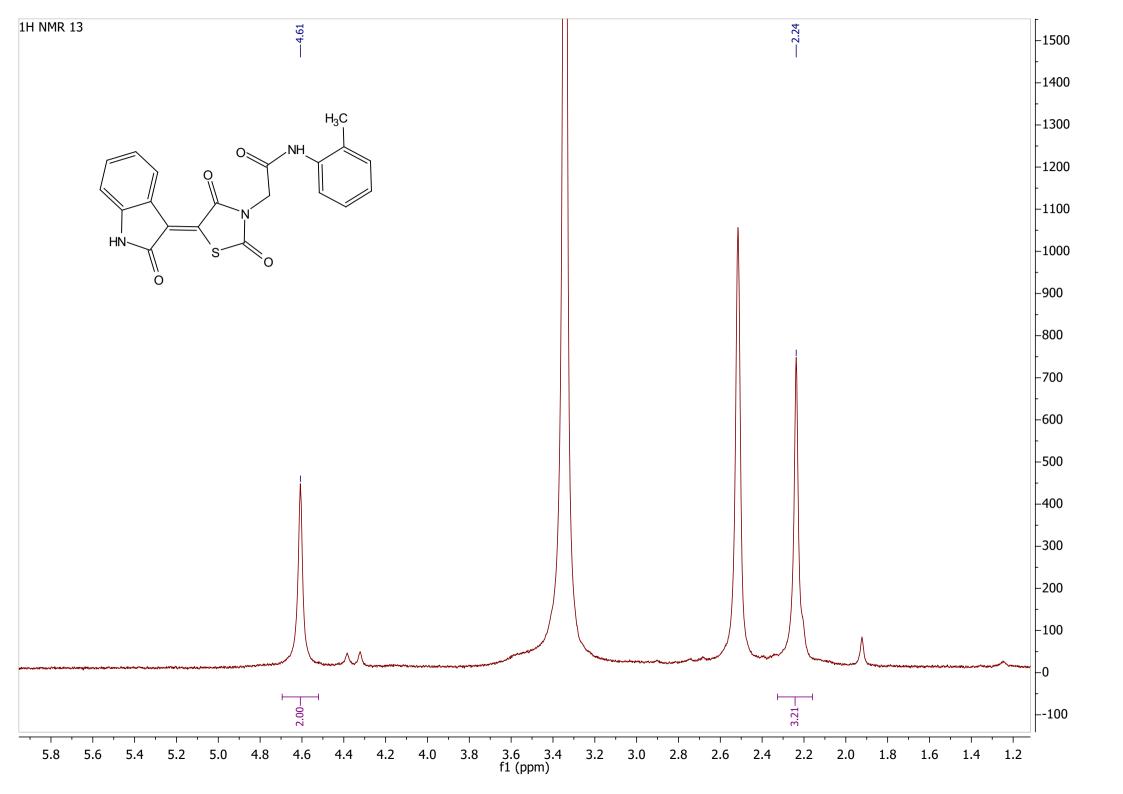

4.5. (Z)-2-(2,4-Dioxo-5-(2-oxoindolin-3-ylidene)thiazolidin-3-yl)-N-(m-tolyl)acetamide 14.

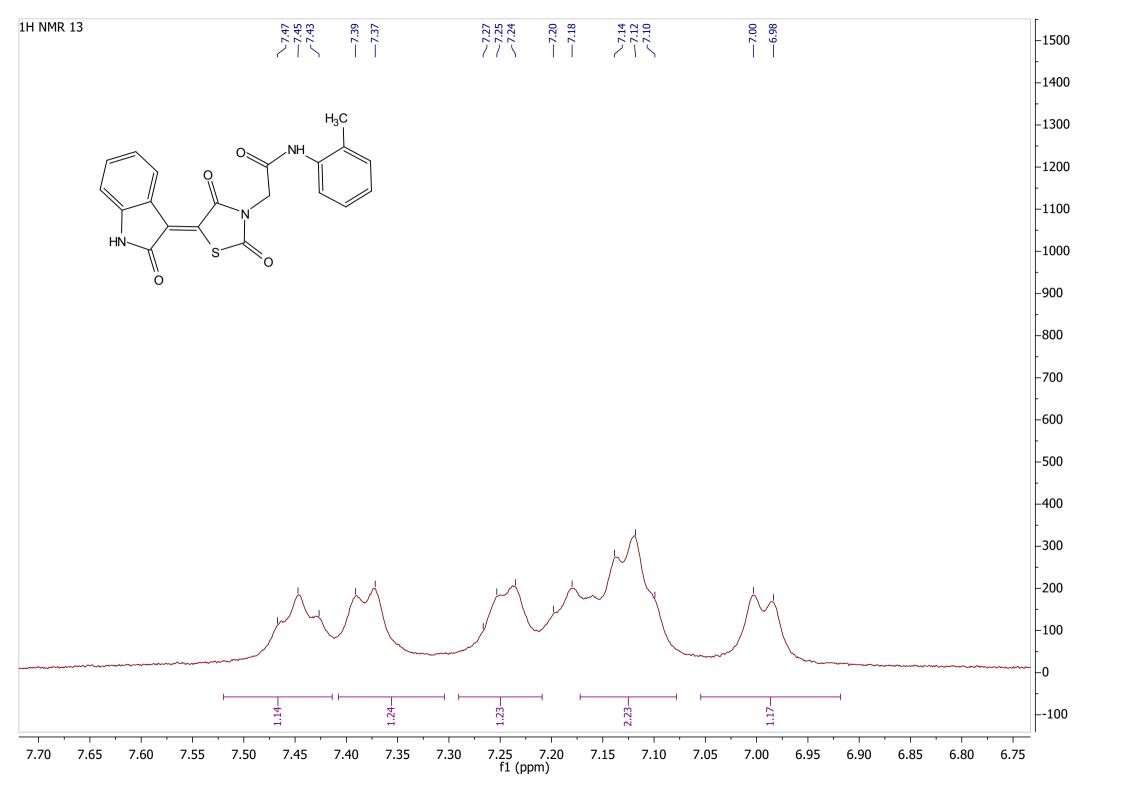


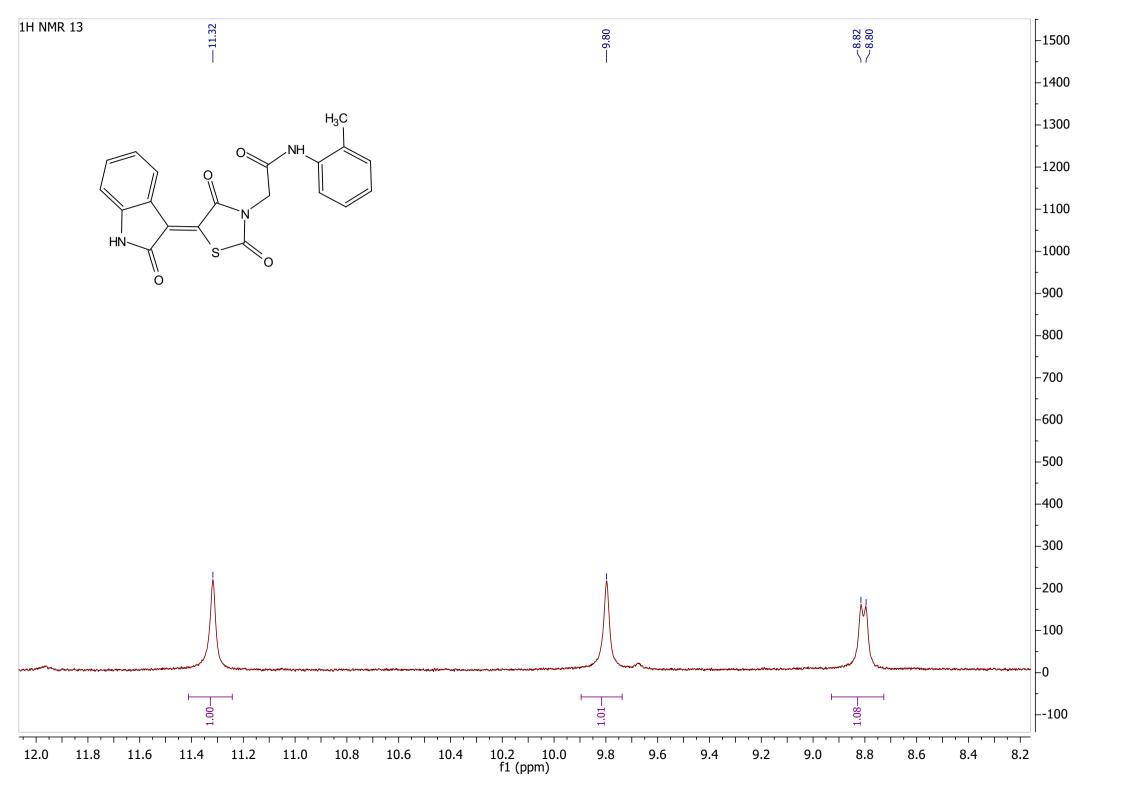

White powder (yield, 81%); m. p. = 158-160°C; IR (KBr, cm⁻¹): 3214, 3148 (NH), 3065 (aromatic CH) 2943 (aliphatic CH), 1743, 1693 (C=O); ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.32 (s, 1H), 10.36 (s, 1H), 8.77 (d, *J* = 7.9 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.21 (t, *J* = 7.7 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 4.56 (s, 2H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.25, 168.71, 165.69, 164.15, 144.62, 138.76, 138.60, 133.55, 129.38, 129.20, 128.42, 128.18, 124.92, 122.65, 120.24, 120.22, 116.88, 111.15, 44.13, 21.62 for C₂₀H₁₅N₃O₄S (393.42).

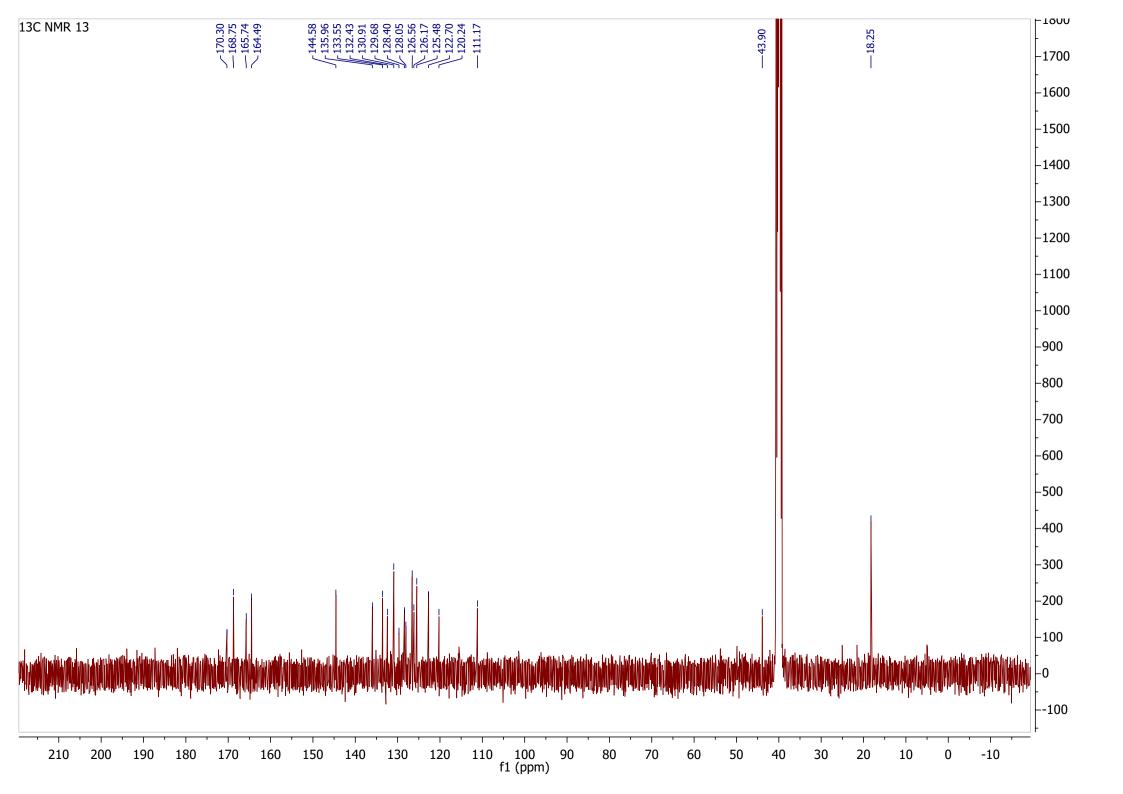


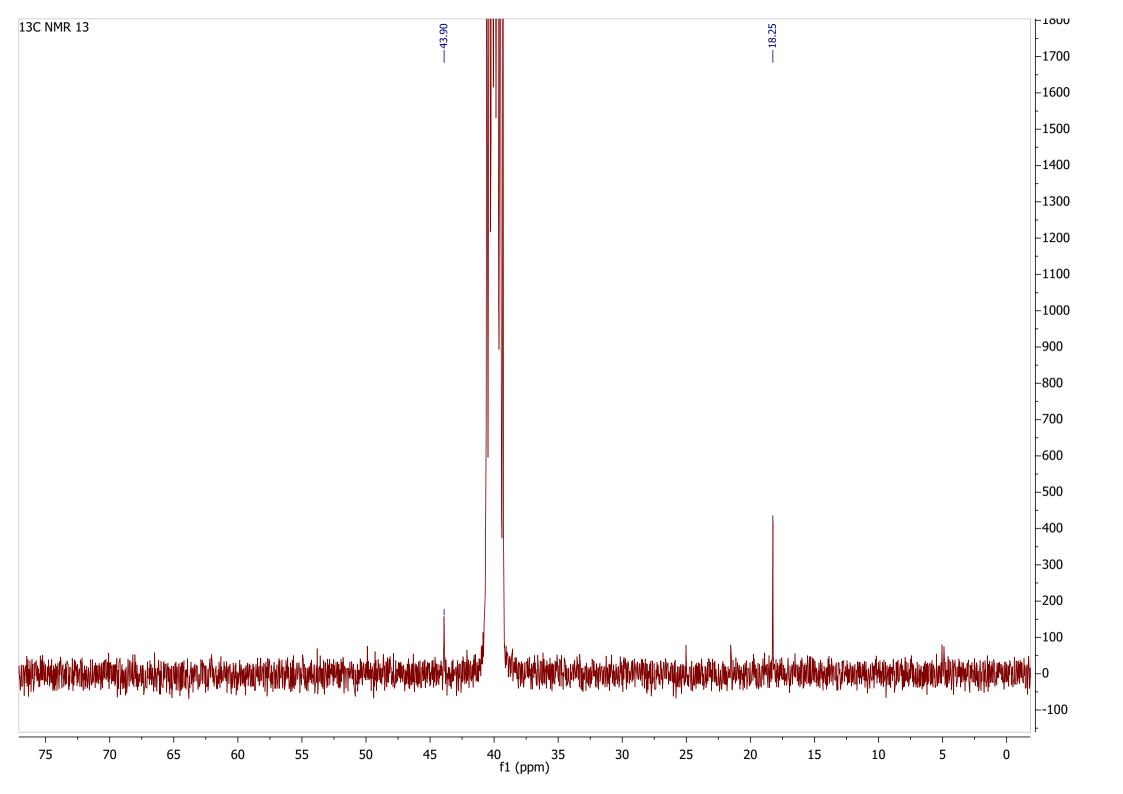


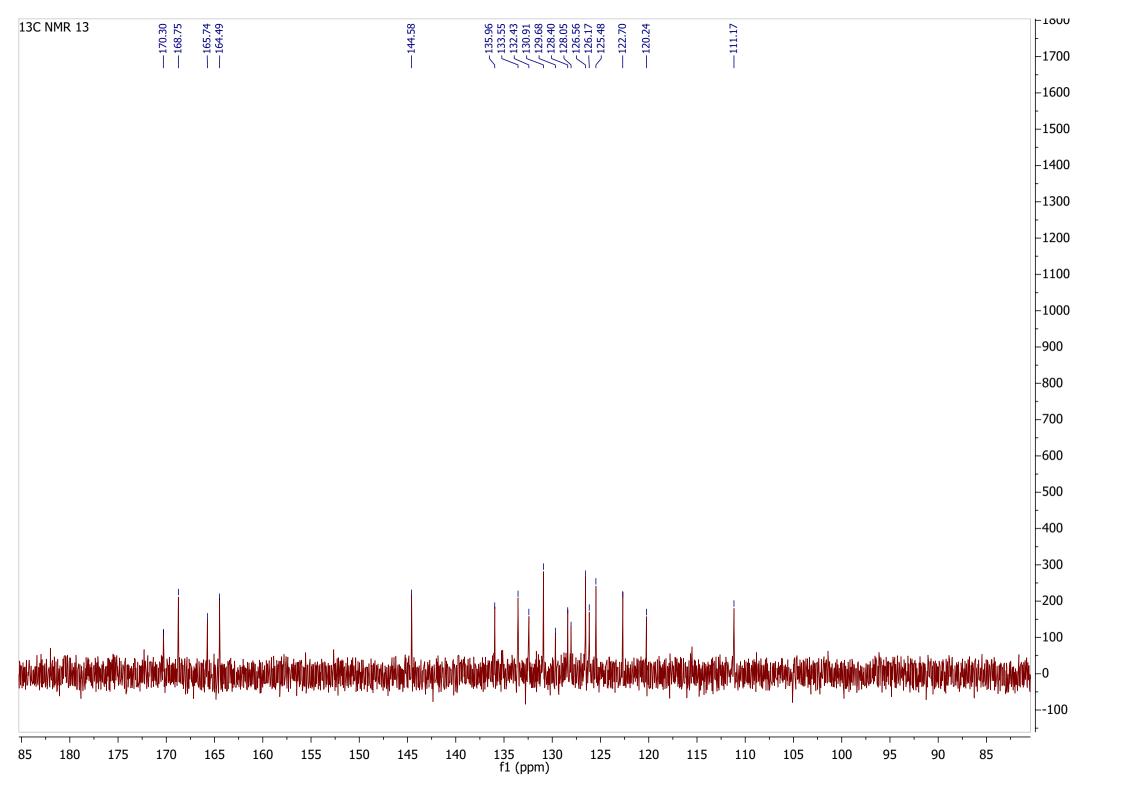


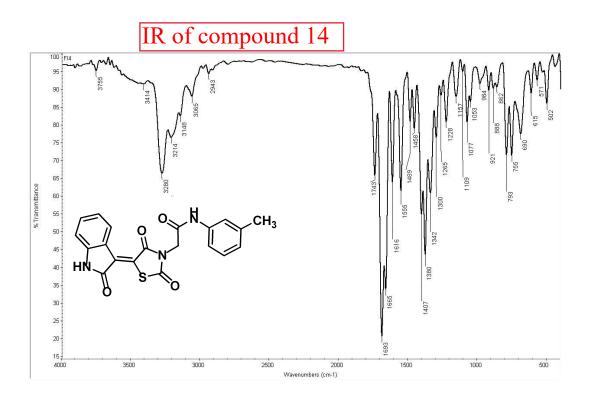


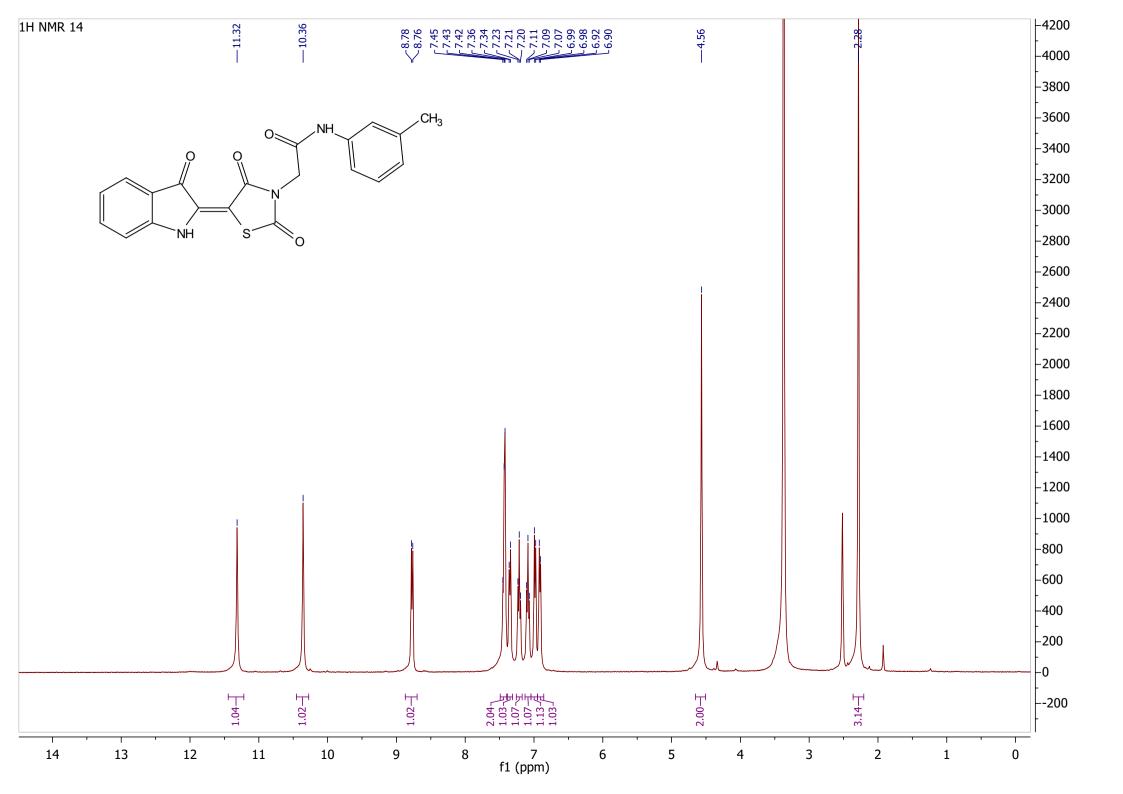


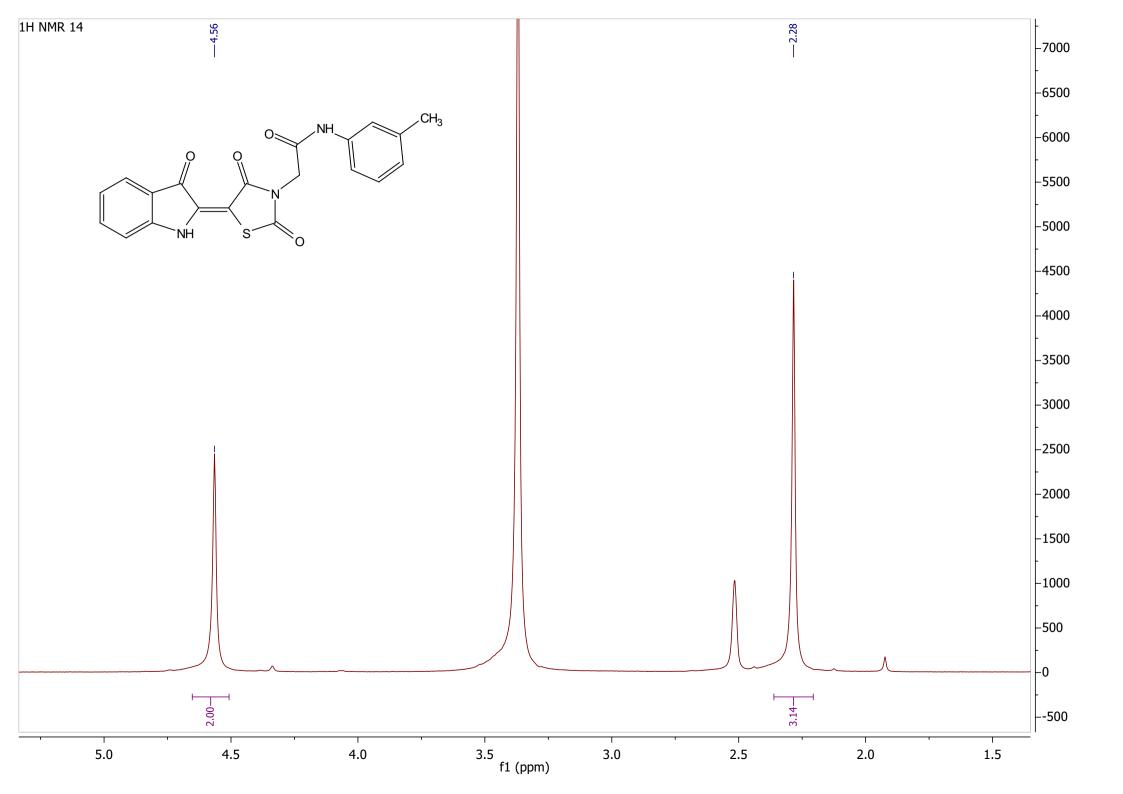


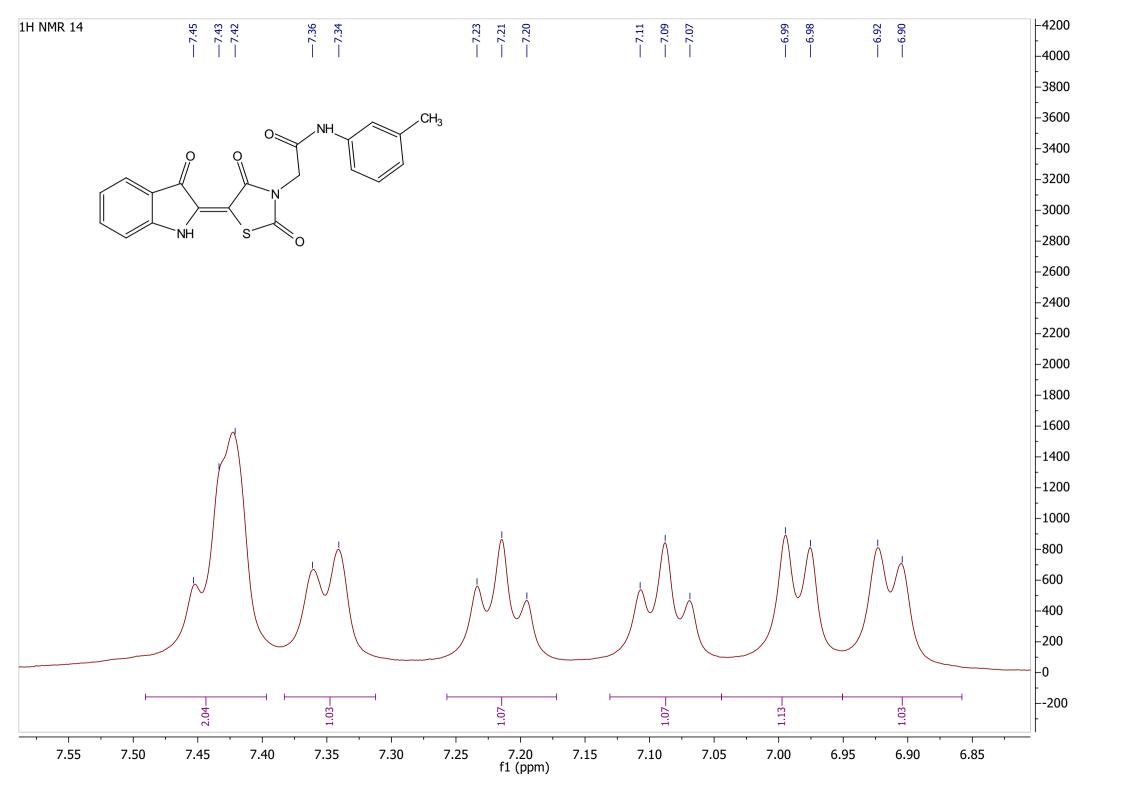




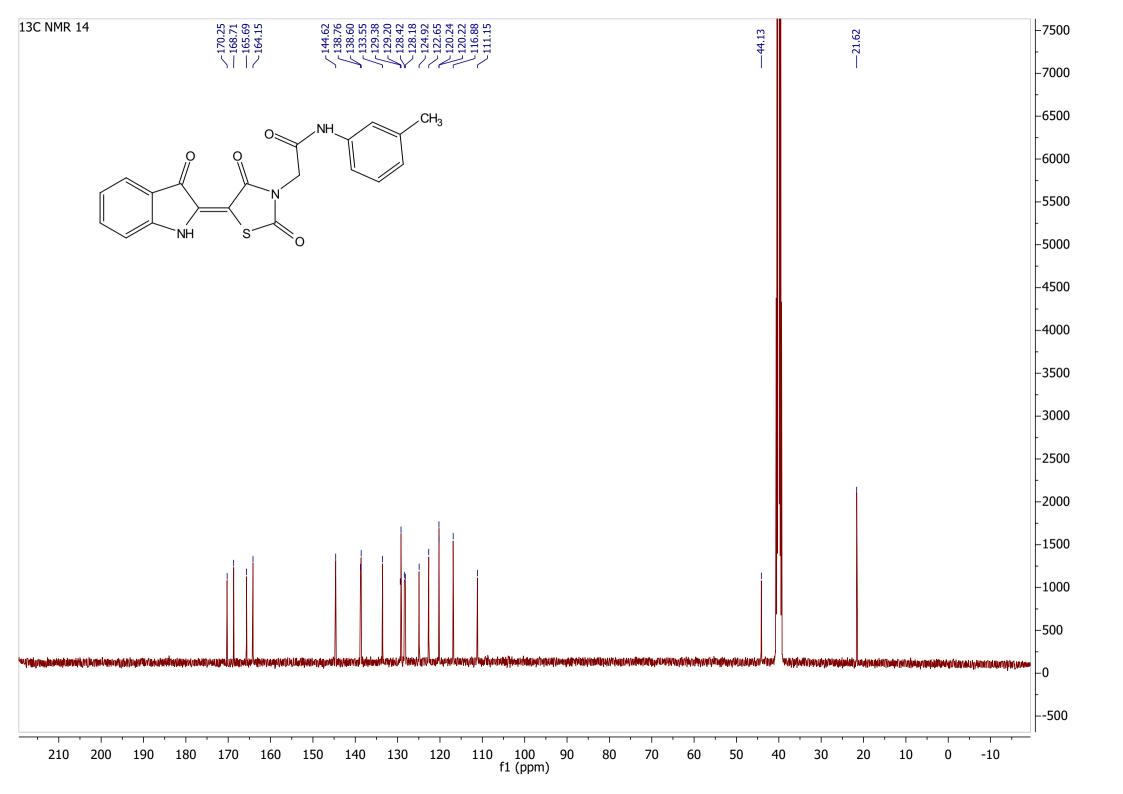


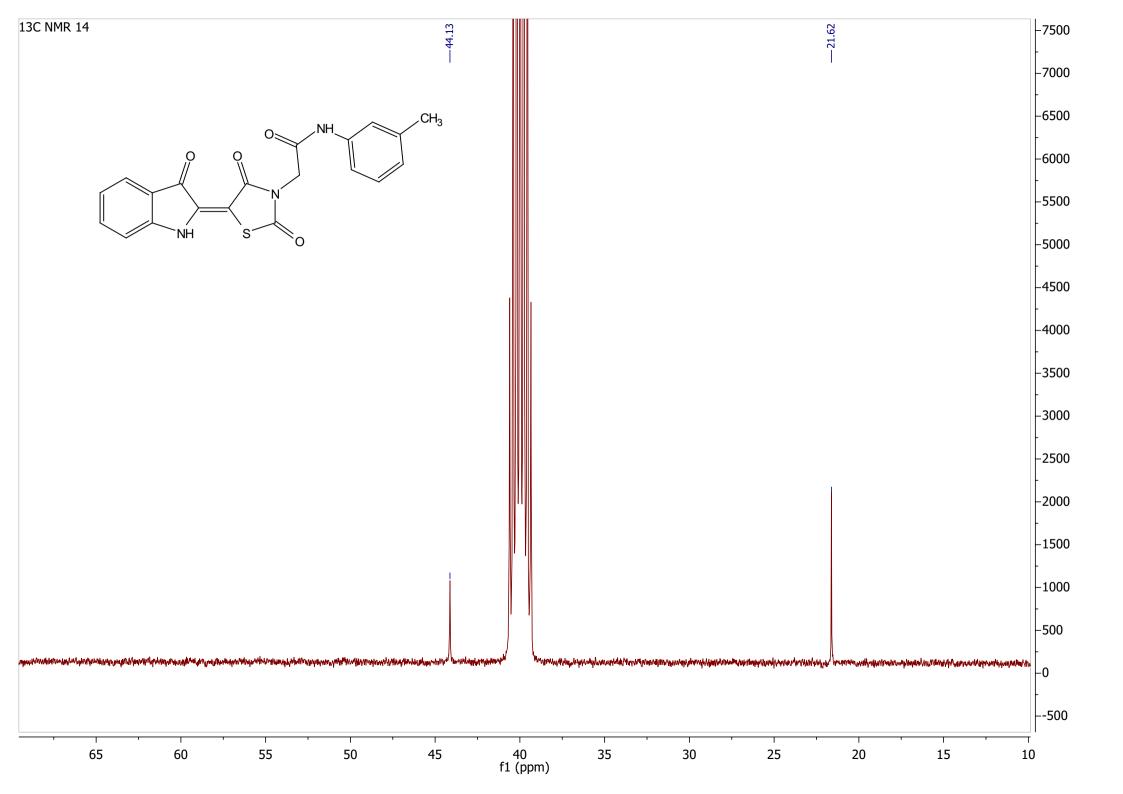


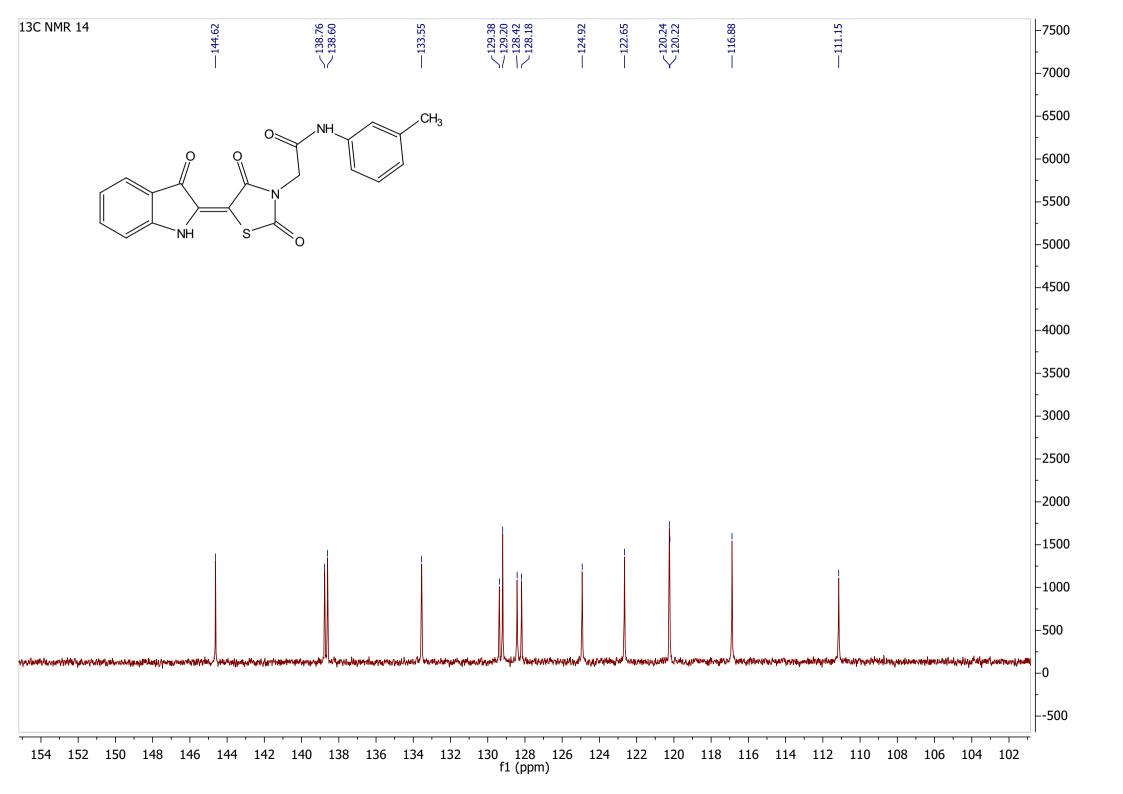


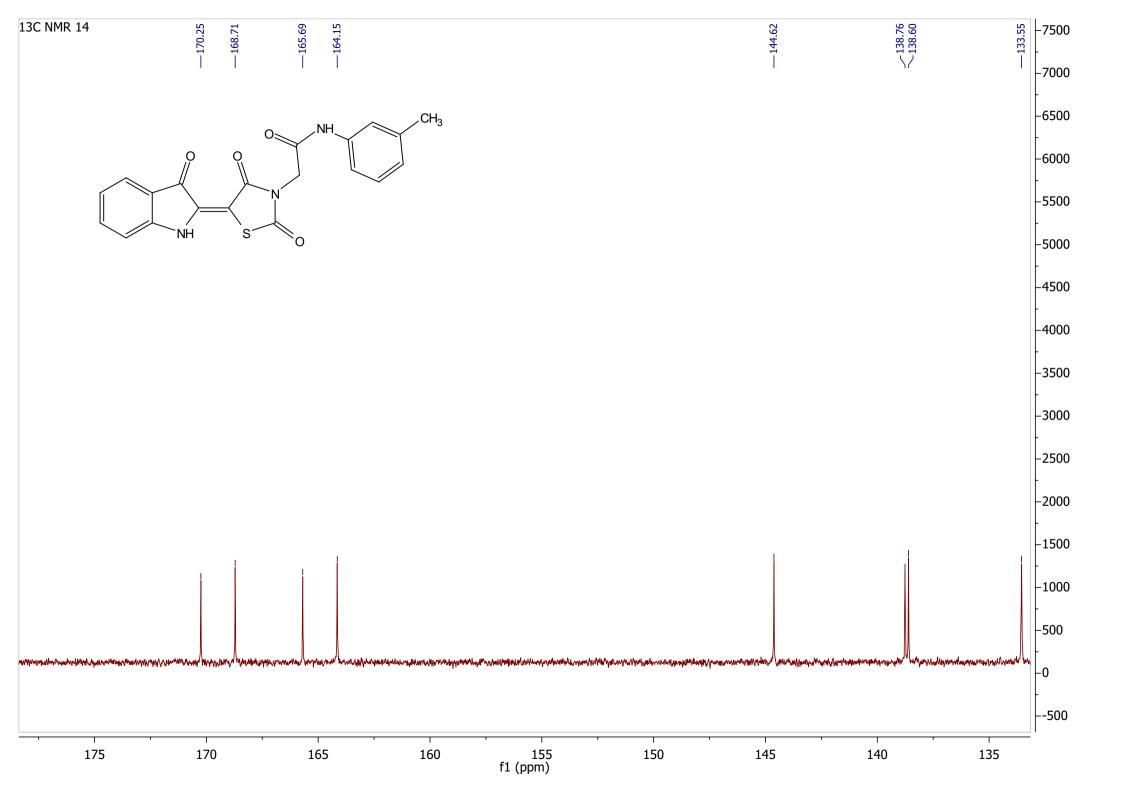


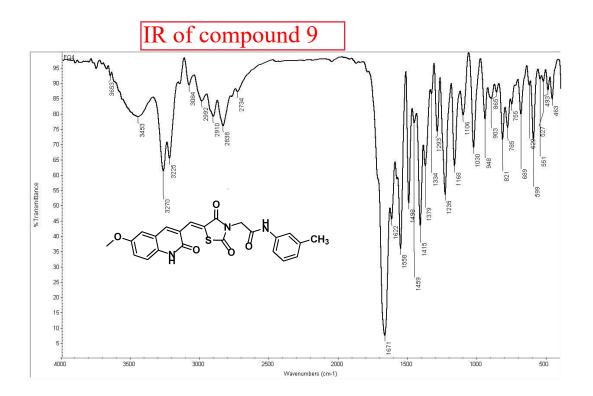


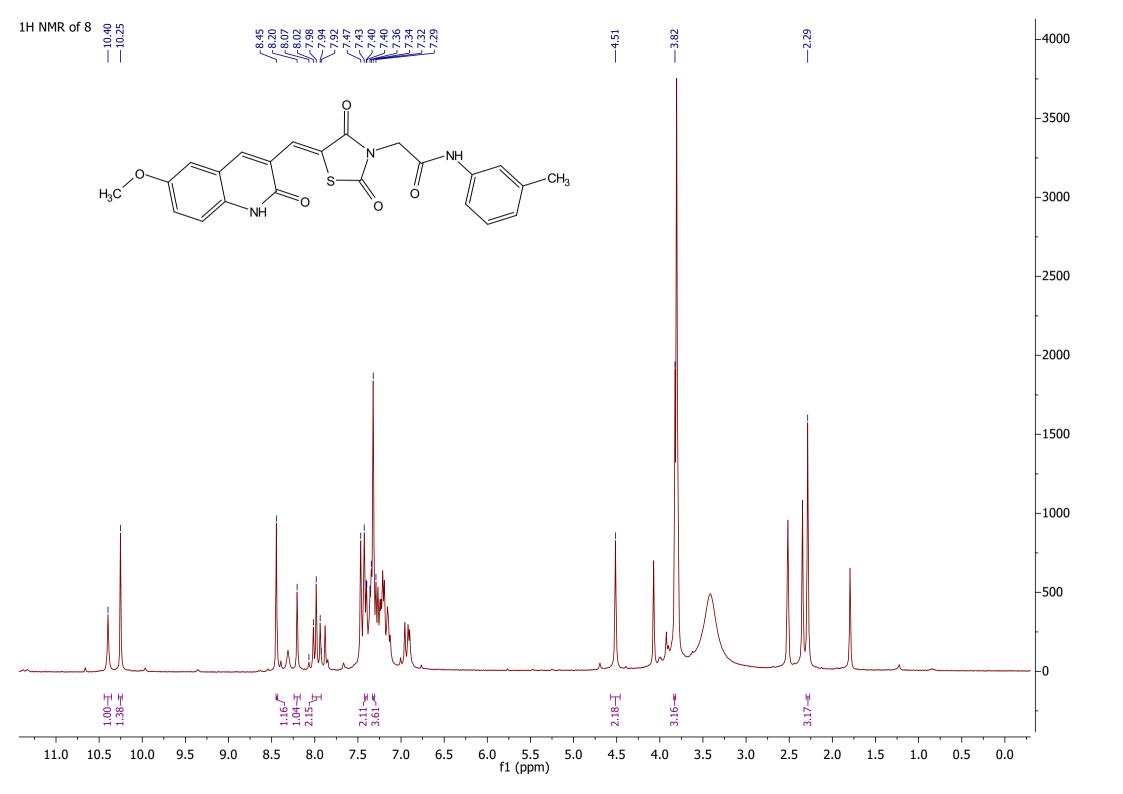


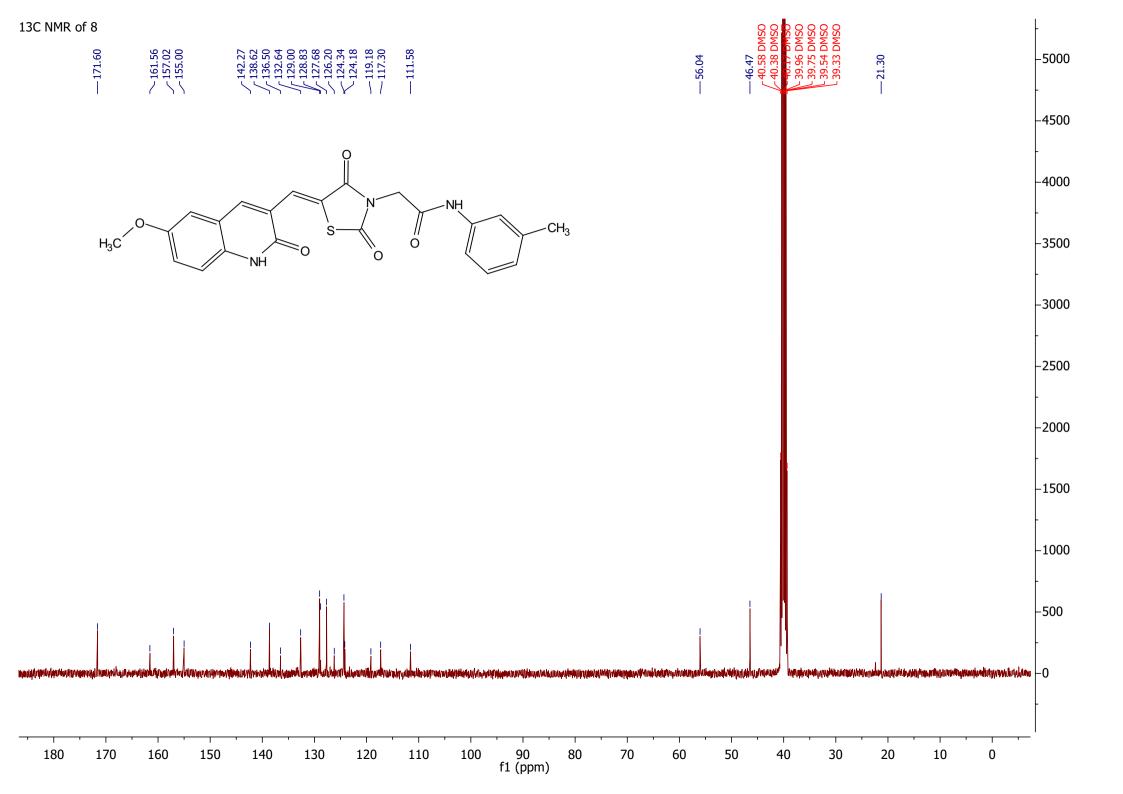


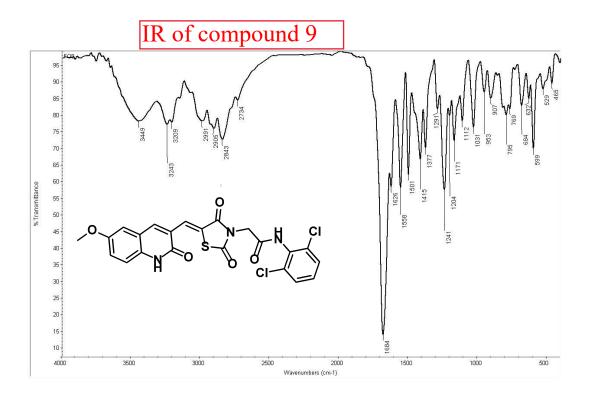












6- Molecular docking of compound 9, 12, 13, and 14

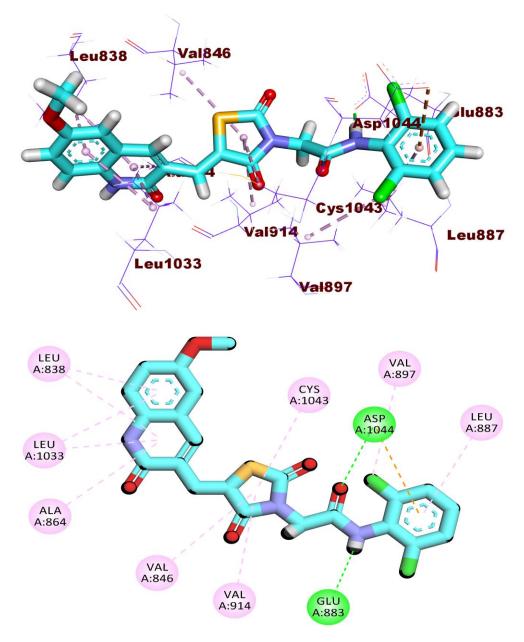


Fig. 1: Binding mode of compound 9 into VEGFR-2 active site

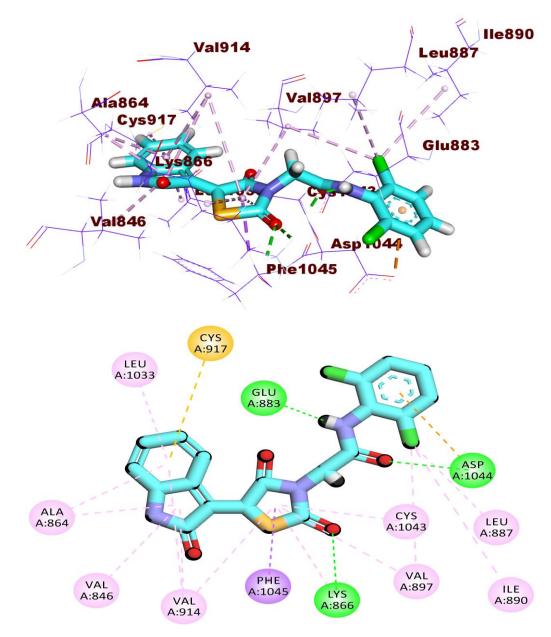
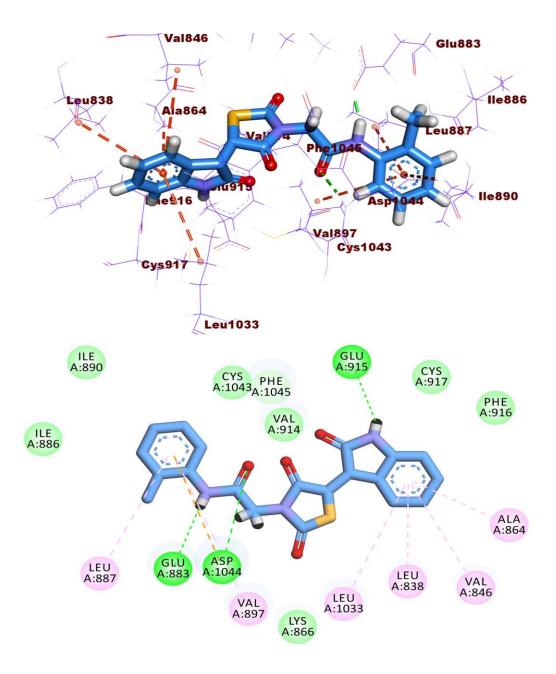



Fig. 2: Binding mode of compound 12 into VEGFR-2 active site

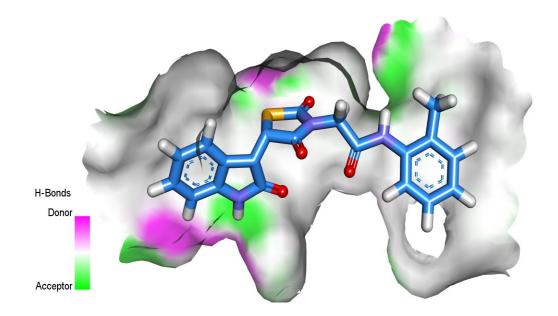
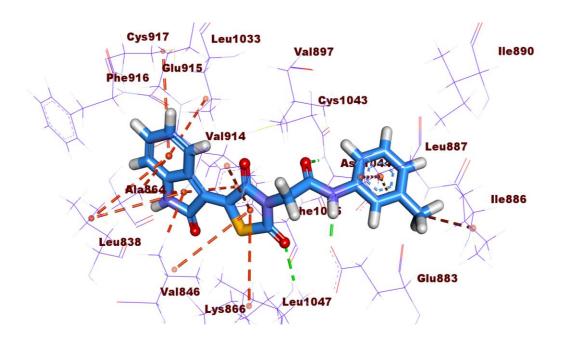



Fig. 3: Binding mode of compound 13 into VEGFR-2 active site

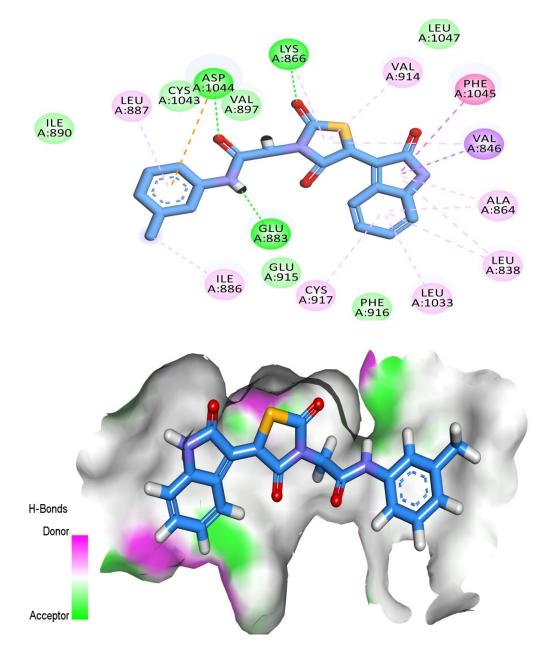
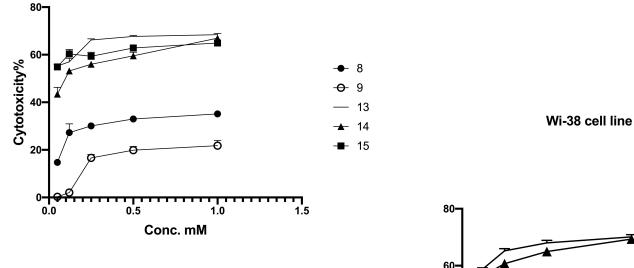
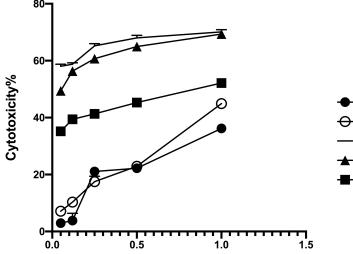
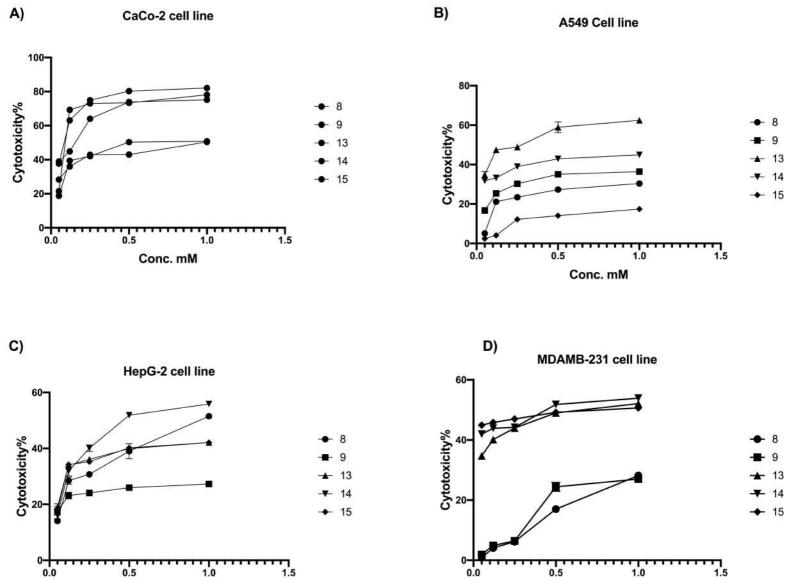
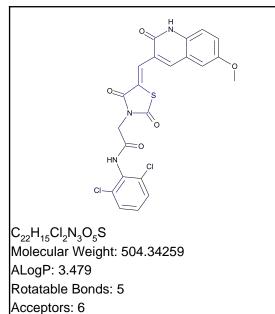




Fig. 4: Binding mode of compound 14 into VEGFR-2 active site


RAW DATA OF CYTOTOXICITY

vero cell line



Conc. mM

Conc. mM

Conc. mM


```
Donors: 2
```

Model Prediction

Prediction: Non-Mutagen

Probability: 0.524

Enrichment: 0.939

Bayesian Score: -6.95

Mahalanobis Distance: 12.3

Mahalanobis Distance p-value: 0.000231

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

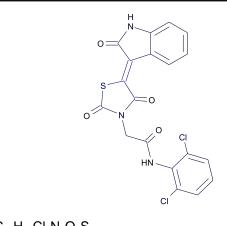
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	80266-02-0	55256-55-8	Ochratoxin A
Structure		AND Exentioner HO	OH OH HOW OF OF OF
Actual Endpoint	Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Mutagen	Mutagen	Non-Mutagen
Distance	0.633	0.633	0.639
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	EMIC

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

SCFP_12	-577289847	(OC):[cH]:[c]:1C=[*]	0.399	9 out of 10
SCFP_12	55818998	[*]N[c]1:[c](1):[cH]:[cH]:[c]:1Cl	0.241	1 out of 1
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-316886873	CI CI (']/C=C/1/S['][']C1=[']	-0.998	0 out of 3
SCFP_12	-1630519606	(*]=C1[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	1062412764	(*][cH]:[c]:1Cl	-0.675	3 out of 12

C₁₉H₁₁Cl₂N₃O₄S Molecular Weight: 448.27933 ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Mutagen

Probability: 0.533

Enrichment: 0.955

Bayesian Score: -6.74

Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 0.0049

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

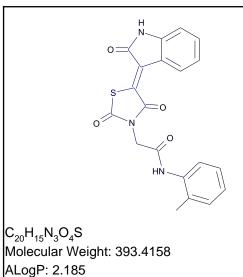
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	98644-23-6	TETRABROMOPHTHALIC ACID	Chlorendic acid
Structure	HO PO Na	Br Br Br HO OH	
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Predicted Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Distance	0.614	0.616	0.619
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	EMIC	Environ. Mol. Mut. 16(Suppl 18):1-14;1990


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set			
SCFP_12	1562412908	[*]N[c]1:[c]([^t]):[*] :[cH]:[cH]:[c]:1Cl	0.442	5 out of 5			

SCFP_12	55818998	[*]N[c]1:[c]([*]):[cH]]:[cH]:[c]1:[c]:1Cl	0.241	1 out of 1
SCFP_12	-1379591900	[*][c]1:[r]:[cH]:[cH]:1	0.108	1480 out of 2326
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-316886873	(')/C=C/1/S['][']C1=[']	-0.998	0 out of 3
SCFP_12	-1630519606	[*]=C1[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	1062412764	[*][c]1:[c](Cl):[cH]: [cH]:[cH]:[c]:1Cl	-0.675	3 out of 12

Rotatable Bonds: 3

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Non-Mutagen

Probability: 0.582

Enrichment: 1.04

Bayesian Score: -5.51

Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.0249

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

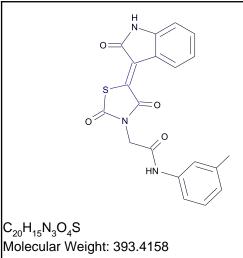
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	97919-22-7	PENICILLIN G POTASSIUM	135086-96-3	
Structure	CI N N H N H ₂	O NH O NH O NH O NH O NH	HN N N H	
Actual Endpoint	Non-Mutagen	Non-Mutagen	Mutagen	
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Mutagen	
Distance	0.568	0.590	0.591	
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	EMIC	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Featur	Feature Contribution						
	Top features for positive contribution						
Fingerpr	int	Bit/Smiles	Feature Structure	Score	Mutagen in training set		
SCFP_12	2	136686699		0.129	446 out of 686		
			[*]:[c](:[*])C				

SCFP_12	-1379591900	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	0.108	1480 out of 2326
SCFP_12	548903629	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:[c]:1 C	0.1	2 out of 3
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-316886873	('']\C=C\1/S['][']C1=['']	-0.998	0 out of 3
SCFP_12	-1630519606	[*]=C1[*][(*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	399659969	(']CN1C(=['])('][']C1 =[']	-0.55	21 out of 65

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Mutagen

Probability: 0.591

Enrichment: 1.06

Bayesian Score: -5.28

Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.0249

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

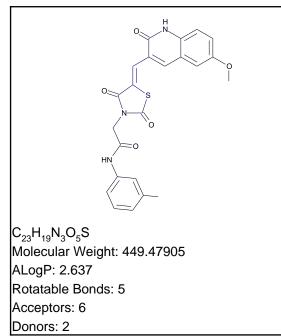
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds	
------------------------------	--

	•		
Name	97919-22-7	135086-96-3	1;4- DIACETYLAMINOANTHRA QUINONE
Structure	NH NH ₂	HN H	
Actual Endpoint	Non-Mutagen	Mutagen	Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Mutagen
Distance	0.568	0.588	0.594
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	EMIC


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-347281112	[*]N[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	0.337	18 out of 22
			•	

SCFP_12	-236487363	(*)CC(=O)N[c]1:[cH]; cH];[cH];[c](C);[cH] :1	0.26	4 out of 5
SCFP_12	136686699	[*]:[c](:[*])C	0.129	446 out of 686
	Top Feat	tures for negative of	contribution	L
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]=C1[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-316886873	[']\C=C\1/S['][']C1=[']	-0.998	0 out of 3
SCFP_12	2052999617	[*][c]1:[cH]:[cH]:[cH]:1	-0.743	6 out of 24

Model Prediction

Prediction: Non-Mutagen

Probability: 0.582

Enrichment: 1.04

Bayesian Score: -5.53

Mahalanobis Distance: 11.8

Mahalanobis Distance p-value: 0.00163

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

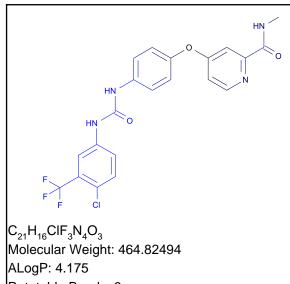
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ames_Mutagenicity

Name	55256-55-8	Delavirdine	Ochratoxin A
Structure	AND Envirioner HO HO HO HO HO HO HO HO HO HO HO HO HO		OH OH HOW OH OF THE
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Predicted Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Distance	0.594	0.595	0.605
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Contrera, J.F., Matthews, E.J., Kruhlak, N.L., and Benz, R.D., Regulatory Toxicology and Pharmacology 2005, 313- 323.	EMIC

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	-577289847	(OC):[cH]:[c]:1C=[*]	0.399	9 out of 10	

SCFP_12	-347281112	[*]N[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	0.337	18 out of 22
SCFP_12	-236487363	["]CC(=O)N[c]1:[cH]:[cH]:[cH]:[c](C):[cH] ;1	0.26	4 out of 5
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	(*]=C1[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-316886873	('')C=C\1/S['']['C1=['']	-0.998	0 out of 3
SCFP_12	2052999617	[*][c]1:[cH]:[cH]:[cH]:1]:[c](C):[cH]:1	-0.743	6 out of 24

Sorafenib

Rotatable Bonds: 6 Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Mutagen

Probability: 0.0531

Enrichment: 0.0951

Bayesian Score: -19.7

Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 2.73e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

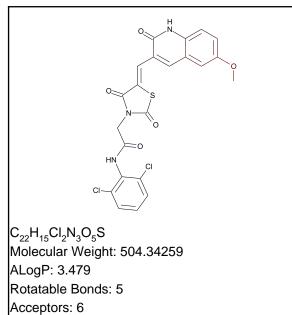
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ames_Mutagenicity

Name	GLYBURIDE	38914-96-4	93957-54-1
Structure	HIN CO		AND Environmer
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.590	0.592	0.600
Reference	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	US Environmental Protection Agency at http://www.epa.gov/NCCT. dsstox/sdf_isscan_externa I.html


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	-347281112		0.337	18 out of 22	

SCFP_12	1208843554	[*]N[c]f:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	0.337	6 out of 7
SCFP_12	-1943080297	[*]Nig17_CcH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	0.304	5 out of 6
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	816802409	$["]{}^{(1)} C(=0) N[c]1:[cH]:[c](T]):[cH]:[cH]:[c](T]):[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]$	-1.82	0 out of 9
SCFP_12	-1903175541	[*][c](:[*]):[c](:[cH]:[*])C(F)(F)F	-1.51	3 out of 30
SCFP_12	-300280774	[*]:[c](:[*])C(F)(F)F	-1.51	3 out of 30

Donors: 2

Model Prediction

Prediction: Toxic

Probability: 0.644

Enrichment: 1.22

Bayesian Score: 2.47

Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 2.71e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

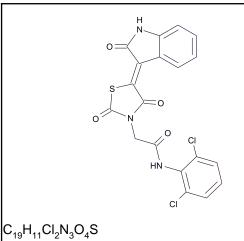
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Amsacrine	Ochratoxin a	Acemetacin
Structure	N N N H N H	HONNH HONNH HONNH CI	
Actual Endpoint	Toxic	Toxic	Non-Toxic
Predicted Endpoint	Toxic	Toxic	Non-Toxic
Distance	0.620	0.627	0.651
Reference	Fundam Appl Toxicol 7(2):214-20; 1986	Toxicol Appl Pharmacol 37(2):331-8; 1976	Oyo Yakuri 22(6):777-786; 1981


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	1237755852	(*)C:[CH]:1	0.453	8 out of 9
		.[0](00),[01], 1		

SCFP_6	-1971137145	[*]C(=C[c](:[*]))[*])	0.431	7 out of 8
SCFP_6	591469355	(*):[cH]:[c](OC):[cH] :["]	0.411	10 out of 12
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	(']CN1C(=[''])['][']C1 =[']	-0.526	3 out of 11
SCFP_6	1420330831	(*):[cH]:[cH]:[c]:2N	-0.422	0 out of 1
SCFP_6	2097618059	("]CC(=0)N[c](:[c]((*)):[']):[c](['):[']	-0.422	0 out of 1

Molecular Weight: 448.27933 ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Toxic

Probability: 0.503

Enrichment: 0.956

Bayesian Score: -1.22

Mahalanobis Distance: 8.41

Mahalanobis Distance p-value: 0.407

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

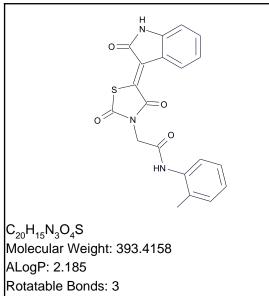
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	D&C Yellow 8	Ochratoxin a	Amsacrine	
Structure	OH O O O O O O O O O O O O O O O O O O	HONE AND	N. H	
Actual Endpoint	Non-Toxic	Toxic	Toxic	
Predicted Endpoint	Non-Toxic	Toxic	Toxic	
Distance	0.626	0.643	0.648	
Reference	Food Chem Toxicol 24:819-823; 1986	Toxicol Appl Pharmacol 37(2):331-8; 1976	Fundam Appl Toxicol 7(2):214-20; 1986	


TOPKAT Developmental Toxicity Potential

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

SCFP_6	-587539325	[*]N([*])CC(=[*])[*]	0.271	1 out of 1
SCFP_6	199205675	[*]N1[*][*]SC1=O	0.271	1 out of 1
	Top Fea	tures for negative of	contribution	۱
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	(*]CN1C(=[*])[*][*]C1 =[*]	-0.526	3 out of 11
SCFP_6	2097618059	(*)CC(=O)N[c](:[c](1*);['])	-0.422	0 out of 1
SCFP_6	1420330831	(*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N	-0.422	0 out of 1

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Non-Toxic

Probability: 0.49

Enrichment: 0.931

Bayesian Score: -1.58

Mahalanobis Distance: 9.59

Mahalanobis Distance p-value: 0.0562

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

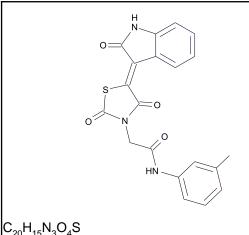
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	Sulfonylurea Gliclazide	D&C Yellow 8	Piroxicam
Structure		OH O O O O O O O O O O O O O O O O O O	OH HNH
Actual Endpoint	Toxic	Non-Toxic	Toxic
Predicted Endpoint	Toxic	Non-Toxic	Toxic
Distance	0.579	0.602	0.623
Reference	Yakuri to Chiryo 9:3551- 3571; 1981	Food Chem Toxicol 24:819-823; 1986	Yakuri to Chiryo 8:4655- 4671; 1980

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

SCFP_6	-587539325	[*]N([*])CC(=[*])[*]	0.271	1 out of 1
SCFP_6	2102703671	[]N([])CO([])[]	0.271	1 out of 1
	Top Fea	tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	(']CN1C(=['])('][']C1 =[']	-0.526	3 out of 11
SCFP_6	2097618059	(*]CC(=O)N[c](:[c]((*)):(*)).c[((T)):(*]	-0.422	0 out of 1
SCFP_6	1420330831	["]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N 1	-0.422	0 out of 1

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Toxic

Probability: 0.517

Enrichment: 0.982

Bayesian Score: -0.832

Mahalanobis Distance: 8.48

Mahalanobis Distance p-value: 0.375

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

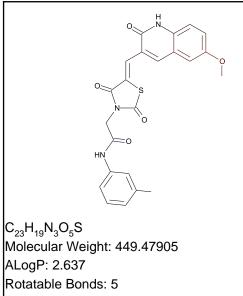
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Sulfonylurea Gliclazide	D&C Yellow 8	Piroxicam
Structure		OH O O O O O O O O O O O O O O O O O O	OH HN N N
Actual Endpoint	Toxic	Non-Toxic	Toxic
Predicted Endpoint	Toxic	Non-Toxic	Toxic
Distance	0.575	0.603	0.624
Reference	Yakuri to Chiryo 9:3551- 3571; 1981	Food Chem Toxicol 24:819-823; 1986	Yakuri to Chiryo 8:4655- 4671; 1980


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 4.1216. Training min, max, SD, explained variance: -3.5766, 3.955, 1.214, 0.0216.

Feature Co	Feature Contribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set		
SCFP_6	-347281112	[*]N[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	0.381	2 out of 2		
]:[c](C):[cH]:1				

SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.271	1 out of 1
SCFP_6	795669118	[*]N[c]1:[cH]:[c H]:[c](C):[cH]:1	0.271	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	(']CN1C(=['])('][']C1 =[']	-0.526	3 out of 11
SCFP_6	1420330831	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N 1	-0.422	0 out of 1
SCFP_6	2097618059	(']CC(=O)N[o](:[o](*));[']):[o]([']):[']	-0.422	0 out of 1

Acceptors: 6

Donors: 2

Model Prediction

Prediction: Toxic

Probability: 0.632

Enrichment: 1.2

Bayesian Score: 2.17

Mahalanobis Distance: 12.9

Mahalanobis Distance p-value: 5.95e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

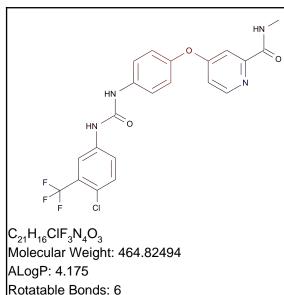
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Ochratoxin a	Amsacrine	Prazosin .HCI (Free base form)
Structure	HO NT CI		N N H ₂ N ⁴ N H ₂ N ⁴
Actual Endpoint	Toxic	Toxic	Toxic
Predicted Endpoint	Toxic	Toxic	Toxic
Distance	0.601	0.614	0.643
Reference	Toxicol Appl Pharmacol 37(2):331-8; 1976	Fundam Appl Toxicol 7(2):214-20; 1986	Oyo Yakuri 17:57-62; 1979

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	ntribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	1237755852	[*][c]1:[*]:[cH]:[cH] :[c](OC):[cH]:1	0.453	8 out of 9	

SCFP_6	-1971137145	[*]C(=C[c](:[*]))	0.431	7 out of 8
SCFP_6	591469355	[*]:[cH]:[c](OC):[cH] :[*]	0.411	10 out of 12
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	(']CN1C(=['])('][']C1 =[']	-0.526	3 out of 11
SCFP_6	2097618059	(")CC(=0)N[c](:[c]([*)):[*]):[c]((1*)];[*]	-0.422	0 out of 1
SCFP_6	1420330831	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N 1	-0.422	0 out of 1

Sorafenib

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Toxic

Probability: 0.592

Enrichment: 1.13

Bayesian Score: 1.15

Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 2.07e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

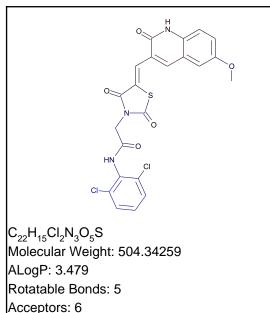
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	Chenodiol	Amsacrine	Ochratoxin a
Structure	OH THOH THOH	NI H	OH WNH HO WA HI HO WA HI HO WA HI OH OH HO WA
Actual Endpoint	Toxic	Toxic	Toxic
Predicted Endpoint	Toxic	Toxic	Toxic
Distance	0.631	0.637	0.644
Reference	Arch Int Pharm 246:149- 158; 1980	Fundam Appl Toxicol 7(2):214-20; 1986	Toxicol Appl Pharmacol 37(2):331-8; 1976

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

SCFP_6	-488587948	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	0.381	2 out of 2
SCFP_6	-347281112	[*]N[c]1:[cH]:[*]:[cH]:1	0.381	2 out of 2
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1794974220	$F_{F \in Cl}^{N \to 0}$	-0.55	2 out of 8
SCFP_6	-937094999	FF CI [*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	-0.358	3 out of 9
SCFP_6	-496201075	[*]:[cH]:[cH]:n:[*]	-0.289	8 out of 21


```
Donors: 2
```

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.211

Enrichment: 0.658

Bayesian Score: -8.43

Mahalanobis Distance: 13.4

Mahalanobis Distance p-value: 0.000146

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

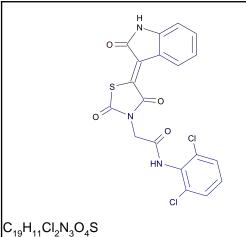
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Bicalutamide	Fluticasone	Moricizine
Structure	F HO HO HN AN HN AN HN AN HN AN HN HN AN HN HN HN HN HN HN HN HN HN HN HN HN HN	HO the free days of the	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.633	0.656	0.666
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC29 out of range. Value: -2.9535. Training min, max, SD, explained variance: -2.8294, 4.0152, 1.011, 0.0104.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	

ECFP_6	464808839	CI [*]C(=C[c](:[*]):[*]) [*]	0.524	8 out of 14
ECFP_6	-1925046727	CI [*]C=[*]	0.391	11 out of 23
ECFP_6	-1699286547	(*)C(=[*])N[c](:[*]):	0.297	12 out of 28
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	(*)CN1C(=[1])[*][*]C1 =[1]	-1.55	0 out of 12
ECFP_6	1641317964	[*][c]1:[*]:[cH]:[cH]	-0.789	1 out of 11

ECFP_6	1335691903		-0.669	3 out of 22
		[*][c](:[*]):[c](Cl): [cH]:[*]		

Molecular Weight: 448.27933 ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.214

Enrichment: 0.667

Bayesian Score: -8.92

Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.188

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

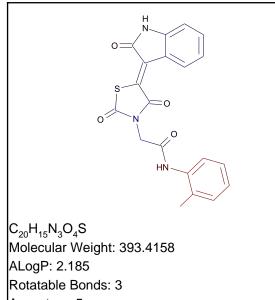
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Indapamide	Metolazone	Bicalutamide	
Structure	HN H ₂ N O HN CI		F C C C C C C C C C C C C C C C C C C C	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.616	0.620	0.654	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	-1699286547	[*]C(=[*])N[c](:[*]): [*]	0.297	12 out of 28	

ECFP_6	1298725959	[*]NC(=0)C(=[*])[*]	0.279	4 out of 9
ECFP_6	2106656448	(*)C(=O)[*]	0.254	31 out of 77
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	("]CN1C(=["))(")["]C1 =["]	-1.55	0 out of 12
ECFP_6	1641317964	[*][c]1:[*]:[cH]:[c]:1Cl	-0.789	1 out of 11
ECFP_6	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.669	3 out of 22

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.223

Enrichment: 0.694

Bayesian Score: -2.72

Mahalanobis Distance: 10.3

Mahalanobis Distance p-value: 0.308

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

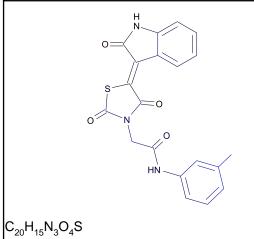
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Metolazone	Indapamide	Acetohexamide	
Structure		HN H ₂ N O O CI		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.551	0.568	0.618	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	-907895376	[*][c]1:[cH]:[cH]:[cH]]:[cH]:[c]1C	0.451	3 out of 5	
	I	I		I	

ECFP_6	-52177950	[*]N[c]1:[cH]:[c H]:[cH]:[c]1C	0.424	1 out of 1
ECFP_6	1360781590	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[c]1:[c]:1 C	0.424	1 out of 1
	Top Fea	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	(']CN1C(=['])('][']C1 =[']	-1.55	0 out of 12
ECFP_6	1731843802	[*]CC(=O)N[*]	-0.657	0 out of 3
ECFP_6	912478223	[*]S[*]	-0.638	1 out of 9

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.215

Enrichment: 0.672

Bayesian Score: -9.11

Mahalanobis Distance: 11

Mahalanobis Distance p-value: 0.108

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

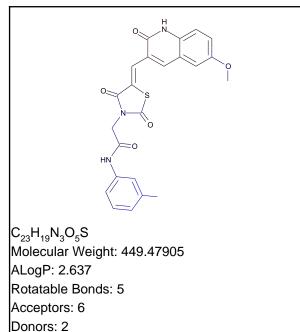
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Metolazone	Indapamide	Acetohexamide
Structure		HN 22 H2N O HN CI	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.562	0.564	0.619
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Carcinogen in training set
12 out of 28

ECFP_6	1298725959	[*]NC(=O)C(=[*])[*]	0.279	4 out of 9
ECFP_6	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.279	4 out of 9
		atures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	(']CN1C(=['])('][']C1 =[']	-1.55	0 out of 12
ECFP_6	-179515162	[*]:[cH]:[c](C):[cH]: [*]	-1.41	0 out of 10
ECFP_6	1731843802	[*]CC(=O)N[*]	-0.657	0 out of 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.21

Enrichment: 0.656

Bayesian Score: -8.36

Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 0.000213

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

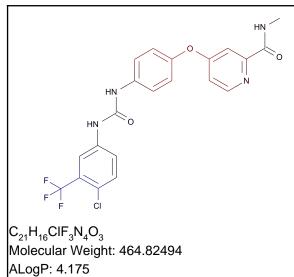
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Bicalutamide	Moricizine	Glipizide
Structure	HN and Control of the second s		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.568	0.628	0.666
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
ECFP_6	464808839	[*]C(=C[c](:[*]):[*]) [*]	0.524	8 out of 14		

ECFP_6	-1925046727		0.391	11 out of 23
ECFP_6	-1699286547	[*]C(=[*])N[c](:[*]):	0.297	12 out of 28
	Top Fea	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313		-1.55	0 out of 12
ECFP_6	-179515162	[*]:[cH]:[c](C):[cH]: [*]	-1.41	0 out of 10
ECFP_6	-317125107	[*][c]1:[[*]]:[cH]:[cH] :[c](C):[cH]:1	-0.657	0 out of 3

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.257

Enrichment: 0.801

Bayesian Score: -0.321

Mahalanobis Distance: 14.9

Mahalanobis Distance p-value: 4.21e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

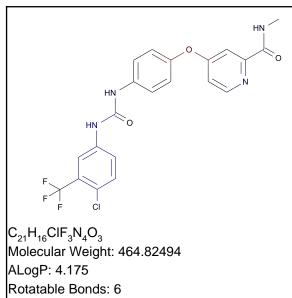
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Glimepride	mepride Glyburide	
Structure	The second secon	HIN CO	
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.605	0.615	0.625
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC20 out of range. Value: -3.3309. Training min, max, SD, explained variance: -3.1862, 4.4571, 1.28, 0.0167.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	738938915	FF CI [*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2

ECFP_6	1338334141	F_{F-CI}^{N}	0.442	2 out of 3
ECFP_6	1305253718	N N N N N N N N N N N N N N	0.424	1 out of 1
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.669	3 out of 22
ECFP_6	-1952889961	[*]:[c](:[*])C(F)(F)F	-0.657	0 out of 3
ECFP_6	1336678434		-0.657	0 out of 3

Sorafenib

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.283

Enrichment: 0.691

Bayesian Score: -3.89

Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00221

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

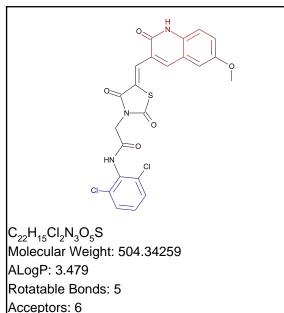
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_Single_vs_Multiple

Structural Similar Compounds

Structural Similar Compounds Name Glimepride Labetalol Lansoprazole					
	Gimepride				
Structure	NH	HN HNH 2			
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.599	0.808	0.820		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1336678434: [*][c](:[*]):[c](C([*])([*])[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1952889961: [*]:[c](:[*])C(F)(F)F

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	-834094296	[¹]:[dH]?[c](O[c](:[c H]:[⁴]):[cH]:[⁴]):[c H]:[⁴]	0.351	1 out of 1

ECFP_4	1407472008	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	0.351	1 out of 1
ECFP_4	143734695	[*][0]14*]:[cH]:[cH] :[c](0[c](:[*]):[*]) :[cH]:1	0.351	1 out of 1
		tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	-0.8	0 out of 3
ECFP_4	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.8	0 out of 3
ECFP_4	1338334141	$F_{F \in Cl}$	-0.597	0 out of 2

Model Prediction

Prediction: Carcinogen

Probability: 0.312

Donors: 2

Enrichment: 1.06

Bayesian Score: 0.208

Mahalanobis Distance: 15.5

Mahalanobis Distance p-value: 8.9e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Bicalutamide	Fluticasone	Moricizine
Structure	HO H		
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.599	0.652	0.657
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	-1757681964	(VC):[cH]:[c]:1C=[*]	0.676	2 out of 2		

FCFP_6	1175665944	[*]C1=[*][C]:[cH]:[*]	0.655	7 out of 12
FCFP_6	451847724	CI C	0.479	21 out of 48
		ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1161767339	[*][c]1:[c](Cl):[cH]: [cH]:[cH]:[c]:1Cl	-0.719	0 out of 4
FCFP_6	1783756416	[*]N[c]1:[c]([*]):[*] :[cH]:[cH]:[c]:1Cl	-0.719	0 out of 4
FCFP_6	-1553874037	CI CI CI CI CI CI CI CI CI CI CI CI CI C	-0.45	5 out of 32

ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.286

Enrichment: 0.972

Bayesian Score: -0.754

Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.0239

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

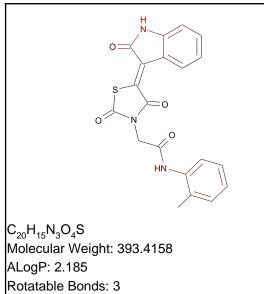
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_None_vs_Carcinogen

Structural Similar Compounds


Name	Indapamide	Metolazone	Bicalutamide
Structure	HN H ₂ N O HN CI		F OB OB HO art OF HN art OF F F F F F F N
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.596	0.599	0.601
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	1175665944	[*]C1=[*][C](:[*]):[c]](NC1=O):[cH]:[*]	0.655	7 out of 12	

FCFP_6	-1947166985	(']N(('))CC(=O)N[c](: [']):[']	0.46	1 out of 1
FCFP_6	2036120522	(')CN1C(=0)SC(=['))C1 =[']	0.46	1 out of 1
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1783756416	[*]N[c]1:[c]([*]):[*] :[cH]:[cH]:[c]:1Cl	-0.719	0 out of 4
FCFP_6	1161767339	[*][c]1:[c](CI):[cH]: [cH]:[cH]:[c]:1CI	-0.719	0 out of 4
FCFP_6	-1553874037	("]CN1C(=['])['][']C1 =[']	-0.45	5 out of 32

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.442

Enrichment: 1.5

Bayesian Score: 4.16

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.219

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

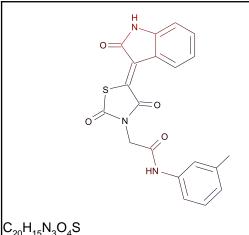
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Similar Compounds					
Name	Metolazone	Indapamide	Acetohexamide		
Structure		HN H ₂ N O HN CI	HN CO HN CO CO CO CO CO CO CO CO CO CO CO CO CO C		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.547	0.559	0.606		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.655	7 out of 12

FCFP_6	1396506317	[*]N[c]1:[cH]:[cH]:[c H]:[cH]:[c]:1C	0.517	2 out of 3
FCFP_6	755520106	[*]N[c]1:[cH]:[c]:1C	0.517	2 out of 3
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1553874037	("]CN1C(=["])["]["]C1 =["]	-0.45	5 out of 32
FCFP_6	1764344789	("]C(=['])CN1C(=0)SC(=['])C1=0	-0.233	0 out of 1
FCFP_6	-1698724694	[*]=C1[*][cH]:[cH]:[c]1 :[cH]:[cH]:[cH]:[c]1	-0.22	15 out of 72

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.378

Enrichment: 1.28

Bayesian Score: 2.38

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.219

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

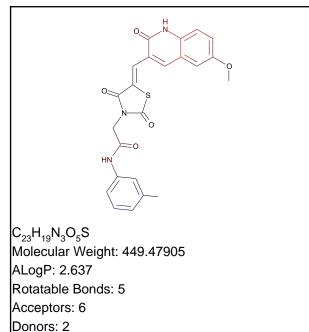
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	Metolazone	Indapamide	Acetohexamide
Structure		HN H ₂ N O HN CI	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.551	0.562	0.609
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	1175665944	[*]C1=[*][c](:[*]):[c](NC1=0):[cH]:[*]	0.655	7 out of 12	

FCFP_6	-1838187238	[*]C(=[*])N[c]1:[CH]: [cH]:[*]:[C]([*]):[c H]:1	0.565	4 out of 7
FCFP_6	-453277354	["]CC(=O)N[c]1:[cH]:[cH]:[cH]:[c](C):[cH] ;1	0.517	2 out of 3
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1773728142	[*][c]1:[*]:[cH]:[cH] :[c](C):[cH]:1	-1.29	0 out of 10
FCFP_6	-1553874037	("]CN1C(=[")]("]["]C1 =["]	-0.45	5 out of 32
FCFP_6	630418361	[*][c]1:[cH]:[cH]:[cH]:[cH]:1]:[c](C):[cH]:1	-0.233	0 out of 1

Model Prediction

Prediction: Carcinogen

Probability: 0.393

Enrichment: 1.33

Bayesian Score: 2.81

Mahalanobis Distance: 13.9

Mahalanobis Distance p-value: 1.01e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

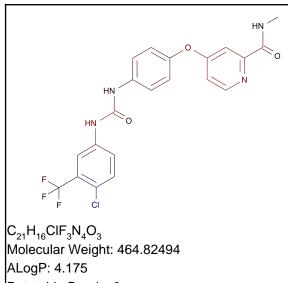
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_None_vs_Carcinogen

Structural Similar Compounds

Structural Simila	r compounds		
Name	Bicalutamide	Moricizine	Glipizide
Structure	HO HN THE F		
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.541	0.621	0.662
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	-1757681964	[*][c]1:[cH]:[c] (OC):[cH]:[c]:1C=[*]	0.676	2 out of 2		

FCFP_6	1175665944	[*]C1=[*][c]:[t]]	0.655	7 out of 12
FCFP_6	-1838187238	[*]C(=[*])H(c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	0.565	4 out of 7
		ures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1773728142	[*][c]1:[[*]]:[cH]:[cH] :[c](C):[cH]:1	-1.29	0 out of 10
FCFP_6	-1553874037	(']CN1C(=['])['][']C1 =[']	-0.45	5 out of 32
FCFP_6	136627117		-0.252	10 out of 50

Sorafenib

Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.444

Enrichment: 1.51

Bayesian Score: 4.21

Mahalanobis Distance: 20.3

Mahalanobis Distance p-value: 1.28e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

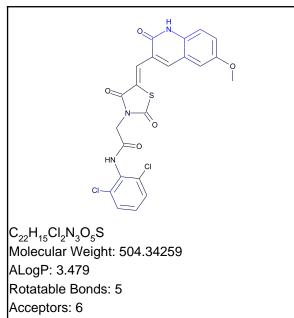
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Similar Compounds					
Name	Glyburide Glimepride		Fluvastatin		
Structure					
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.594	0.599	0.603		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	71953198	$ \begin{array}{c} $	0.612	12 out of 23	
		[*]C([*])([*])F			

FCFP_6	-1838187238	[*]C(=['])N[c]1:[cH]: [cH]:[*]:[c]((*]):[c H]:1	0.565	4 out of 7
FCFP_6	735850272	[*]O[c]1:[cH]:[*]:n:[cH]:[cH]:1	0.46	1 out of 1
		atures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	2104062943	[*]Č([*])([c]1:[c] H]:[*]:[cH]:[c] :1Cl	-1.01	1 out of 17
FCFP_6	551850122	[*][c]1:[cH]:[cH] :[cH]:[c]1CI	-0.433	8 out of 49
FCFP_6	71476542	[*]:[c](:[*])Cl	-0.406	10 out of 59

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.145

Donors: 2

Enrichment: 0.48

Bayesian Score: -14.1

Mahalanobis Distance: 15.7

Mahalanobis Distance p-value: 7.58e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

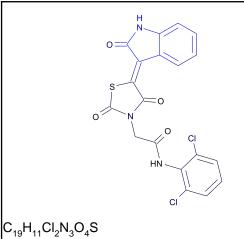
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Structural Similar Compounds					
Name	Bicalutamide	Glimepride	Flunisolide		
Structure	HO HO HN RA HN RA	A C C C C C C C C C C C C C C C C C C C	HO the second se		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.641	0.728	0.812		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 4.8042. Training min, max, SD, explained variance: -3.5268, 3.8048, 1.733, 0.0560.

Top features for positive contribution				
Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
451847724	CI CI CI CI CI CI CI CI CI CI CI CI CI C	0.3	10 out of 21	
	Bit/Smiles	Bit/Smiles Feature Structure 451847724	Bit/Smiles Feature Structure Score 451847724	

FCFP_12	436886043	CI CI [''])C=C(/C=[*])/C(=[*])[']	0.27	7 out of 15
FCFP_12	565998553	(*)N1[*][*]C(=[*])C1=	0.194	6 out of 14
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][C](:[*]):[c](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	(*]N[c](:[cH]:[*]):[c]]([*]):[*]	-0.998	1 out of 13

ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.125

Enrichment: 0.416

Bayesian Score: -16.3

Mahalanobis Distance: 13.2

Mahalanobis Distance p-value: 7.44e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

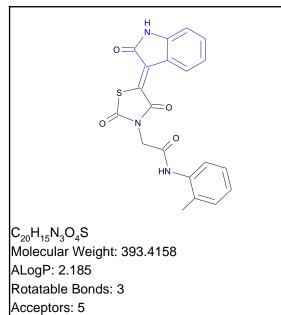
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds


Structural Simila	Compounds		
Name	Bicalutamide	Flunisolide	Phenolphthalein
Structure	F HO HO HN the HN the HN the N	HO and the formation of	HO
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen
Distance	0.647	0.730	0.752
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	565998553	(*]N1[*][*]C(=[*])C1= O	0.194	6 out of 14	
Top Features for negative contribution					

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][c]:[*]):[c](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	(*]N[c](:[cH]:[*]):[c]	-0.998	1 out of 13

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.136

Donors: 2

Enrichment: 0.453

Bayesian Score: -15

Mahalanobis Distance: 15.6

Mahalanobis Distance p-value: 7.9e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

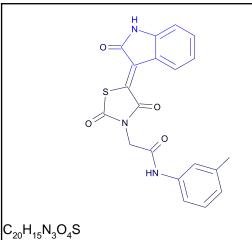
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Structural Similar Compounds					
Name	Bicalutamide	Sulfamethazine	Flunisolide		
Structure	HO art o the free of the free	HN PH N	HO the second se		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.681	0.689	0.710		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 3.6573. Training min, max, SD, explained variance: -3.4599, 2.3291, 1.246, 0.0290.

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	565998553	["]N1["]["]C(=["])C1= 0	0.194	6 out of 14	
Top Features for negative contribution					

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c]](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	(*]N[c](:[cH]:[*]):[c]([*]):[*]	-0.998	1 out of 13

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.132

Enrichment: 0.437

Bayesian Score: -15.6

Mahalanobis Distance: 15.6

Mahalanobis Distance p-value: 7.9e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Name	Bicalutamide	Sulfamethazine	Flunisolide
Structure	HO HO HO THE REAL OF THE REAL	HN M N N N N N N N N N N N N N N N N N N	HO and the formation of
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.671	0.691	0.710
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 3.6573. Training min, max, SD, explained variance: -3.4599, 2.3291, 1.246, 0.0290.

	Bit/Smiles	Feature Structure	Score	Multiple	
Fingerprint	Bit/Siniles	reature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	565998553	[*]N1[*][*]C(=[*])C1= 0	0.194	6 out of 14	
Top Features for negative contribution					

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c]](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c]]([*]):[*]	-0.998	1 out of 13

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.143

Enrichment: 0.476

Bayesian Score: -14.2

Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 6.15e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

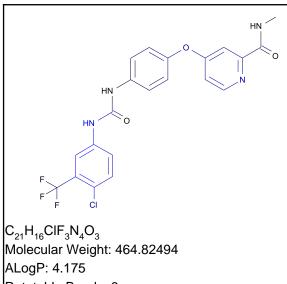
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Structural Similar Compounds						
Name	Bicalutamide	Flunisolide	Glimepride			
Structure	HO art o the free of the free	HO and the formation of	A C C C C C C C C C C C C C C C C C C C			
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen			
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen			
Distance	0.585	0.751	0.753			
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997			


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
FCFP_12	451847724	(']C(=CC(=['])('))(')	0.3	10 out of 21		

FCFP_12	436886043	['']\C=C(\C=[''])\C(=[''])\[']	0.27	7 out of 15		
FCFP_12	565998553	["]N1["]["C(=["])C1= O	0.194	6 out of 14		
Top Features for negative contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12		
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.22	0 out of 7		
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c]]([*]):[*]	-0.998	1 out of 13		

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.139

Enrichment: 0.461

Bayesian Score: -14.7

Mahalanobis Distance: 21.3

Mahalanobis Distance p-value: 4.93e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

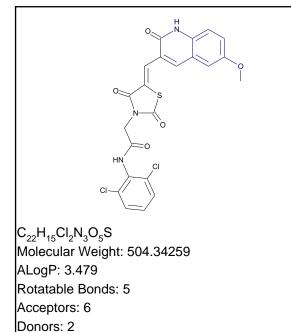
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Name	Glimepride	Bicalutamide	Lansoprazole	
Structure	NH	HN ANCOLANT		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Distance	0.626	0.700	0.866	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	Feature Contribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure Score	Multiple- Carcinogen in training set			
FCFP_12	1499521844	0.39	5 out of 9			
	·					

FCFP_12	-904785030	[*]:[cH]:[c](:n:[*])C (=O)NC	0.174	1 out of 2
FCFP_12	-1549103449	[*] NC(=0)[c](:[*]):[*]	0.168	3 out of 7
		ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	$[^{*}]^{C(=[^{*}])N[c](:[^{*}]):}$	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-0.998	1 out of 13
FCFP_12	-1462709112	N ^N O FF Ci [*]C(=[*])[c]1:[cH]:[*]:[cH]:[cH]:n:1	-0.994	0 out of 5

Model Prediction

Prediction: Mild

Probability: 0.722

Enrichment: 1.05

Bayesian Score: -3.1

Mahalanobis Distance: 12.1

Mahalanobis Distance p-value: 4.02e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

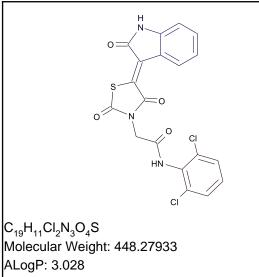
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Structural Similar Compounds

Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	
Structure	HNH 2 HN AL HN AL	HO she with the sh		
Actual Endpoint	Mild	Mild	Moderate_Severe	
Predicted Endpoint	Mild	Mild	Moderate_Severe	
Distance	0.742	0.790	0.790	
Reference	28ZPAK-;125;72	28ZPAK 239;72	28ZPAK-:92;72	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	346218766	(*][c](OC):[cH]:1	0.197	30 out of 37	

FCFP_10	1161767339	(*][c]1:[c](CI):[cH]: [cH]:[c]1:[c]:1CI	0.186	1 out of 1
FCFP_10	-545052888	[*]N[c]1:[c]([*]):[cH]:[cH]:[c]:1Cl	0.186	1 out of 1
		ures for negative of		1
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1977641857	(*):[cH]:[c](OC):[cH] :[*]	-0.78	4 out of 15
FCFP_10	-1757681964	([™]][c]1:[cH]:[c] (OC):[cH]:[c]:1C=[*]	-0.507	0 out of 1
FCFP_10	723745966	(*)O[c]1:[b]1:[cH]1:[c]2NC(=[*])[*]=C[c]1:2 :[cH]1:1	-0.507	0 out of 1

Rotatable Bonds: 3

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Mild

Probability: 0.787

Enrichment: 1.14

Bayesian Score: -1.46

Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.00136

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

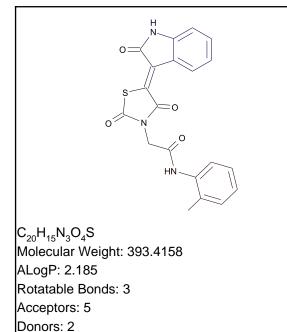
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Structural Similar Compounds				
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	DICARBOXYLIC ACID; 1;4;5;6;7;7- BENZOYLAMINO- ANTHRAQUINONE		
Structure		HN rts HNH 2	HO she who	
Actual Endpoint	Moderate_Severe	Mild	Mild	
Predicted Endpoint	Moderate_Severe	Mild	Mild	
Distance	0.651	0.656	0.668	
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK 239;72	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	1161767339	[*][c]1:[c](Cl):[cH]: [cH]:[cH]:[c]:1Cl	0.186	1 out of 1	

FCFP_10	-545052888	[*]N[c]1:[c]([*]):[cH]:[cH]:[c]:1Cl	0.186	1 out of 1
FCFP_10	3	O [−] NH S [−] O [−] Cl H [−] Cl Cl (*]N[*]	0.165	383 out of 491
		ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1011367537	(*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N 1	-0.329	4 out of 9
FCFP_10	-773983804	[*]N[c]1:[cH]:[cH]:[c]]([*]):[*]:[c]:1[*]	-0.294	50 out of 102
FCFP_10	-1698724694	[*]=C1[*][*][c]:[cH]:[c]1 :[cH]:[cH]:[cH]:[c]1	-0.284	53 out of 107

Model Prediction

Prediction: Mild

Probability: 0.791

Enrichment: 1.15

Bayesian Score: -1.32

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.0373

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

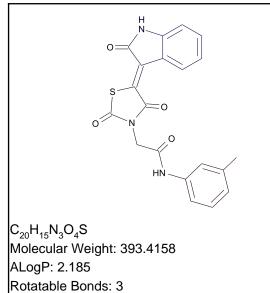
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	BENZOYLAMINO- DICARBOXYLIC ACID; AM	
Structure	HN HA	O HCI CI O CI O CI CI CI CI CI CI	HO IN HO IN H 2
Actual Endpoint	Mild	Moderate_Severe	Mild
Predicted Endpoint	Mild	Moderate_Severe	Mild
Distance	0.604	0.629	0.629
Reference	28ZPAK-;124;72	28ZPAK-;92;72	28ZPAK 239:72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	1396506317	[*]N[c]1:[cH]:[cH]:[c] H]:[cH]:[c]:1C	0.317	4 out of 4	

FCFP_10	755520106	[*]N[c]1:[cH]:[c]:1C	0.273	9 out of 10
FCFP_10	136120670	[*]:[c](:[*])C	0.206	53 out of 65
	Top Feat	tures for negative of	contribution	l
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1011367537	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N 1	-0.329	4 out of 9
FCFP_10	-773983804	[*]N[c]1:[cH]:[cH]:[c]([*]):[*]:[c]:1[*]	-0.294	50 out of 102
FCFP_10	-1698724694	[*]=C1[*][*][c]2:[cH] :[cH]:[cH]:[c]1 :2	-0.284	53 out of 107

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Mild

Probability: 0.787

Enrichment: 1.14

Bayesian Score: -1.48

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.0373

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

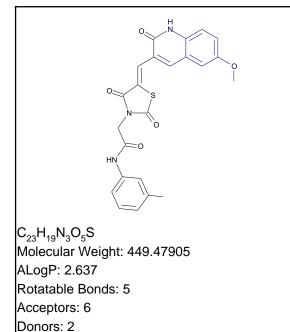
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	BENZOYLAMINO- DICARBOXYLIC ACID;	
Structure			HO state with NH 2
Actual Endpoint	Mild	Moderate_Severe	Mild
Predicted Endpoint	Mild	Moderate_Severe	Mild
Distance	0.606	0.630	0.631
Reference	28ZPAK-;124;72	28ZPAK-;92;72	28ZPAK 239;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	393262357	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:C:[cH]:1	0.294	3 out of 3	

FCFP_10	136120670	[*]:[c](:[*])C	0.206	53 out of 65
FCFP_10	2104181982	[*]N[c]1:[cH]:[c H]:[c](C):[cH]:1	0.186	1 out of 1
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-792685140	[*]C(=[*])N[c]1:[cH]: [cH]:[c]([*]):[cH]:1	-0.361	2 out of 5
FCFP_10	1011367537	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N 1	-0.329	4 out of 9
FCFP_10	-773983804	[*]N[c]1:[cH]:[cH]:[c]([*]):[*]:[c]:1[*]	-0.294	50 out of 102

Model Prediction

Prediction: Mild

Probability: 0.72

Enrichment: 1.04

Bayesian Score: -3.15

Mahalanobis Distance: 11

Mahalanobis Distance p-value: 0.00428

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

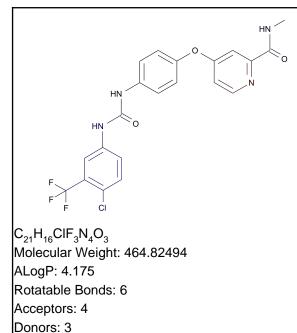
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Structural Similar Compounds 1-AMINO-4-Name ANTHRAQUINONE; 1-5-NORBORNENE-2;3-AMINO-4-HYDROXY-2-DICARBOXYLIC ACID; BENZOYLAMINO-1;4;5;6;7;7-PHENOXY-**ANTHRAQUINONE** HEXACHLORO-Structure OH OF Actual Endpoint Mild Moderate_Severe Mild Mild Predicted Endpoint Moderate_Severe Mild 0.713 0.734 Distance 0.727 28ZPAK 239;72 28ZPAK-:92:72 28ZPAK-;124;72 Reference

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	393262357	[*]C(=[*])*C[1:[cH]: [cH]:[cH]:C:[cH]:]:1	0.294	3 out of 3	

FCFP_10	136120670		0.206	53 out of 65
FCFP_10	346218766	[*][c](OC):[cH]:1	0.197	30 out of 37
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1977641857	(*):[cH]:[c](OC):[cH] :[*]	-0.78	4 out of 15
FCFP_10	723745966	[*]O[c]1:[c1]:[cH]:[c]2NC(=[*])[*]=C[c]:2 :[cH]:1	-0.507	0 out of 1
FCFP_10	-1757681964	(OC):[cH]:[c]:1C=[*]	-0.507	0 out of 1

Sorafenib

Model Prediction

Prediction: Mild

Probability: 0.776

Enrichment: 1.13

Bayesian Score: -1.8

Mahalanobis Distance: 8.95

Mahalanobis Distance p-value: 0.537

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

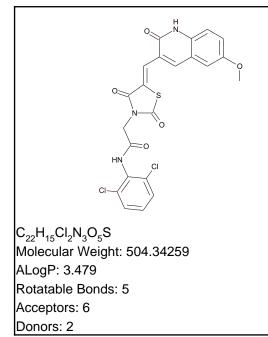
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Structural Similar Compounds

Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	METHANE;TRIS(4- AMINOPHENYL)-	
Structure	HN AND ON H 2		H ₂ NH ₂	
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Distance	0.799	0.816	0.827	
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;73;72	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-1695756380	PFF CI [*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	0.285	10 out of 11	

FCFP_10	-124655670	P _F C ₁ [*]:[cH]:[cH]:n:[*]	0.259	14 out of 16
FCFP_10	-885550502	[*]C(=[*])NC	0.239	54 out of 64
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	2104062943	[*]C([*])([*])[c]1:[c H]:[*]:[cH]:[cH]:[c] :1Cl	-0.745	7 out of 24
FCFP_10	-174293376	[*]N[c]f?[cH]:[cH]:[c](Cl):[c](:[cH]:1)C([*])([*])([*])[*]	-0.507	0 out of 1
FCFP_10	-1549103449	["]NC(=O)[c](:["]):["]	-0.504	2 out of 6

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 1.73

Mahalanobis Distance: 11.9

Mahalanobis Distance p-value: 0.000107

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

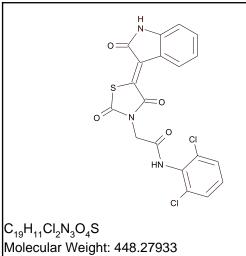
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_None_vs_Irritant

Structural Similar Compounds Name 4;4'-DIAMINO-1;1'-BENZANILIDE;2';2"'-5-NORBORNENE-2;3-**DITHIOBIS-**DIANTHRIMIDE DICARBOXYLIC ACID; 1;4;5;6;7;7-HEXACHLORO-Structure С OH Actual Endpoint Irritant Non-Irritant Irritant Predicted Endpoint Irritant Non-Irritant Irritant 0.741 0.774 Distance 0.771 28ZPAK-;125;72 28ZPAK-:173:72 28ZPAK-:92:72 Reference


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure		Irritant in training set	
FCFP_12	1175665944	(NC1=O):[cH]:[*]	0.198	14 out of 14	

FCFP_12	71476542		0.175	81 out of 84
FCFP_12	367998008	[*][c](:[*]):[c](CI): [cH]:[*]	0.172	75 out of 78
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1060187936	[*]N[c]1:[cH]:[cH]:[c]](OC):[cH]:[c]1:[r]	-0.344	2 out of 4
FCFP_12	-1757681964	(OC):[cH]:[c]:1C=[*]	-0.268	1 out of 2
FCFP_12	451371068	[*]C(=C[c](:[*]):[*])	-0.167	6 out of 9

Molecular Weight: 448.27933 ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 2.14

Mahalanobis Distance: 8.64

Mahalanobis Distance p-value: 0.699

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

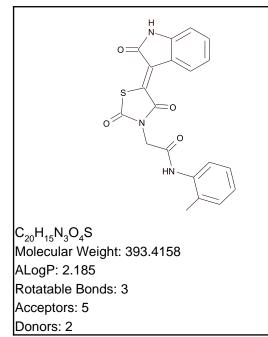
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_None_vs_Irritant

Structural Similar Compounds Name 5-NORBORNENE-2;3- 1-AMINO-4- ANTHRAQUINONE; 1-					
name	DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	BENZOYLAMINO- ANTHRAQUINONE	AMINO-4-HYDROXY-2- PHENOXY-		
Structure			HO the share of th		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Irritant	Irritant		
Distance	0.645	0.651	0.659		
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK 239;72		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure		Irritant in training set	
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14	

FCFP_12	71476542	[*]:[c](:[*])Cl	0.175	81 out of 84
FCFP_12	367998008	[*][c](:[*]):[c](CI): [cH]:[*]	0.172	75 out of 78
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	[*]=C1[*][*][cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	-0.0964	107 out of 146
FCFP_12	565998553	[*]N1[*][*]C(=[*])C1=	-0.0662	198 out of 262
FCFP_12	-1678275541	(*)C(=C1C(=[*])("])("]	-0.0561	3 out of 4

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 1.88

Mahalanobis Distance: 8.23

Mahalanobis Distance p-value: 0.865

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

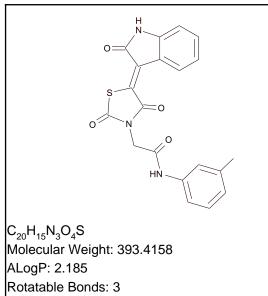
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_	Ocular_	Irritancy_	None_	_vs_	<u>Irritant</u>
---------	---------	------------	-------	------	-----------------

Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	Anthraquinone; 1-amino- 2-bromo-4-hydroxy-
Structure	HN nu HN nu O HP NH 2 O	HO state who	HO MARKEN Br
Actual Endpoint	Irritant	Irritant	Non-Irritant
Predicted Endpoint	Irritant	Irritant	Non-Irritant
Distance	0.601	0.618	0.627
Reference	28ZPAK-;124;72	28ZPAK 239;72	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 535;86


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14		

FCFP_12	755520106	(*]N[c]1:[cH]:[c]:1C	0.192	10 out of 10
FCFP_12	1396506317	[*]N[c]1:[cH]:[cH]:[c] H]:[cH]:[c]:1C	0.167	4 out of 4
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	[*]=C1[*][*][c]2:[cH] :[cH]:[cH]:[cH]:[c]1 :2	-0.0964	107 out of 146
FCFP_12	565998553	["]N1[*][t]C(=[1])C1= O	-0.0662	198 out of 262
FCFP_12	-1678275541	(']C(=C1C(=('))(')['] ;[c]1:['](']	-0.0561	3 out of 4

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 2.18

Mahalanobis Distance: 8.23

Mahalanobis Distance p-value: 0.865

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

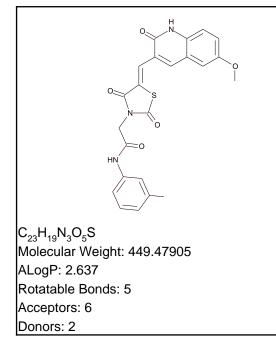
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_None_vs_Irritant

Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-
Structure	HN MA	HO the HO	
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.603	0.619	0.628
Reference	28ZPAK-;124;72	28ZPAK 239;72	28ZPAK-;92;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure		Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14

FCFP_12	2036120522	[']CN1C(=0)SC(=['])C1	0.167	4 out of 4
FCFP_12	436915834	[*]\C=C\1/S[*][']C1=[*]	0.167	4 out of 4
	Top Feat	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	[*]=C1[*][*][c]2:[cH] :[cH]:[cH]:[cH]:[c]1 :2	-0.0964	107 out of 146
FCFP_12	565998553	[*]N1[*][*]C(=[*])C1=	-0.0662	198 out of 262
FCFP_12	-1678275541	["]C(=C1C(=["])["]["] ;:[c]1:["])["]	-0.0561	3 out of 4

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 1.76

Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.000646

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

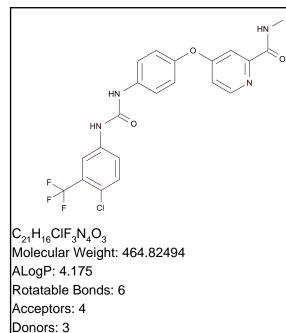
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_None_vs_Irritant

Name	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE
Structure	HO the philo	OHCI CI OHCI CI OHCI CI OH	HN MA
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.701	0.717	0.725
Reference	28ZPAK 239;72	28ZPAK-;92;72	28ZPAK-;124;72

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1175665944	[*]C1=[*][C](:[*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14	

FCFP_12	436915834	["]/C=C/1/S["]["]C1=["]	0.167	4 out of 4
FCFP_12	2036120522	[']CN1C(=0)SC(=['])C1 =[']	0.167	4 out of 4
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1060187936	[*]N[c]1:[cH]:[c]:1[*]	-0.344	2 out of 4
FCFP_12	-1757681964	[*][c]1:[cH]:[c] (OC):[cH]:[c]:1C=[*]	-0.268	1 out of 2
FCFP_12	451371068	[*]C(=C[c](:[*]))[*])	-0.167	6 out of 9

Sorafenib

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.04

Mahalanobis Distance: 6.28

Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

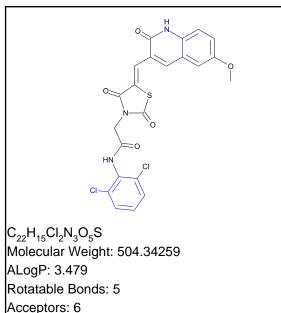
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_None_vs_Irritant

Structural Similar Compounds					
Name	BENZANILIDE;2';2'''- DITHIOBIS-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-		
Structure		HN rt 2 HN rt 1 HN rt			
Actual Endpoint	Non-Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Irritant	Irritant		
Distance	0.743	0.791	0.801		
Reference	28ZPAK-;173;72	28ZPAK-;125;72	28ZPAK-;92;72		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	[*][c](:[*]):n:[cH]:[*]	0.208	44 out of 44	

FCFP_12	-124655670	PFF CI [*]:[cH]:[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1539132615	F _F Cl [*]C(=[*])[c](:[cH]:[*]):n:[*]	0.197	13 out of 13
		ures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	702861189	[*]N[]]6H]:[cH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	-0.268	1 out of 2
FCFP_12	-747629521	["]N[6]f?[cH]:[cH]:[c](O[c](:["]):["]):[c H]:[cH]:1	-0.268	1 out of 2
FCFP_12	-215363676	[*][f#:[;[cH]:[cH] :[c](O[c]2:[cH]:[cH] :[']:[cH]:[cH]:2):[c H]:1	0	4 out of 5

Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.19

Enrichment: 0.589

Bayesian Score: -8.6

Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.00281

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

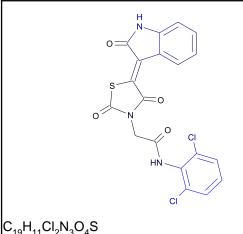
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Carbenicillin	Bicalutamide	Glimepride
Structure		HO THE CONTRACT OF THE CONTRACT.	NH of NH of NH of NH of NH
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.618	0.650	0.687
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC30 out of range. Value: 3.2851. Training min, max, SD, explained variance: -2.9582, 2.682, 0.9684, 0.0098.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	

ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
ECFP_12	574399351	CI [']CC(=0)N[c](:[c]((*]):[']):[c]((T)):[']	0.421	1 out of 1
ECFP_12	-1925046727	C K C = [*]	0.407	16 out of 33
	Top Fea	tures for negative	contributior	ו
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[CH]]:[*]):[c]]([*]):[*]	-1.25	0 out of 8
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26

ECFP_12	-1354065290	[*][c]1:[c]H]:[c]1:1C]	-0.941	0 out of 5
		[cH]:[cH]:[c]:1Cl		

ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.175

Enrichment: 0.545

Bayesian Score: -11.5

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.205

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

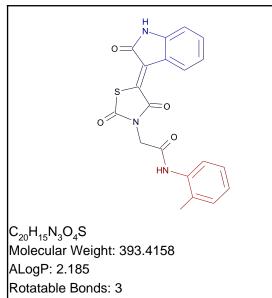
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Indapamide	Metolazone	Bicalutamide
Structure	HN H ₂ N O HN CI		HO H
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.634	0.643	0.664
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17	

ECFP_12	574399351	(*)CC(=0)N[e](:[c]([*]):(*)):[c]((*)]:(*)	0.421	1 out of 1
ECFP_12	2106656448	(*)C(=O)[*]	0.141	30 out of 83
	Top Feat	tures for negative of	contribution	า
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	-1354065290	[*][c]1:[c](Cl):[cH]: [cH]:[cH]:[c]:1Cl	-0.941	0 out of 5

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.261

Enrichment: 0.809

Bayesian Score: -2.1

Mahalanobis Distance: 7.91

Mahalanobis Distance p-value: 0.991

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

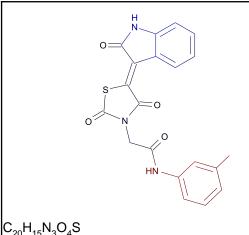
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Metolazone	Indapamide	Acetohexamide
Structure		HN H ₂ N O HN CI	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.575	0.583	0.629
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17	
		[*]			

ECFP_12	-52177950	[*]N[c]1:[cH]:[c]:1C	0.421	1 out of 1
ECFP_12	1360781590	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[c]:1 C	0.421	1 out of 1
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	-319922023	[*]=C1N[c]2:[cH]:[cH] :[*]:[cH]:[c]:2C1=[*]	-0.661	0 out of 3
ECFP_12	1640720160	[*]1[*][c]2:[*]:[cH]: [cH]:[cH]:[c]:2N1	-0.485	0 out of 2

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.248

Enrichment: 0.769

Bayesian Score: -2.95

Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 0.266

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

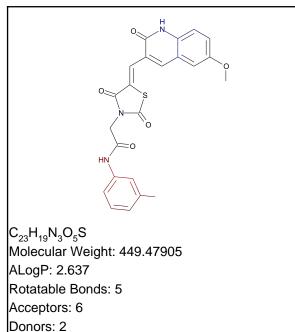
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Indapamide	Metolazone	Acetohexamide	
Structure	HN H ₂ N O HN CI			
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.580	0.582	0.630	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10	

ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]):	0.46	9 out of 17
ECFP_12	1435111106	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	0.445	3 out of 5
	Top Fea	tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]]([*]):[*]	-1.25	0 out of 8
ECFP_12	-319922023	[*]=C1N[c]2:[cH] :[*]:[cH]:[c]:2C1=[*]	-0.661	0 out of 3
ECFP_12	1640720160	[*]1[*][cH]:[cH]:[c]:2N1	-0.485	0 out of 2

Model Prediction

Prediction: Carcinogen

Probability: 0.302

Enrichment: 0.937

Bayesian Score: 0.16

Mahalanobis Distance: 12.1

Mahalanobis Distance p-value: 0.00345

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

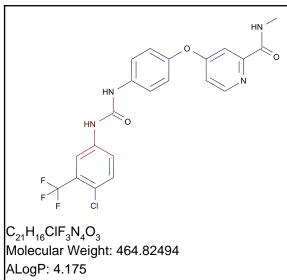
TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Bicalutamide	Polythiazide	Moricizine
Structure	F HO HN AN HN AN HN AN HN HN HN HN HN HN HN HN HN H	Class N NH ₂	
Actual Endpoint	Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.586	0.632	0.650
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. OPS PC30 out of range. Value: 2.8769. Training min, max, SD, explained variance: -2.9582, 2.682, 0.9684, 0.0098.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=['])N[c](:[']): [']	0.46	9 out of 17
ECFP_12	1435111106	[*]C(=[*])HC]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	0.445	3 out of 5
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	2083628577	[*]N[c]1:[cH]:[c]]([*]):[*]:[c]:1[*]	-0.811	0 out of 4

ECFP_12	2007300961	OT NHCO	-0.426	7 out of 36
		[*][c]1:[*]:[c]([*]):		
		[cH]:[cH]:[cH]:1		

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.236

Enrichment: 0.734

Bayesian Score: -3.76

Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.00229

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

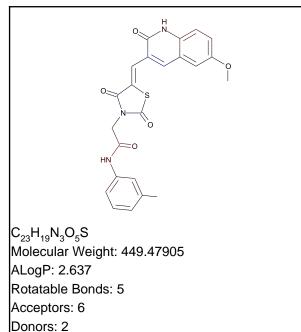
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds


Name	Glimepride	Glyburide	Fluvastatin
Structure	HH H H H H H H H H H H H H	HN CO	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.620	0.635	0.635
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-970385855	[*]N[c]3:[cH]:[*]:[c] ([*])([cH]:1)C([*])([*])[*]	0.613	2 out of 2	

ECFP_12	-177077903	[*]N[C](:[CH]:[*]):[C H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	FFF CI [*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	99947387	PF CI [*]:[c](:[*])CI	-0.817	8 out of 62
ECFP_12	1413420509		-0.661	0 out of 3

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.569

Enrichment: 1.52

Bayesian Score: 2.55

Mahalanobis Distance: 14.4

Mahalanobis Distance p-value: 1.07e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

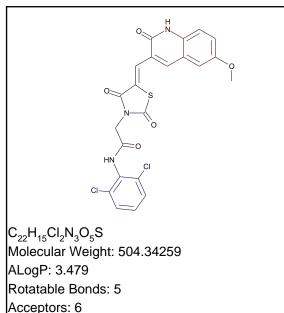
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_Single_vs_Multiple

Structural Similar Compounds

Structural Simila	Compounds		
Name	Bicalutamide	Moricizine	Omeprazole
Structure	HO H		
Actual Endpoint	Multiple-Carcinogen	Single-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Multiple-Carcinogen	Single-Carcinogen	Multiple-Carcinogen
Distance	0.529	0.623	0.690
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC16 out of range. Value: 2.7978. Training min, max, SD, explained variance: -2.5301, 2.7699, 1.075, 0.0171.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
SCFP_4	2097618059	(')CC(=0)N(c)(:[cH]):[')):[cH]:[']	0.73	5 out of 6	

SCFP_4	1631845520	(*)C(=[*])N[c](:[*]): [*]	0.601	6 out of 9
SCFP_4	17	(*]S[*]	0.548	10 out of 17
	Top Feat	ures for negative	contribution	l .
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	399659969	("]CN1C(=['])['][']C1 =[']	-0.666	0 out of 3
SCFP_4	1257024795	° NH→ ° S N→ ° N→ ° (*]NC(=O)C(=[*])[*]	-0.666	0 out of 3
SCFP_4	-1971137145	[*]C(=C[c](:[*]):[*]) [*]	-0.489	0 out of 2

Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.292

Enrichment: 0.875

Bayesian Score: -2.44

Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 0.000622

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

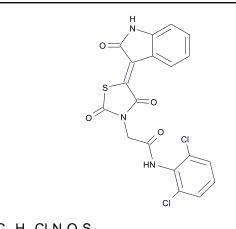
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Bicalutamide	Moricizine
Structure		HN AN COLUMN	
Actual Endpoint	Non-Carcinogen	Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Carcinogen
Distance	0.602	0.624	0.667
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC16 out of range. Value: -4.5449. Training min, max, SD, explained variance: -4.5272, 4.5629, 1.366, 0.0174.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	2097618059	(*)CC(=0)N[c](:[c]([*)):[*]):[c]([*)]:[*]	0.437	7 out of 13	

SCFP_6	-1971137145	[*]C(=C[c](:[*]))	0.434	5 out of 9
SCFP_6	392579710	[*]O[c] ^t [*]O[c] ^t ([*]):[c](C=[*]):[c] ([*]):[c](C=[*]):[cH]:1	0.425	2 out of 3
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1062412764	[*][c]1:[c](CI):[cH]: [cH]:[c]1CI	-0.957	0 out of 5
SCFP_6	399659969	(']CN1C(=['])['][']C1 =[']	-0.578	1 out of 8
SCFP_6	2102703671	(NC1=O):[cH]:[*]	-0.496	0 out of 2

C₁₉H₁₁Cl₂N₃O₄S Molecular Weight: 448.27933 ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.275

Enrichment: 0.824

Bayesian Score: -3.18

Mahalanobis Distance: 10.6

Mahalanobis Distance p-value: 0.38

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

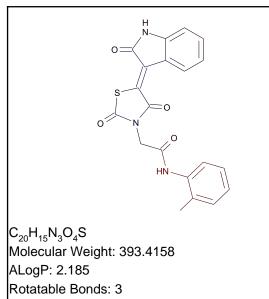
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Male_FDA_None_vs_Carcinogen

Structural Similar Compounds


Name	Indapamide	Metolazone	Bicalutamide
Structure	HN H ₂ N O HN CI		HO H
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.608	0.617	0.635
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution					
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
SCFP_6	2097618059	(*)CC(=O)N[c](:[c]((*)):(*)):[c](1)):[*]	0.437	7 out of 13		
	·	·		·		

SCFP_6	1655488245	[*]1[*][c]2:[cH]:[c]22N1	0.252	4 out of 9
SCFP_6	-1375926917	[*]N[c]1:[cH]:[c]:1[*]	0.251	11 out of 26
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1062412764	[*][c]1:[c](CI):[cH]: [cH]:[c]:1CI	-0.957	0 out of 5
SCFP_6	1798334293	(')C(=C1C(=['))(']' ;[c]1:['))(']	-0.674	0 out of 3
SCFP_6	399659969	(']CN1C(=['])('][']C1 =[']	-0.578	1 out of 8

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.364

Enrichment: 1.09

Bayesian Score: 0.261

Mahalanobis Distance: 10.8

Mahalanobis Distance p-value: 0.276

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

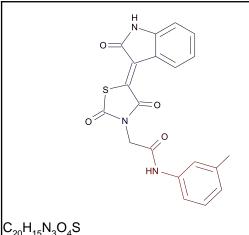
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	Metolazone	Indapamide	Acetohexamide
Structure		HN H ₂ N O HN CI	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.537	0.554	0.609
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	2097618059	(']CC(=O)N(c)(:{c)((")):('):(o)((')):(')	0.437	7 out of 13	
]);[*1);[o](*1);[*]			

SCFP_6	-900973957	(¹)CC(=O)N[c]1:[cH];[cH]:[cH]:[cH]:[c]:1C	0.415	1 out of 1
SCFP_6	548903629	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[c]:1 C	0.415	1 out of 1
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1798334293	("]C(=C1C(=["])["][") :[c]1:["])["]	-0.674	0 out of 3
SCFP_6	399659969	(']CN1C(=['])('][']C1 =[']	-0.578	1 out of 8
SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-0.496	0 out of 2

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.38

Enrichment: 1.14

Bayesian Score: 0.812

Mahalanobis Distance: 10

Mahalanobis Distance p-value: 0.647

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

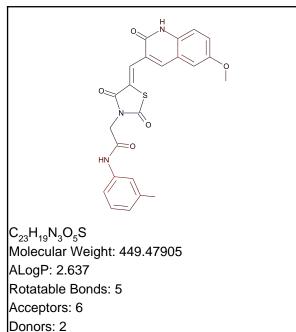
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Similar Compounds					
Name	Metolazone	Indapamide	Acetohexamide		
Structure	CI H ₂ N ^S the true H ₂ N ^S the true the true	HN H ₂ N O HN CI	HN CO HN CO CO CO CO CO CO CO CO CO CO CO CO CO C		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.555	0.560	0.610		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	0.615	5 out of 7	
		I	1	I	

SCFP_6	-236487363	[']CC(=O)N[c]1:[cH]; cH]:[cH];[c](C):[cH] :1	0.603	2 out of 2
SCFP_6	2097618059	("]CC(=0)N[c](:[c]((*)):[1]):[c]([1]):[1]	0.437	7 out of 13
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1798334293	[r]c(=c1c(=[r])[r]] ;[e]1:[1)[r]	-0.674	0 out of 3
SCFP_6	399659969	(']CN1C(=[')]('][']C1 =[']	-0.578	1 out of 8
SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-0.496	0 out of 2

Model Prediction

Prediction: Carcinogen

Probability: 0.428

Enrichment: 1.28

Bayesian Score: 2.3

Mahalanobis Distance: 12.3

Mahalanobis Distance p-value: 0.0121

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

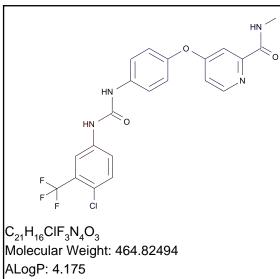
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Male_FDA_None_vs_Carcinogen

Structural Similar Compounds Name **Bicalutamide** Polythiazide Moricizine Structure Actual Endpoint Carcinogen Non-Carcinogen Carcinogen Predicted Endpoint Carcinogen Non-Carcinogen Carcinogen 0.546 0.629 0.629 Distance Reference US FDA (Centre for Drug US FDA (Centre for Drug US FDA (Centre for Drug Eval.& Res./Off. Testing & Eval.& Res./Off. Testing & Eval.& Res./Off. Testing & Res.) Sept. 1997 Res.) Sept. 1997 Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC16 out of range. Value: -4.5669. Training min, max, SD, explained variance: -4.5272, 4.5629, 1.366, 0.0174.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-347048986	[*]C(=[*])H[c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	0.615	5 out of 7	

SCFP_6	-236487363	[']CC(=O)N[c]1:[cH]:[cH]:[cH]:[c](C):[cH] :1	0.603	2 out of 2
SCFP_6	2097618059	(']CC(=0)N[c](:[c](I')):[1):[c]((T)):[1]	0.437	7 out of 13
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	399659969	(']CN1C(=['])('][']C1 =[']	-0.578	1 out of 8
SCFP_6	2102703671	[*]C1=[[*]][c](:[*]):[c](NC1=O):[cH]:[*]	-0.496	0 out of 2
SCFP_6	-587539325	(*)N((*))CC(=[*])(*)	-0.264	1 out of 5

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.293

Enrichment: 0.878

Bayesian Score: -2.4

Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 1.1e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

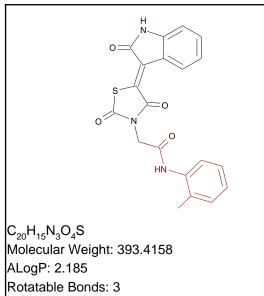
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Similar Compounds					
Name	Glyburide	Glimepride	Fluvastatin		
Structure		$\sum_{j=1}^{2} \sum_{j=1}^{j} \sum_{j=1}^{2} \sum_{j=1}^{j} \sum_{j=1}^{2} \sum_{j=1}^{j} \sum_{j$			
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen		
Distance	0.593	0.600	0.615		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-347048986	[*]C(E[f])N[c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	0.615	5 out of 7	

SCFP_6	-754059116	[*]O[c]1:[cH]:[*]:n:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-531283893	[*]O[c]f:[cH]:[cH]:[c](NC(=[*])[*]):[cH]: [cH]:1	0.273	2 out of 4
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-827073191	FFF CI [*]C(=[*])[c]1:[cH]:[*]:[cH]:n:1	-0.674	0 out of 3
SCFP_6	-975241316	[*][c]1.f[bH]:[cH]:[c] (O[c](:[cH]:[*]):[cH]]:[*]]:[cH]:[cH]:1	-0.496	0 out of 2
SCFP_6	-488587948	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	-0.496	0 out of 2

Acceptors: 5

Donors: 2

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.558

Enrichment: 1.35

Bayesian Score: 3.34

Mahalanobis Distance: 12.3

Mahalanobis Distance p-value: 0.00244

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

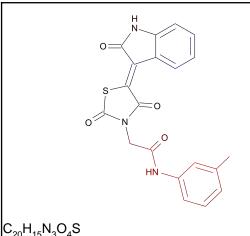
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Male_FDA_Single_vs_Multiple

Structural Similar Compounds Name Doxefazepam **Bicalutamide** Phenolphthalein Structure Actual Endpoint Single-Carcinogen Multiple-Carcinogen Multiple-Carcinogen Predicted Endpoint Single-Carcinogen Multiple-Carcinogen Multiple-Carcinogen 0.633 0.679 0.723 Distance Reference US FDA (Centre for Drug US FDA (Centre for Drug US FDA (Centre for Drug Eval.& Res./Off. Testing & Eval.& Res./Off. Testing & Eval.& Res./Off. Testing & Res.) Sept. 1997 Res.) Sept. 1997 Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC18 out of range. Value: -3.3972. Training min, max, SD, explained variance: -2.5092, 3.7383, 1.072, 0.0156.

Top features for positive contribution					
Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
2097618059	[']CC(=0)N[c](:[cH]:[']):[c]("]):[1]	0.681	6 out of 7		
	Bit/Smiles	Bit/Smiles Feature Structure 2097618059	Bit/Smiles Feature Structure Score 2097618059 0.681 (*)CC(=0)N[6](:[c+1])]		

SCFP_8	1269778311	[*]N[c]1:[cH]:[c]:1C	0.553	2 out of 2
SCFP_8	1792377291	[*]N[c]1:[cH]:[r]:[c]:1C	0.553	2 out of 2
	Top Feat	ures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	1420330831	[*]=C1N[c]2:[cH]:[cH] :[*]:[cH]:[c]:2C1=[*]	-0.31	0 out of 1
SCFP_8	399659969	("]CN1C(=['])('][']C1 =[']	-0.31	0 out of 1
SCFP_8	-2056718782	[*]=C1[*][*][c](:[*]) :[c]1:[cH]:[*]	-0.29	6 out of 23

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.557

Enrichment: 1.34

Bayesian Score: 3.43

Mahalanobis Distance: 12.1

Mahalanobis Distance p-value: 0.004

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

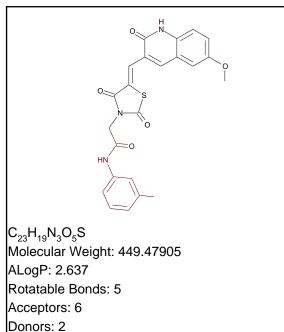
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Name	Doxefazepam	Bicalutamide	Phenolphthalein
Structure	CI CH OH	HN AN CONTRACTOR	HO
Actual Endpoint	Single-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Single-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Distance	0.634	0.667	0.729
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC18 out of range. Value: -3.4903. Training min, max, SD, explained variance: -2.5092, 3.7383, 1.072, 0.0156.

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in
SCFP_8	2097618059		0.681	training set 6 out of 7
		[*]CC(=O)N[c](:[cH]):[*]):[c]([*]):[*]		

SCFP_8	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	0.574	4 out of 5
SCFP_8	-236487363	[']CC(=O)N[0]1:[cH]:[cH]:[cH]:[c](C):[cH] ;1	0.553	2 out of 2
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	1420330831	[*]=C1N[c]2:[cH]:[cH] :[*]:[cH]:[c]:2C1=[*]	-0.31	0 out of 1
SCFP_8	399659969	("]CN1C(=['])['][']C1 =[']	-0.31	0 out of 1
SCFP_8	-2056718782	[*]=C1[*][*][c](:[*]) :[c]1:[cH]:[*]	-0.29	6 out of 23

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.583

Enrichment: 1.41

Bayesian Score: 5.03

Mahalanobis Distance: 17.5

Mahalanobis Distance p-value: 5.37e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

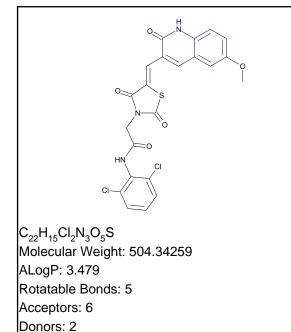
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

	Compoundo		
Name	Bicalutamide	Moricizine	Isradipine
Structure	F C C C C C C C C C C C C C C C C C C C		
Actual Endpoint	Multiple-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Multiple-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.568	0.676	0.729
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC4 out of range. Value: 5.3049. Training min, max, SD, explained variance: -6.1092, 5.1042, 2.173, 0.0642.

	Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Multiple-					
Fingerprint	BIT/SMIIES	reature Structure	Score	Carcinogen in training set		
SCFP_8	2097618059	(']CC(=0)NIe(('):('])):(o)((')):(']	0.681	6 out of 7		

SCFP_8	-347048986	[*]C(=[*])F(c]1:[cH]: [cH]:[*]:[c](*]):[c H]:1	0.574	4 out of 5
SCFP_8	-236487363	[*]CC(=0)N[c]1:[cH]:[cH]:[cH]:[c[C):[cH] :1	0.553	2 out of 2
	Top Feat	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	1798274711	['']\C=C(\C=[''])\C(=['))[']	-0.546	0 out of 2
SCFP_8	136239834		-0.358	3 out of 13
SCFP_8	399659969	(']CN1C(=['])['][']C1 =[']	-0.31	0 out of 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.211

Enrichment: 0.229

Bayesian Score: -5.37

Mahalanobis Distance: 13.5

Mahalanobis Distance p-value: 4.1e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds					
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-		
Structure			O = C = C = C = C = C = C = C = C = C =		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant		
Distance	0.715	0.724	0.820		
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
			-	•	

FCFP_12	-1986158408	CI [*]N1[*][*]SC1=0	0.0821	13 out of 13
FCFP_12	436886043	(*)\C=C(\C=[*])\C[*] [*]\C=C(\C=[*]))(C[=[*	0.0804	129 out of 130
FCFP_12	1383817444	(*)=cc1=c[o]:([cH]:[*]):[o]:(['])[']C1=[*]	0.0772	7 out of 7
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	⁰ , NH 0, S 0, S 1,	-1.02	2 out of 8
FCFP_12	-1757681964	(*][c]1:[cH]:[c] (OC):[cH]:[c][c]	-0.627	1 out of 3

FCFP_12	1783756416		-0.509	4 out of 8
		[*]N[c]1:[c]([*]):[*] :[cH]:[cH]:[c]:1Cl		

C₁₉H₁₁Cl₂N₃O₄S Molecular Weight: 448.27933 ALogP: 3.028 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.214

Enrichment: 0.232

Bayesian Score: -5.36

Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.000313

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

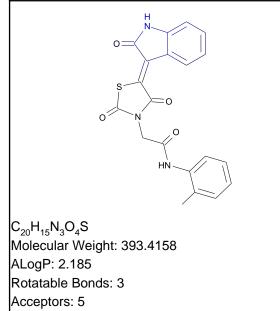
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Skin_Irritancy_None_vs_Irritant

Structural Sim	ilar Compounds 2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-,	2-Anthracenesulfonic 5-Norbornene-2,3- 1-Amino-2-bromo- acid, 1-amino-9,10- dicarboxylic acid, hydroxyanthraquir dihydro-9,10-dioxo-4- 1,4,5,6,7,7-hexachloro-		
Structure	monosodium salt		HO IN Br NH 2 0	
Actual Endpoint	Irritant	Irritant	Non-Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant	
Distance	0.695	0.790	0.822	
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	28ZPAK -,83,72	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
			-		

(*]N1[*][*]Si 4 (*]N1[*][*]Si 4 (*]C=C\1/S[*][*]C1= 1 39 (*][C]1:[C](CI) [CH]:[CH]:[CH]:[C]	0.0756	6 out of 6 2 out of 2	
4 (']\C=C\1/S['][']C1= '] 39 (*][C]1:[C](CI)	0.0756		
39 [*][c]1:[c](CI)		2 out of 2	
	н <mark>сі</mark>):[сН]:		
	c]:1Cl		
p Features for ne			
s Feature Sti	tructure Score	Irritant in t set	training
44 [*]C1=[*][c](:]	-1.02	2 out of 8	
](NC1=O):[c	[cH]:[*] -0.509	4 out of 8	
](NC1=O):[[*]N[c]1:[c]([*]):[*]	$16 \qquad \qquad \begin{array}{c} 0.509 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

FCFP_12	1294255210		-0.486	12 out of 22
		⊢ CI [*]C(=[*])N[c](:[*]): [*]		

Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.458

Enrichment: 0.498

Bayesian Score: -4.66

Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.00128

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds						
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2- anilino-5-nitro-	1-Amino-2-bromo-4- hydroxyanthraquinone			
Structure	H ₂ N _{rt} - O - O - O - O - O - O - O - O - O - O	ON OH OH OF SO	HO M Br NH 2			
Actual Endpoint	Irritant	Irritant	Non-Irritant			
Predicted Endpoint	Non-Irritant	Non-Irritant	Non-Irritant			
Distance	0.685	0.729	0.768			
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1061,1986	28ZPAK -,83,72			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
		•	•		

-1986158408		0.0821	13 out of 13
436915834	[*]N1[*][*]SC1=O	0.0756	6 out of 6
	(')\C=C\1/S['][']C1=[
1396506317		0.0583	2 out of 2
	[*]N[c]1:[cH]:[cH]:[c H]:[cH]:[c]:1C		
Top Fea	tures for negative	contribution	
Bit/Smiles	Feature Structure	Score	Irritant in training set
1175665944	(*]C1=[*][C](:[*]):[c	-1.02	2 out of 8
1294255210](NC1=O):[cH]:[*]	-0.486	12 out of 22
	436915834 1396506317 1396506317 Top Fea Bit/Smiles 1175665944	$ \begin{array}{ c c } & & & & & & & & & & & & & & & & & & &$	$\frac{ }{ N ^{*} SC1=0}$ $\frac{436915834}{ }$ $\frac{ }{ SC-CVAS^{[1]} ^{*} SC1=0}$ $\frac{436915834}{ }$ $\frac{ }{ SC-CVAS^{[1]} ^{*} SC1=0}$ $ $

FCFP_12	-1724769936		-0.475	11 out of 20
		s s		
		H L		
		[*]1[*][c]2:[cH]:[cH] :[cH]:[cH]:[c]:2N1		

Rotatable Bonds: 3 Acceptors: 5

Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.0215

Enrichment: 0.0234

Bayesian Score: -6.7

Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.00128

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

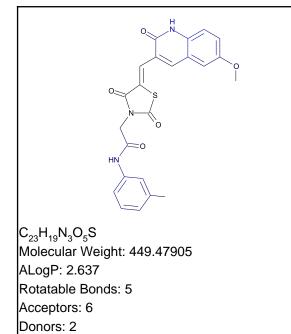
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

www.stumel.Classiles.Common.com

Structural Similar Compounds						
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2- anilino-5-nitro-	1-Amino-2-bromo-4- hydroxyanthraquinone			
Structure	H 2 N M H	O NH O NH	HO the second se			
Actual Endpoint	Irritant	Irritant	Non-Irritant			
Predicted Endpoint	Non-Irritant	Non-Irritant	Non-Irritant			
Distance	0.683	0.731	0.770			
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1061,1986	28ZPAK -,83,72			

Model Applicability


Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

All properties and OPS components are within expected ranges. 1.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	

FCFP_12	-1986158408		0.0821	13 out of 13
FCFP_12	436915834	[*]N1[*][*]SC1=O	0.0756	6 out of 6
FCFP_12	630418361	[*][c]1:[cH]:[cH]:[cH]:1	0.0734	5 out of 5
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](:[+]]	-1.02	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	-0.692	5 out of 12

FCFP_12	-453277354		-0.65	0 out of 1
		[*]CC(=O)N[c]1:[cH]:[cH]:[cH]:[c](C):[cH] :1		

Model Prediction

Prediction: Non-Irritant

Probability: 0.0182

Enrichment: 0.0198

Bayesian Score: -6.78

Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 3.79e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

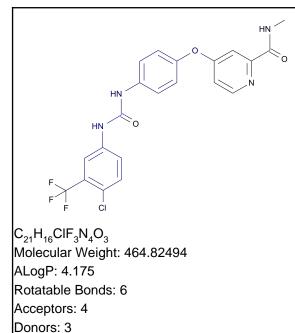
Structural Similar Compounds

Structural Sim	Structural Similar Compounds					
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt			
Structure	H 2 N M H	of of the				
Actual Endpoint	Irritant	Irritant	Irritant			
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant			
Distance	0.615	0.765	0.824			
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.


Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
				•	

FCFP_12	-1986158408	[*]N1[*][*]SC1=0	0.0821	13 out of 13
FCFP_12	436886043		0.0804	129 out of 130
FCFP_12	1383817444	(*)=CC1=C[c](:[cH]:[* });[c](:[*)](*]C1=[*]	0.0772	7 out of 7
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.02	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])HC]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	-0.692	5 out of 12

FCFP_12	-792685140	[*]C(=[*]) * [c]1:[cH]: [cH]:[cH]:[c]((*]):[-0.65	0 out of 1
		cH]:1		

Sorafenib

TOPKAT_Skin_Irritancy_None_vs_Irritant

Model Prediction

Prediction: Non-Irritant

Probability: 0.264

Enrichment: 0.287

Bayesian Score: -5.23

Mahalanobis Distance: 8.27

Mahalanobis Distance p-value: 0.791

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

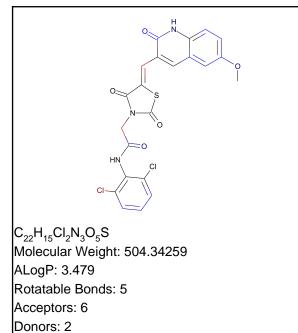
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Simila	r Compounds		
Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Sulfide, bis(4-t-butyl-m- cresyl)-
Structure	O HCI CI O HCI CI O HCI CI O HCI CI		HANN OF HANN OF
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Irritant
Distance	0.844	0.871	0.884
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges. 1.

	Top fe	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
		•	•	L.

FCFP_12	-124655670	P _F Cl [*]:[cH]:[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1539132615	[*]C(=[*])[C](:[CH]):[*]	0.0795	9 out of 9
FCFP_12	-1695756380	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	0.0772	7 out of 7
		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-789307649	[*]O[c]f2[cH]:[cH]:[c](NC(=[*])(*]):[cH]: [cH]:1	-1.54	0 out of 4
FCFP_12	-1838187238	[*]C([[] [¶])N[c]1:[cH]: [cH]:[*]:[c]([*]):[c H]:1	-0.692	5 out of 12

FCFP_12	1294255210	Ņ	-0.486	12 out of 22
		N ⁱⁿ o		
		5- Q		
		F [*] _F ^C l [*]C(=[*])N[c](:[*]):		
		[*]		

Model Prediction

Prediction: 26.6

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 15

Mahalanobis Distance p-value: 4.1e-013

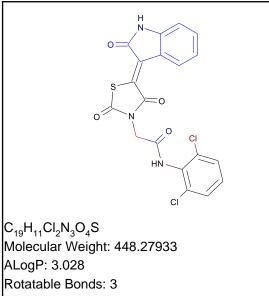
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Ochratoxin A	542	470
Structure		AND Exantomer $ \begin{array}{c} $	
Actual Endpoint (-log C)	4.79932	4.79932	4.62839
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264
Distance	0.660	0.660	0.747
Reference	CPDB	CPDB	CPDB

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]
- 7. Unknown ECFP_2 feature: -1660205591: [*]N[c](:[c]([*]):[*]):[c]([*]):[*]

		for positive contributio	n
erprint	Bit/Smiles	Feature Structure	Score

ECFP_6	1559650422		0.203
ECFP_6	-1925046727		0.145
ECFP_6	-817402818		0.129
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251

ECFP_6	642810091	و کالا	-0.247
		o~∕ks N⊸o	
		[*][c](:[*]):[*]	

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 36

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 12.9

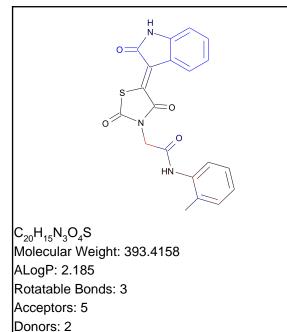
Mahalanobis Distance p-value: 2.06e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Ochratoxin A	542	470
Structure		AND Enantioner $ \begin{array}{c} $	
Actual Endpoint (-log C)	4.79932	4.79932	4.62839
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264
Distance	0.659	0.659	0.729
Reference	CPDB	CPDB	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 4. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]
- 5. Unknown ECFP_2 feature: -1660205591: [*]N[c](:[c]([*]):[*]):[c]([*]):[*]

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422	O S NH S O NH C C C C C C C C C C C C C	0.203

ECFP_6	-817402818		0.129
ECFP_6	-1897341097		0.0284
-		or negative contributio	
Fingerprint ECFP_6	Bit/Smiles 2106656448	Feature Structure	Score -0.275
		[*]C(=O)[*]	
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

Model Prediction

Prediction: 79.3

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 12.5

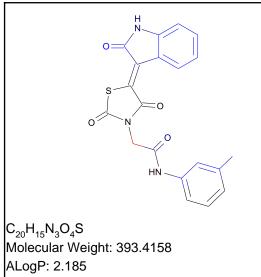
Mahalanobis Distance p-value: 1.46e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	542	Ochratoxin A	470
Structure	AND Enantomer		
Actual Endpoint (-log C)	4.79932	4.79932	4.62839
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264
Distance	0.674	0.674	0.697
Reference	CPDB	CPDB	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC22 out of range. Value: 4.0663. Training min, max, SD, explained variance: -3.1587, 3.8589, 1.086, 0.0147.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 4. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422		0.203

ECFP_6	2147419938	[*][c](:[*]):[c](C):[cH]:[*]	0.0637
ECFP_6	734603939	$ \overset{H}{\underset{o}{\overset{s}{\underset{v}{\underset{v}{\underset{v}{\underset{v}{\underset{v}{\underset{v}{\underset{v}{\underset$	0.0424
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

Rotatable Bonds: 3

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 151

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 13

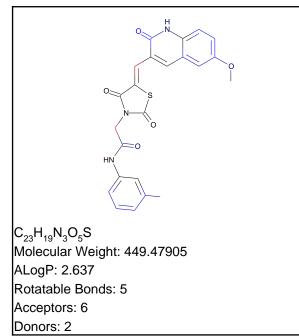
Mahalanobis Distance p-value: 1.12e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	542	Ochratoxin A	470
Structure	AND Enantiomer $\downarrow \downarrow $		
Actual Endpoint (-log C)	4.79932	4.79932	4.62839
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264
Distance	0.671	0.671	0.698
Reference	CPDB	CPDB	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC22 out of range. Value: 3.938. Training min, max, SD, explained variance: -3.1587, 3.8589, 1.086, 0.0147.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 4. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422		0.203
		[*]C[*]	

ECFP_6	734603939		0.0424
ECFP_6	-1897341097	[*]N[*]	0.0284
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

Model Prediction

Prediction: 75.9

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 15.2

Mahalanobis Distance p-value: 8.19e-014

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

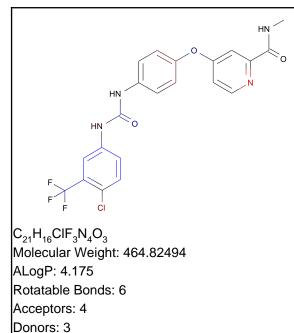
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Carcinogenic_Potency_TD50_Mouse

Structural Similar Compounds

Name	Ochratoxin A	542	470
Structure		AND Exantomer	
Actual Endpoint (-log C)	4.79932	4.79932	4.62839
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264
Distance	0.648	0.648	0.695
Reference	CPDB	CPDB	CPDB

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Top features for positive contribution			n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422		0.203

ECFP_6	-1925046727	°↓ ^{NH} °↓ ^S ↓ ° ° ° S ° (*]C=[*]	0.145
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.0818
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	1996767644	[*][c](:[[*]]):[cH]:[cH	-0.251
ECFP_6	642810091	(*][c](:[*]):[*]	-0.247

Sorafenib

Model Prediction

Prediction: 19.2

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 2.94e-006

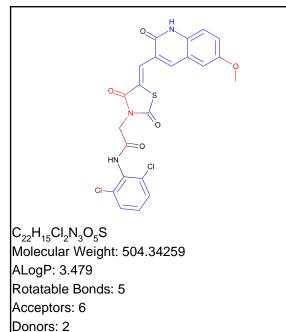
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Carcinogenic_Potency_TD50_Mouse

Structural Similar Compounds

Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide
Structure	() + () + () + () + () + () + () + () +	AND Exantomer $ \begin{array}{c} $	CI NH NH HO
Actual Endpoint (-log C)	4.79932	4.79932	3.91517
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186
Distance	0.718	0.718	0.738
Reference	CPDB	СРДВ	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1338334141: [*]C(=[*])NC
- 3. Unknown ECFP_2 feature: 1413420509: [*]C(=[*])[c](:n:[*]):c:[*]

655739385	$F_{F} = CI$ [*]:n:[*]	0.229
	0007/39300	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

ECFP_6	-817402818	$F_{F} \subset C$ $[*]CI$	0.129
ECFP_6	-176455838	N ^N O FF CI [*]O[C](:[CH]:[*]):[C H]:[*]	0.0818
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392		-0.232

Model Prediction

Prediction: 35.9

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 16

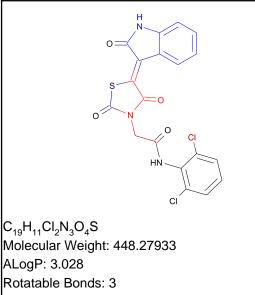
Mahalanobis Distance p-value: 2.86e-014

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Ochratoxin A	542	Salicylazosulfapyridine
Structure	()	AND Enantromer	HN HN HO HO HO HO HO HO HO HO HO HO HO HO HO
Actual Endpoint (-log C)	6.47264	6.59334	2.39891
Predicted Endpoint (-log C)	5.06501	5.06501	3.17598
Distance	0.660	0.660	0.713
Reference	CPDB	CPDB	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC7 out of range. Value: -6.0099. Training min, max, SD, explained variance: -5.0422, 6.1749, 1.868, 0.0335.
- 2. OPS PC16 out of range. Value: -3.6579. Training min, max, SD, explained variance: -3.6111, 5.345, 1.406, 0.0190.

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	136627117		0.69
		[*]OC	

FCFP_6	565998553	["]N1[*][*]C(=[*])C1=	0.357
FCFP_6	1		0.234
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	451847724	CI CI CI CI CI CI CI CI CI CI CI CI CI C	-0.436
FCFP_6	991735244	C	-0.422
FCFP_6	436886043	('')C=C(\C=[''))C(=[*))['']	-0.383

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 13

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 11.5

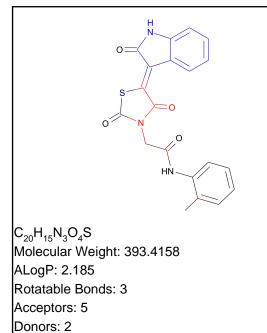
Mahalanobis Distance p-value: 0.00327

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Carcinogenic_Potency_TD50_Rat

Structural Similar Compounds 542 Name Ochratoxin A 1,2-Dihydro-2-(5-nitro-2thi-enyl) guinazolin-4(3H)one Structure AND Enantiome Actual Endpoint (-log C) 6.47264 6.59334 5.25509 Predicted Endpoint (-log 5.06501 5.06501 3.89291 C) 0.625 Distance 0.625 0.685 CPDB CPDB CPDB Reference


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	565998553	[*]N1[*][*]C(=[*])C1=	0.357			
	•					

FCFP_6	1	NH S O N H C I (*]=O	0.234		
FCFP_6	32	S S N C I [*]CI	0.154		
Top Features for negative contribution Fingerprint Bit/Smiles Feature Structure Score					
FCFP_6	991735244	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	-0.422		
FCFP_6	16	[*][c](:[*]):[*]	-0.354		
FCFP_6	590925877	[*]N[c](:[cH]:[^r]):[c]]([[*]]):[[*]]	-0.323		

Model Prediction

Prediction: 18.3

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 11.1

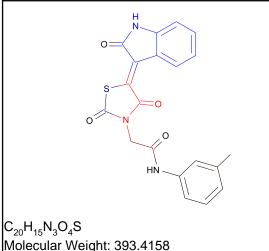
Mahalanobis Distance p-value: 0.0145

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	1,2-Dihydro-2-(5-nitro-2- thi-enyl) quinazolin-4(3H)- one	542	Ochratoxin A
Structure		AND Enantiomer	
Actual Endpoint (-log C)	5.25509	6.59334	6.47264
Predicted Endpoint (-log C)	3.89291	5.06501	5.06501
Distance	0.634	0.645	0.645
Reference	СРДВ	CPDB	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	["]N1["]["]C(=["])C1= 0	0.357		

FCFP_6 FCFP_6	1 203677720	[*] = O	0.234
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	-0.422
FCFP_6	16	[*][c](:[*]):[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]]:[*]):[c]([*]):[*]	-0.323

Molecular Weight: 393.4158 ALogP: 2.185 Rotatable Bonds: 3 Acceptors: 5 Donors: 2

Model Prediction

Prediction: 18.3

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 11.1

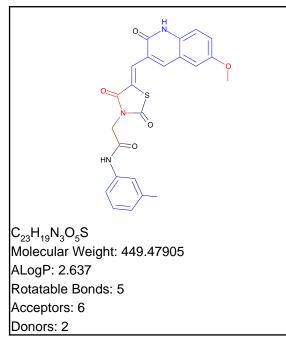
Mahalanobis Distance p-value: 0.0145

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds				
Name	1,2-Dihydro-2-(5-nitro-2- thi-enyl) quinazolin-4(3H)- one	542	Ochratoxin A	
Structure		AND Enantiomer		
Actual Endpoint (-log C)	5.25509	6.59334	6.47264	
Predicted Endpoint (-log C)	3.89291	5.06501	5.06501	
Distance	0.639	0.648	0.648	
Reference	CPDB	CPDB	CPDB	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	565998553	[*]N1[*][*]C(=[*])C1= 0	0.357	

FCFP_6	1 203677720	[*] = O	0.234 0.137
	Top Features	[*][c](:[*]):[c](C=[*]):[cH]:[*]	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	-0.422
FCFP_6	16	[*][c](:[*]):[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-0.323

Model Prediction

Prediction: 64.9

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 15.4

Mahalanobis Distance p-value: 2.3e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Sinniar Compounds				
Name	Ochratoxin A	542	Salicylazosulfapyridine	
Structure		AND Enuntioner	$H_{HO} = 0$	
Actual Endpoint (-log C)	6.47264	6.59334	2.39891	
Predicted Endpoint (-log C)	5.06501	5.06501	3.17598	
Distance	0.647	0.647	0.671	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC7 out of range. Value: -5.6632. Training min, max, SD, explained variance: -5.0422, 6.1749, 1.868, 0.0335.

FCFP_6	565998553	[']N1['][']C(=['])C1= O	0.357
FCFP_6	1		0.234
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	451847724	[']C(=CC(=['])['])[']	-0.436
FCFP_6	991735244	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	-0.422
FCFP_6	436886043	(*]/C=C(/C=[*)/C(=[*))[*]	-0.383

Sorafenib

Donors: 3

Model Prediction

Prediction: 14.2

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 20.4

Mahalanobis Distance p-value: 9.56e-031

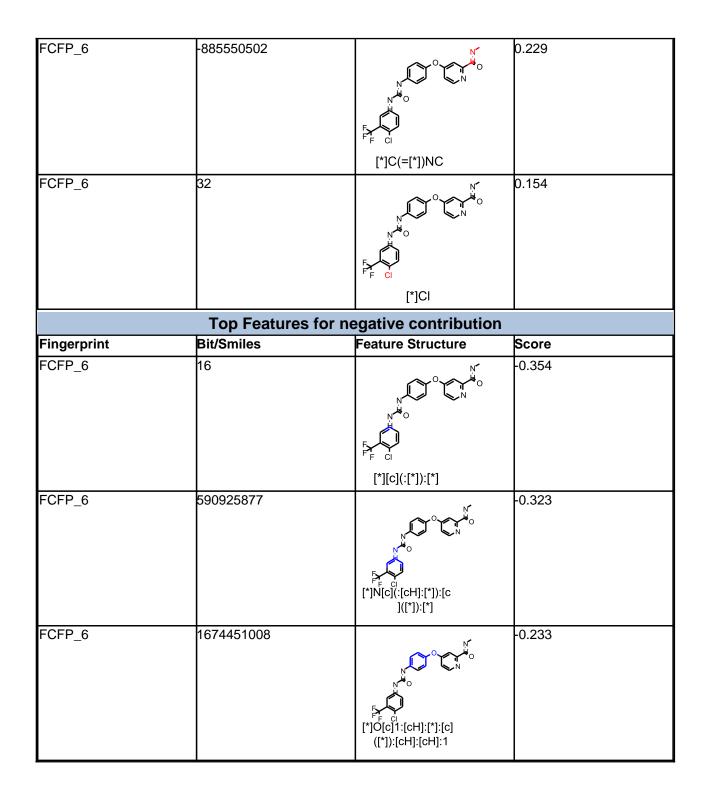
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

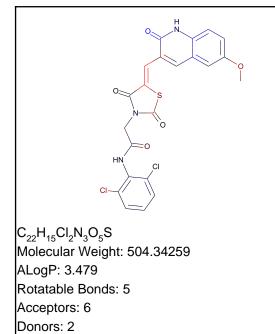
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluvastatin	913	Ochratoxin A
Structure			OH OH OH OCI
Actual Endpoint (-log C)	3.51742	3.51742	6.47264
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501
Distance	0.597	0.597	0.666
Reference	CPDB	CPDB	CPDB

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F

Feature Contribution

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1		0.234
		[*]=O	

TOPKAT_Carcinogenic_Potency_TD50_Rat

Model Prediction

Prediction: 0.00201

Unit: g/kg_body_weight

Mahalanobis Distance: 33.6

Mahalanobis Distance p-value: 3.79e-031

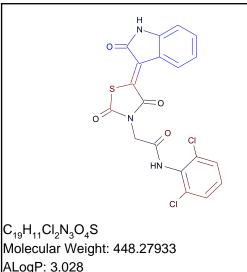
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Chronic_LOAEL

Structural Si	nilar Compounds
---------------	-----------------

Name	GLYBURIDE	GLIPIZIDE	CHLORSULFURON
Structure	HN 100 HN 100 HN 100		HN N N O
Actual Endpoint (-log C)	4.21661	3.94991	4.15566
Predicted Endpoint (-log C)	4.21035	3.95594	3.79771
Distance	0.596	0.645	0.698
Reference	UPJ-26452	NDA-17583	EPA COVER SHEET 0027;880301;(1)


Model Applicability

- 1. OPS PC22 out of range. Value: -6.8924. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 5. Unknown ECFP_6 feature: 1336666212: [*][c](:[*]):[c](C=[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 9. Unknown ECFP_6 feature: 464808839: [*]C(=C[c](:[*]):[*])[*]
- 10. Unknown ECFP_6 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 11. Unknown ECFP_6 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 12. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 13. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 14. Unknown ECFP_6 feature: 190445529: [*]N1[*][*]SC1=O
- 15. Unknown ECFP_6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1
- 16. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 17. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 18. Unknown ECFP_6 feature: -1660205591: [*]N[c](:[c]([*]):[*]):[c]((*]):[*]

- Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[cH]:[*] Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC 19.
- 20.
- 21.

	Top features f	or positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	451847724	(*)C(=CC(=[*])("))(*)	0.16
FCFP_6	-1143715940	[*]=C1[*][*]C(=[*])S1	0.13
ECFP_6	1559650422		0.129
	Top Features f	or negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score

FCFP_6	991735244	[*][c]1:[c][cH]:[cH]:1	-0.134
ECFP_6	2106656448	<pre>>></pre> >> >> >> >> >> >> >> >> >> >> >> >> >>	-0.11
FCFP_6	1		-0.102

Rotatable Bonds: 3

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 0.0239

Unit: g/kg_body_weight

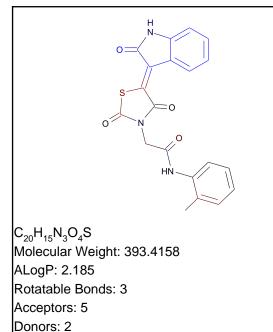
Mahalanobis Distance: 30.5

Mahalanobis Distance p-value: 1.3e-025

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Similar Compounds				
Name	CHLORSULFURON	DANTROLENE.NA	PIROXICAM	
Structure	HN HN HN N O	O N N N N H	OH HN ⁴ ^M N	
Actual Endpoint (-log C)	4.15566	4.19625	5.52028	
Predicted Endpoint (-log C)	3.79771	4.62637	4.06087	
Distance	0.630	0.655	0.666	
Reference	EPA COVER SHEET 0027;880301;(1)	NDA-17443	NDA-18147	

Model Applicability

- 1. OPS PC22 out of range. Value: -5.1197. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 5. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 1790105651: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 9. Unknown ECFP_6 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 10. Unknown ECFP_6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1
- 11. Unknown ECFP_6 feature: 190445529: [*]N1[*][*]SC1=O
- 12. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 13. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 14. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 15. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 16. Unknown ECFP_6 feature: -1660205591: [*]N[c](:[c]([*]):[*]):[c]([*]):[*]
- 17. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

	Top features	for positive contribution	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	-1143715940	[*]=C1[*][*]C(=[*])S1	0.13	
ECFP_6	1559650422	O S C C C C C C C C C C C C C	0.129	
FCFP_6	32		0.101	
	Top Features	for negative contributio	'n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	991735244	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	-0.134	

ECFP_6	1564392544	[*][c]1:[*]:[cH]:[cH]:1	-0.133
ECFP_6	2106656448	(*]C(=O)[*]	-0.11

Model Prediction

Prediction: 0.0364

Unit: g/kg_body_weight

Mahalanobis Distance: 29.6

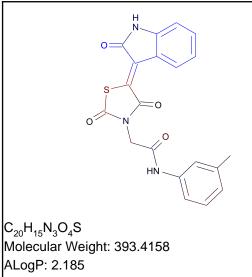
Mahalanobis Distance p-value: 7.33e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	PIROXICAM	DANTROLENE.NA	CHLORSULFURON
Structure	OH HNMM N		HN N ^M N HN N ^M
Actual Endpoint (-log C)	5.52028	4.19625	4.15566
Predicted Endpoint (-log C)	4.06087	4.62637	3.79771
Distance	0.564	0.578	0.586
Reference	NDA-18147	NDA-17443	EPA COVER SHEET 0027;880301;(1)


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC22 out of range. Value: -5.1654. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[cH]:[*]
- 5. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 6. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 1790105651: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 9. Unknown ECFP_6 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 10. Unknown ECFP_6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1
- 11. Unknown ECFP_6 feature: 190445529: [*]N1[*][*]SC1=O
- 12. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 13. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 14. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 15. Unknown ECFP 6 feature: 1731843802: [*]CC(=O)N[*]
- 16. Unknown ECFP_6 feature: 1335108269: [*]N[c](:[cH]:[*]):[c]([*]):[*]

Fingerprint	Bit/Smiles	for positive contribution Feature Structure	Score
FCFP_6	-1143715940	H N	0.13
		○=	
		ů v v	
		N H	
		[*]=C1[*][*]C(=[*])S1	
ECFP_6	1559650422	Н	0.129
		s Loo	
		O ^R N O	
		N T	
	04 47 44 00 00	[*]C[*]	0.000
ECFP_6	2147419938		0.098
		ş C	
		[*][c](:[*]):[c](C):[
		cH]:[*]	
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	NH	-0.134
		Ĥ	
		[*][c]1:[*]:[c]([*]):	
		[cH]:[cH]:[cH]:1	

ECFP_6	1564392544	[*][c]1:[*]:[cH]:[cH]:1	-0.133
ECFP_6	2106656448	H ² →0 S N [*]C(=O)[*]	-0.11

Rotatable Bonds: 3

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 0.043

Unit: g/kg_body_weight

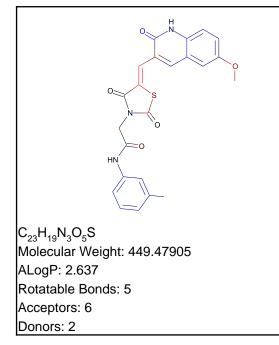
Mahalanobis Distance: 29.6

Mahalanobis Distance p-value: 7.33e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	PIROXICAM	DANTROLENE.NA	CHLORSULFURON
Structure	OH HNN N OF SO		HN N OC W
Actual Endpoint (-log C)	5.52028	4.19625	4.15566
Predicted Endpoint (-log C)	4.06087	4.62637	3.79771
Distance	0.566	0.579	0.587
Reference	NDA-18147	NDA-17443	EPA COVER SHEET 0027;880301;(1)

Model Applicability

- 1. OPS PC22 out of range. Value: -5.1654. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 5. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 6. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 1790105651: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 9. Unknown ECFP_6 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 10. Unknown ECFP_6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1
- 11. Unknown ECFP_6 feature: 190445529: [*]N1[*][*]SC1=O
- 12. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 13. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 14. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 15. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 16. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 17. Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*]

Feature Cont		for positivo contributio	n
- '		for positive contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1143715940		0.13
ECFP_6	1559650422	[*]=C1[*][*]C(=[*])S1	0.129
	1000000422		0.125
FCFP_6	3		0.0924
		[*]N[*]	
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	-0.134

ECFP_6	1564392544	(*][c]1:[*]:[cH]:[cH]:1	-0.133
ECFP_6	2106656448	[*]C(=O)[*]	-0.11

Model Prediction

Prediction: 0.00426

Unit: g/kg_body_weight

Mahalanobis Distance: 31.7

Mahalanobis Distance p-value: 1.04e-027

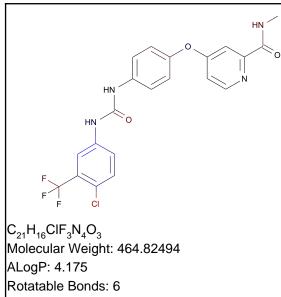
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Chronic_LOAEL

Structural Similar Compounds					
Name	GLIPIZIDE	CHLORSULFURON	GLYBURIDE		
Structure		HN NOT NOT NOT NOT NOT NOT NOT NOT NOT NO	HH HH HH HH HH HH HH HH HH HH HH HH HH		
Actual Endpoint (-log C)	3.94991	4.15566	4.21661		
Predicted Endpoint (-log C)	3.95594	3.79771	4.21035		
Distance	0.590	0.632	0.645		
Reference	NDA-17583	EPA COVER SHEET 0027;880301;(1)	UPJ-26452		

Model Applicability


- 1. OPS PC22 out of range. Value: -6.9718. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 5. Unknown ECFP_6 feature: 1336666212: [*][c](:[*]):[c](C=[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 9. Unknown ECFP_6 feature: 464808839: [*]C(=C[c](:[*]):[*])[*]
- 10. Unknown ECFP_6 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 11. Unknown ECFP_6 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 12. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 13. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 14. Unknown ECFP_6 feature: 190445529: [*]N1[*][*]SC1=O
- 15. Unknown ECFP_6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1
- 16. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 17. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 18. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]

- 19.
- Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[cH]:[*] Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*] Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC 20.
- 21.

	Top features f	or positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	451847724		0.16
FCFP_6	-1143715940	[*]C(=CC(=[*])[*])[*]	0.13
		[*]=C1[*][*]C(=[*])S1	
ECFP_6	1559650422	(*]C[*]	0.129
	Top Features f	or negative contributio	'n
Fingerprint	Bit/Smiles	Feature Structure	Score

FCFP_6	991735244	[*][c]1:[*]:[c]([*]): [cH]:[cH]:[cH]:1	-0.134
ECFP_6	2106656448	<pre>>NH+→ o >S >N→ o >N→ [*]C(=O)[*]</pre>	-0.11
FCFP_6	1	° NH S S NH C S S C S S S S S S S S S S S S S	-0.102

Sorafenib

Acceptors: 4

Donors: 3

Model Prediction

Prediction: 0.00483

Unit: g/kg_body_weight

Mahalanobis Distance: 30

Mahalanobis Distance p-value: 1.21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

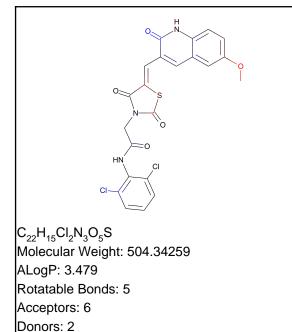
Structural Similar Compounds

Structural Similar Compounds				
Name	GLYBURIDE	D & C RED 9	SODIUM ACIFLUORFEN	
Structure			F F F Hunder H O H O H O H	
Actual Endpoint (-log C)	4.21661	3.87715	4.16036	
Predicted Endpoint (-log C)	4.21035	3.6546	4.65915	
Distance	0.636	0.722	0.736	
Reference	UPJ-26452	NTP REPORT # 225	EPA COVER SHEET 0192;891101;(1)	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 4. Unknown ECFP_6 feature: 226796801: [*]C([*])([*])F
- 5. Unknown ECFP_6 feature: 1305253718: [*]:[c](:[*])O[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -677309799: [*][c](:[*]):n:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1338334141: [*]C(=[*])NC
- 8. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 1336678434: [*][c](:[*]):[c](:[cH]:[*])C([*])([*])[*]
- 10. Unknown ECFP_6 feature: -649580166: [*]NC(=O)N[*]
- 11. Unknown ECFP_6 feature: -1952889961: [*]:[c](:[*])C(F)(F)F
- 12. Unknown ECFP_6 feature: 1413420509: [*]C(=[*])[c](:[cH]:[*]):n:[*]
- 13. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 14. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: 864287155: [*]NC


Feature Contribution

Top features for positive contribution

TOPKAT_Chronic_LOAEL

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	N ^H O FF _F Cl [*]O[c](:[cH]:[*]):[c H]:[*]	0.106
FCFP_6	32	$F_{F} \subset C^{O} \subset N^{N} \circ C^{N} \circ C$	0.101
FCFP_6	3		0.0924
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	[*]=0	-0.102
		Į	I

ECFP_6	-1236483485	$[^{*}]C(=[^{*}])N[c](:[^{*}]):$	-0.0747
FCFP_6	203677720	[*][c](C=[*]):[cH]:[*]	-0.0713

Model Prediction

Prediction: 0.0211

Unit: g/kg_body_weight

Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 6.59e-008

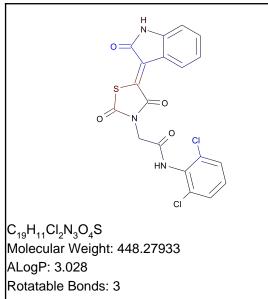
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	FUROSEMIDE	SALICYLAZOSULFAPYRI DINE	COUMAPHOS
Structure	HO HO HO NH2 CI O	HN CONTRACTOR	
Actual Endpoint (-log C)	4.04236	3.375	5.60537
Predicted Endpoint (-log C)	2.8614	2.80292	4.15004
Distance	0.730	0.759	0.783
Reference	NCI/NTP TR-356	NCI/NTP TR-457	NCI/NTP TR-96

TOPKAT Rat Maximum Tolerated Dose Feed


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC5 out of range. Value: 5.472. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.
- 2. OPS PC9 out of range. Value: 3.4423. Training min, max, SD, explained variance: -2.8548, 3.3954, 1.263, 0.0360.

Bit/Smiles	Feature Structure	Score
136627117		0.173

FCFP_2	-1143715940	(*]=C1[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	CI [*]:[c](:[*])OC	0.0749
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	(*]:[c](:[*])Cl	-0.134
FCFP_2	1872154524		-0.105
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.0829

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 0.0478

Unit: g/kg_body_weight

Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 1.82e-005

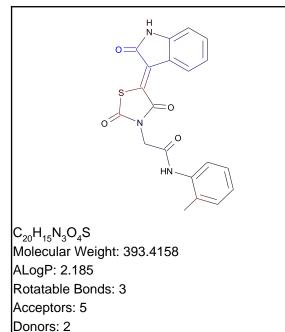
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	FUROSEMIDE	1-AMINO-2,4- DIBROMOANTHRAQUINO NE	OXAZEPAM
Structure	HO O HO O H H CI O S O	H ₂ N _M Br	HO the NH
Actual Endpoint (-log C)	4.04236	2.82966	3.05262
Predicted Endpoint (-log C)	2.8614	3.92444	3.13073
Distance	0.639	0.676	0.696
Reference	NCI/NTP TR-356	NCI/NTP TR-383	NCI/NTP TR-468

TOPKAT Rat Maximum Tolerated Dose Feed


Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

OPS PC5 out of range. Value: 5.6206. Training min, max, SD, explained variance: -3.3892, 1. 5.0834, 1.644, 0.0611.

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	-1143715940	[*]=C1[*][*]C(=[*])S1	0.095
	•		

FCFP_2	3 565998553	["]N1["]["]C(=["])C1= 0	0.0737 0.00813
	Top Features f	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	[*]:[c](:[*])Cl	-0.134
FCFP_2	1872154524	O → NH S → O O N → O C C C =O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.0829

Model Prediction

Prediction: 0.0398

Unit: g/kg_body_weight

Mahalanobis Distance: 10.8

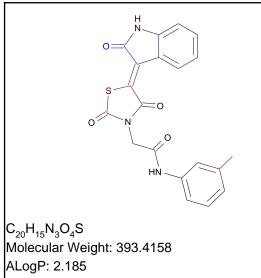
Mahalanobis Distance p-value: 1.74e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Maximum_Tolerated_Dose_Feed

Structural Similar Compounds				
Name	DAPSONE	FUROSEMIDE	ACETOHEXAMIDE	
Structure	H ₂ N OFS NH ₂	HO H H H H C I	NH ONH OSS OSS	
Actual Endpoint (-log C)	3.66258	4.04236	2.55683	
Predicted Endpoint (-log C)	3.26993	2.8614	3.62413	
Distance	0.594	0.621	0.634	
Reference	NCI/NTP TR-20	NCI/NTP TR-356	NCI/NTP TR-050	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Cont				
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	-1143715940	[*]=C1[*][*]C(=[*])S1	0.095	

FCFP_2	3		0.0737
FCFP_2	136120670	[*]:[c](:[*])C	0.064
		for negative contributio	
Fingerprint FCFP_2	Bit/Smiles 1872154524	Feature Structure	Score -0.105
		[*]C(=O)[*]	
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.0829
FCFP_2	1	$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $	-0.0796

Rotatable Bonds: 3

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 0.0398

Unit: g/kg_body_weight

Mahalanobis Distance: 10.8

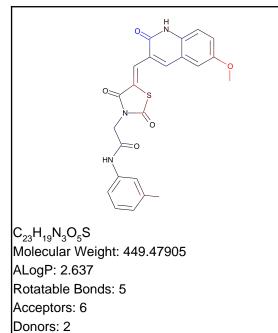
Mahalanobis Distance p-value: 1.74e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Maximum_Tolerated_Dose_Feed

Structural Similar Compounds				
Name	DAPSONE	FUROSEMIDE	ACETOHEXAMIDE	
Structure	H ₂ N OFS NH ₂	HO HO H H CI OFFO		
Actual Endpoint (-log C)	3.66258	4.04236	2.55683	
Predicted Endpoint (-log C)	3.26993	2.8614	3.62413	
Distance	0.594	0.621	0.634	
Reference	NCI/NTP TR-20	NCI/NTP TR-356	NCI/NTP TR-050	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Cont	ribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_2	-1143715940	[*]=C1[*][*]C(=[*])S1	0.095			

FCFP_2	3		0.0737
FCFP_2	136120670	[*]:[c](:[*])C	0.064
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.0829
FCFP_2	1	[*]=O	-0.0796

Model Prediction

Prediction: 0.0178

Unit: g/kg_body_weight

Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 5.02e-009

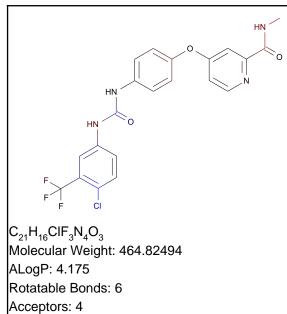
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds			
Name	FUROSEMIDE	SALICYLAZOSULFAPYRI DINE	ACETOHEXAMIDE
Structure	HO HO H NH2 CI NH2 CI	HN HO HN HO OCOH	
Actual Endpoint (-log C)	4.04236	3.375	2.55683
Predicted Endpoint (-log C)	2.8614	2.80292	3.62413
Distance	0.682	0.726	0.753
Reference	NCI/NTP TR-356	NCI/NTP TR-457	NCI/NTP TR-050

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

		for positive contribution	1
gerprint	Bit/Smiles	Feature Structure	Score
FP_2	136627117	^o → ^{NH} → ^o ^s → ^o ^k → [*]OC	0.173

FCFP_2	-1143715940	[*]=C1[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	(*]:[c](:[*])OC	0.0749
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.0829
FCFP_2	1	°, NH °, S °, S	-0.0796

Sorafenib

Donors: 3

Model Prediction

Prediction: 0.0885

Unit: g/kg_body_weight

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 1.76e-009

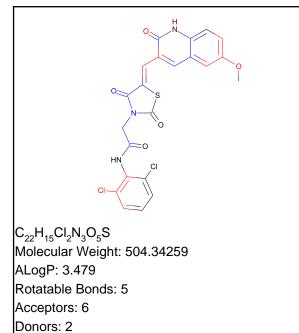
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	FUROSEMIDE	PHENOLPHTHALEIN	DISPERSE YELLOW 3
Structure	HO O HU NH2 CI OFSO	O OH O OH HO	OH NH
Actual Endpoint (-log C)	4.04236	2.20184	2.77703
Predicted Endpoint (-log C)	2.8614	2.8857	2.80195
Distance	0.741	0.780	0.799
Reference	NCI/NTP TR-356	NCI/NTP TR-465	NCI/NTP TR-222

TOPKAT Rat Maximum Tolerated Dose Feed


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

FCFP_2 FCFP_2	3 332760439		0.0737
		$F_{F} \subset I \\ [*]O[c](:[cH]:[*]):[c \\ H]:[*]$	
Fingerprint	Bit/Smiles	for negative contribution Feature Structure	Score
FCFP_2	71476542	$F_{F} \subset [*]:[c](:[*])CI$	-0.134
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.0829

Model Prediction

Prediction: 0.00054

Unit: g/kg_body_weight

Mahalanobis Distance: 12

Mahalanobis Distance p-value: 1.01e-008

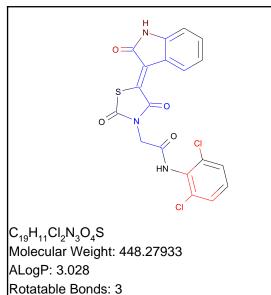
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH O		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.667	0.808	0.994
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 504.34. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. OPS PC5 out of range. Value: -4.1507. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 3. OPS PC10 out of range. Value: 2.77. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 4. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
			·		

FCFP_2	332760439	[*]O[c](:[cH]:[*]):[c H]:[*]	0.672
FCFP_2	32		0.526
FCFP_2	1		0.511
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N1[*][*]C(=[*])C1= 0	-0.348

FCFP_2	1872154524		-0.307
		ା () [*]C(=O)[*]	

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 0.0102

Unit: g/kg_body_weight

Mahalanobis Distance: 8.86

Mahalanobis Distance p-value: 0.000184

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

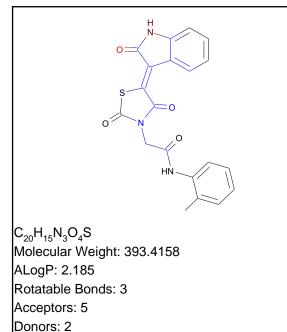
Structural Similar Compounds

Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH WANH OH OH WANH HO WAY WAY		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.622	0.756	0.795
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 448.28. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. OPS PC5 out of range. Value: -3.9859. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 3. OPS PC10 out of range. Value: 2.8356. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 4. Unknown FCFP_2 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 5. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 6. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O


Feature Contribution

Fingerprint	Bit/Smiles	Feature Structure	Score	
-------------	------------	-------------------	-------	--

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

FCFP_2	32	NH S N N C I C I C I	0.526
FCFP_2	1	NH S O N C I C I C I C I C I C I C I C I C I C	0.511
FCFP_2	367998008	[*][c](:[*]):[c](CI): [cH]:[*]	0.413
	Top Features	for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N1[*][*]C(=[*])C1= 0	-0.348

FCFP_2	1872154524		-0.307
		[⊢])⊂ [*]C(=O)[*]	

Model Prediction

Prediction: 0.138

Unit: g/kg_body_weight

Mahalanobis Distance: 8

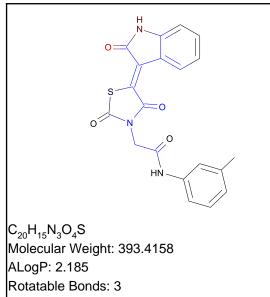
Mahalanobis Distance p-value: 0.00206

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	SULFISOOXAZOLE	PENICILLIN VK	OCHRATOXIN
Structure			OH OH HOW CI
Actual Endpoint (-log C)	2.82494	2.54455	6.28396
Predicted Endpoint (-log C)	3.0705	3.9702	5.12358
Distance	0.618	0.657	0.682
Reference	NCI/NTP TR-138	NCI/NTP TR-336	NCI/NTP TR-358


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 3. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 4. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1		0.511
		[*]=O	

FCFP_2	3	(*]N[*]	0.104
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N1[*][*]C(=[*])C1= 0	-0.348
FCFP_2	1872154524	[*]C(=O)[*]	-0.307

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 0.138

Unit: g/kg_body_weight

Mahalanobis Distance: 8

Mahalanobis Distance p-value: 0.00206

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Simila	a compounds		
Name	SULFISOOXAZOLE	PENICILLIN VK	OCHRATOXIN
Structure			OH OH HO WAY CI
Actual Endpoint (-log C)	2.82494	2.54455	6.28396
Predicted Endpoint (-log C)	3.0705	3.9702	5.12358
Distance	0.618	0.657	0.682
Reference	NCI/NTP TR-138	NCI/NTP TR-336	NCI/NTP TR-358

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 3. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 4. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1		0.511
		[]=0	

FCFP_2	3	(*]N[*]	0.104
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N1[*][*]C(=[*])C1= 0	-0.348
FCFP_2	1872154524	[*]C(=O)[*]	-0.307

Model Prediction

Prediction: 0.0074

Unit: g/kg_body_weight

Mahalanobis Distance: 10.5

Mahalanobis Distance p-value: 1.31e-006

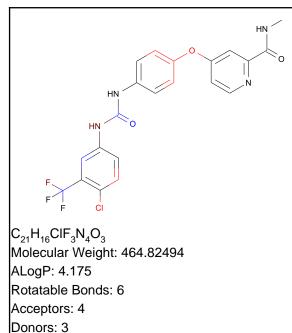
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds				
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE	
Structure	OH OH HOW THE			
Actual Endpoint (-log C)	6.28396	2.54455	2.82494	
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705	
Distance	0.658	0.679	0.837	
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 449.48. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 3. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

Fingerprint	Bit/Smiles	Feature Structure	Score
CFP_2	332760439	[*]O[c](:[cH]:[*]):[c H]:[*]	0.672

FCFP_2 FCFP_2	1 451847724	[*] = O	0.511
		[*]C(=CC(=[*])[*])[*]	
Fingerprint	Top Features Bit/Smiles	for negative contributio Feature Structure	n Score
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N1[*][']C(=['])C1= O	-0.348
FCFP_2	1872154524	°, NH °, S °, S	-0.307

Sorafenib

Model Prediction

Prediction: 0.000918

Unit: g/kg_body_weight

Mahalanobis Distance: 12.2

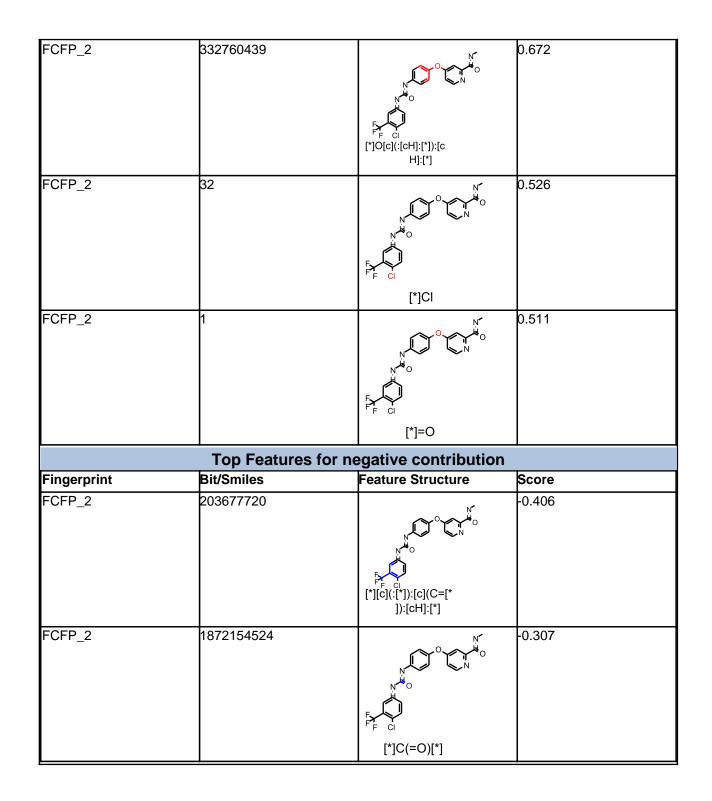
Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

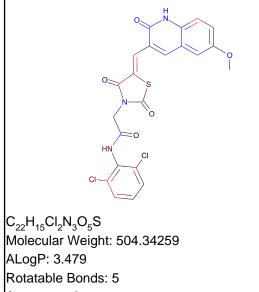
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

Structural Similar Compounds


Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK
Structure	OH O	H ₂ N O S N ^N H	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702
Distance	0.758	0.997	1.159
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: 1499521844: [*]NC(=O)N[*]
- 6. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F
- 7. Unknown FCFP_2 feature: 136686699: [*]NC

Top features for positive contribution				
ingerprint	Bit/Smiles	Feature Structure	Score	
	L		1	

FCFP_2	0	N	-0.29
		NHO	
		5 Q	
		FF CI	
		[*]C(=[*])[*]	

Acceptors: 6

Donors: 2

Model Prediction

Prediction: 0.576

Unit: g/kg_body_weight

Mahalanobis Distance: 24.1

Mahalanobis Distance p-value: 3.74e-026

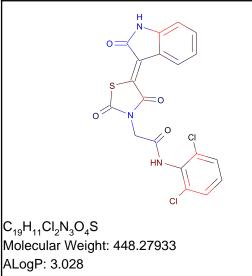
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	OCHRATOXIN A	ETHYL-bis- COUMACETATE	BROMOFENOXIME
Structure	OH O	OB O O O O O O O O O O O O O O O O O O	
Actual Endpoint (-log C)	4.305	2.687	2.622
Predicted Endpoint (-log C)	3.03558	2.7054	3.41798
Distance	0.644	0.661	0.662
Reference	FCTXAV 6;479;68	FEPRA7 10;303;51	85ARAE 2;203;77

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC58 out of range. Value: -4.1222. Training min, max, SD, explained variance: -4.0974, 5.4085, 1.034, 0.0039.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 4. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: 451371068: [*]C(=C[c](:[*]):[*])[*]
- 7. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl

Top features for positive contribution					
Fingerprint	Bit/Smiles Feature Structure Score				

ECFP_6	642810091	C [*][c](:[*]):[*]	0.281
ECFP_6	-1897341097		0.216
FCFP_6	436915834	CI CI CI CI CI CI CI CI CI CI CI CI CI C	0.184
	Top Features f	or negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	CI CI CI CI CI CI CI CI CI CI	-0.352
ECFP_6	-817402818		-0.263

ECFP_6	-176455838		-0.257
		сі () [*]O[c](:[cH]:[*]):[c H]:[*]	

Rotatable Bonds: 3

Acceptors: 5

Donors: 2

Model Prediction

Prediction: 0.838

Unit: g/kg_body_weight

Mahalanobis Distance: 21.3

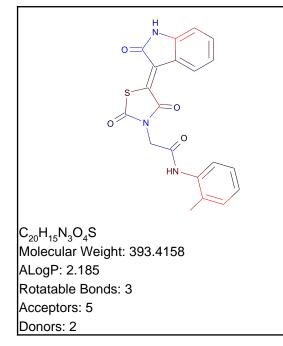
Mahalanobis Distance p-value: 2.05e-013

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	PIRETANIDE	OCHRATOXIN A	CLONITRALID
Structure	N ^N ^N ^N O O O O O O O O O O O O O O O O O H S O O O O	OH O	Clark O
Actual Endpoint (-log C)	1.811	4.305	2.816
Predicted Endpoint (-log C)	1.83976	3.03558	2.74335
Distance	0.618	0.622	0.650
Reference	DRFUD4 2;393;77	FCTXAV 6;479;68	85ARAE 3;103;76/77


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	642810091	(*][c](:[*]):[*]	0.281

ECFP_6	-1897341097	(*)NH (*)NH (*)NH (*)NH (*)NH (*)NH (*)NH (*)NH (*)NH (*)NH (*)	0.216
FCFP_6	436915834	[']\C=C\1/S['][']C1=[']	0.184
Fingerprint	Top Features f Bit/Smiles	or negative contributio Feature Structure	n Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
ECFP_6	-817402818		-0.263
FCFP_6	566058135	[*]NC(=O)C(=[*])[*]	-0.216

Model Prediction

Prediction: 1.03

Unit: g/kg_body_weight

Mahalanobis Distance: 21.7

Mahalanobis Distance p-value: 5.71e-015

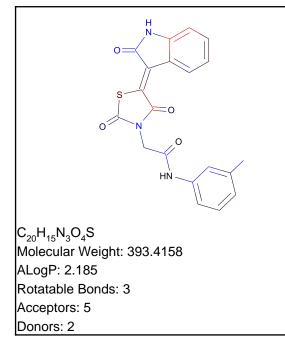
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	PIRETANIDE	PIROXICAM	1H-1;4-BENZODIAZEPINE- 1-CARBOXAMIDE; 2;3- DIHYDRO-N-METHYL-7- NITRO-2-OXO-5-PHENYL-
Structure	NH ² O O O O		
Actual Endpoint (-log C)	1.811	3.186	2.171
Predicted Endpoint (-log C)	1.83976	2.63418	2.64752
Distance	0.549	0.580	0.581
Reference	DRFUD4 2:393;77	ARZNAD 28;1714;78	TAKHAA 29;153;70

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	642810091	[*][c](:[*]):[*]	0.281	

ECFP_6	2147419938	[*][c](:[*]):[c](C):[cH]:[*]	0.263
ECFP_6	-1897341097	$\begin{bmatrix} & & \\ & $	0.216
F '		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
FCFP_6	566058135	[*]NC(=O)C(=[*])[*]	-0.216
ECFP_6	734603939	$ = \sum_{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	-0.201

Compound 13

Model Prediction

Prediction: 2.88

Unit: g/kg_body_weight

Mahalanobis Distance: 21.7

Mahalanobis Distance p-value: 5.71e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

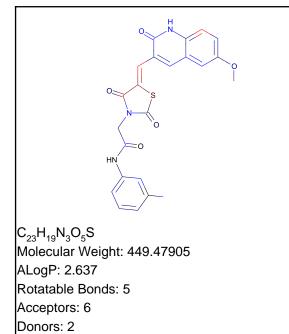
Structural Similar CompoundsNamePIRETANIDE1H-1;4-
BENZODIAZEPINE-1-
CARBOXAMIDE; 2;3-
DIHYDRO-N-METHYL-7-
NITRO-2-0XO-5-PHENYL-PIROXICAMStructureImage: Compound of the second seco

		ò	o ^{≠5} ≈o
Actual Endpoint (-log C)	1.811	2.171	3.186
Predicted Endpoint (-log C)	1.83976	2.64752	2.63418
Distance	0.549	0.581	0.582
Reference	DRFUD4 2;393;77	TAKHAA 29;153;70	ARZNAD 28;1714;78

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]


	i op leatures	for positive contributio	n
gerprint	Bit/Smiles	Feature Structure	Score

TOPKAT_Rat_Oral_LD50

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097		0.216
FCFP_6	436915834	[']\C=C\1/S['][']C1=[]	0.184
	Top Features f	or negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
FCFP_6	566058135	[*]NC(=O)C(=[*])[*]	-0.216

ECFP_6	734603939		-0.201
		[*]C	

Compound 14

Model Prediction

Prediction: 1.21

Unit: g/kg_body_weight

Mahalanobis Distance: 23.6

Mahalanobis Distance p-value: 1.42e-023

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

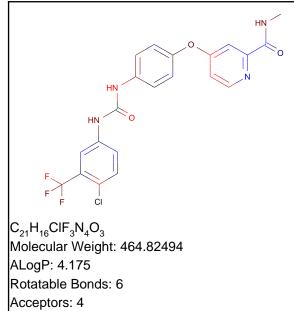
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	PIRETANIDE	ETHYL-bis- COUMACETATE	OCHRATOXIN A
Structure	O OH NH ² O SOO		HO NH
Actual Endpoint (-log C)	1.811	2.687	4.305
Predicted Endpoint (-log C)	1.83976	2.7054	3.03558
Distance	0.557	0.586	0.615
Reference	DRFUD4 2;393;77	FEPRA7 10;303;51	FCTXAV 6;479;68

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 4. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: 451371068: [*]C(=C[c](:[*]):[*])[*]

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	642810091	(*][c](:[*]):[*]	0.281	

ECFP_6	-1897341097		0.216
FCFP_6	436915834	(*)\C=C\1/S[*][*]C1=[*]	0.184
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	-0.257
FCFP_6	1676877079	[*]O[c] + H]:[*]:[c] ([*]):[c](C=[*]):[cH]:1	-0.254

Sorafenib

Donors: 3

Model Prediction

Prediction: 0.823

Unit: g/kg_body_weight

Mahalanobis Distance: 21

Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

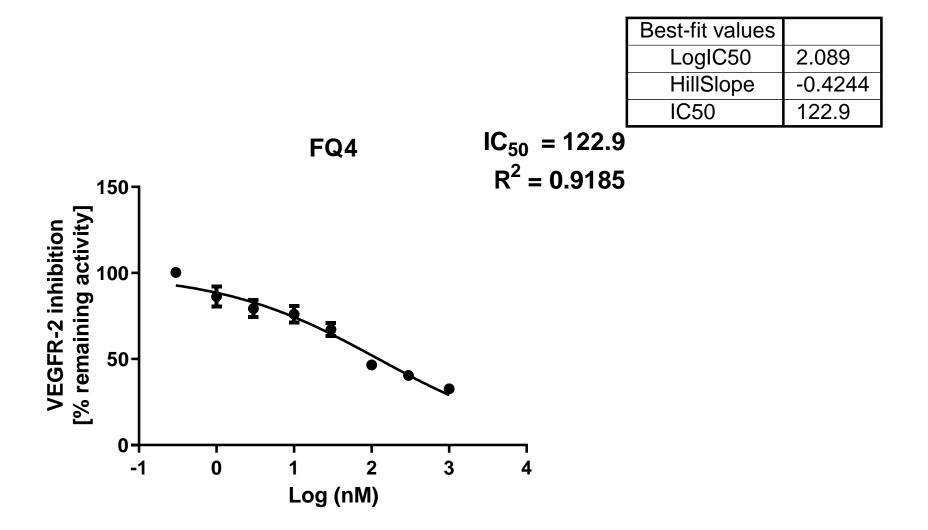
Structural Similar Compounds

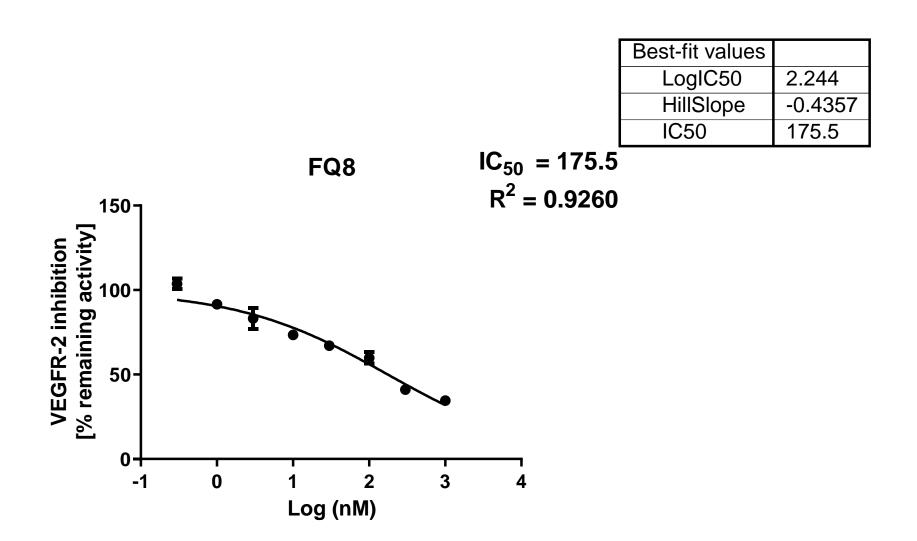
Name	FLUBENDAZOLE	PHOSPHORAMIDOTHIOIC ACID; ACETIMIDOYL-; O;O-bis-(p- CHLOROPHENYL)ESTER	BEZAFIBRATE
Structure			
Actual Endpoint (-log C)	2.088	5.006	1.946
Predicted Endpoint (-log C)	2.69288	3.23989	2.54395
Distance	0.697	0.703	0.721
Reference	YRTMA6 9;11;78	FMCHA2 -;C149;89	ARZNAD 30;2023;80

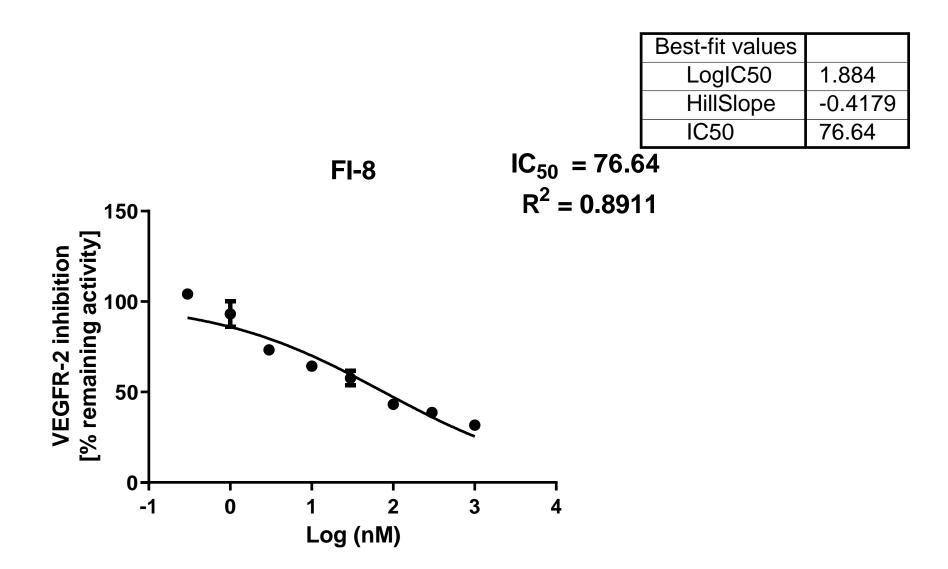
Model Applicability

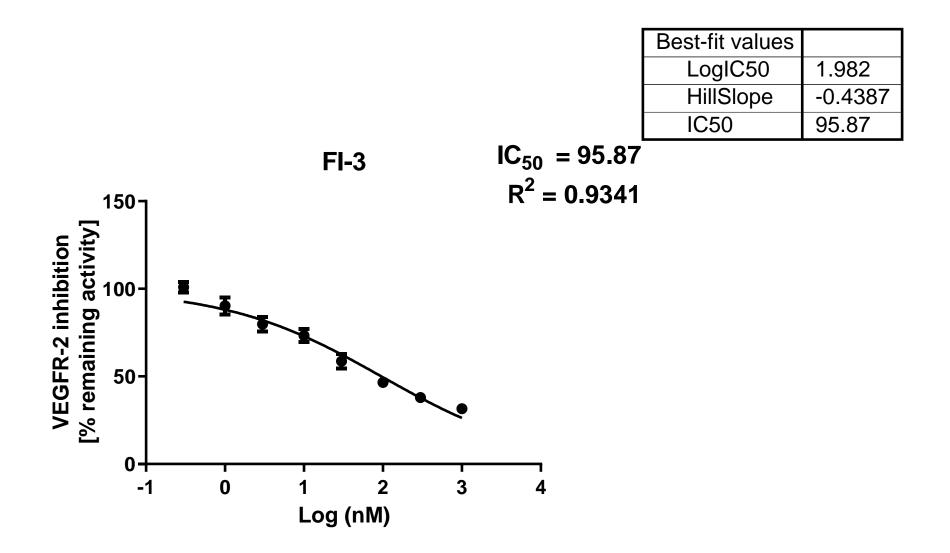
Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

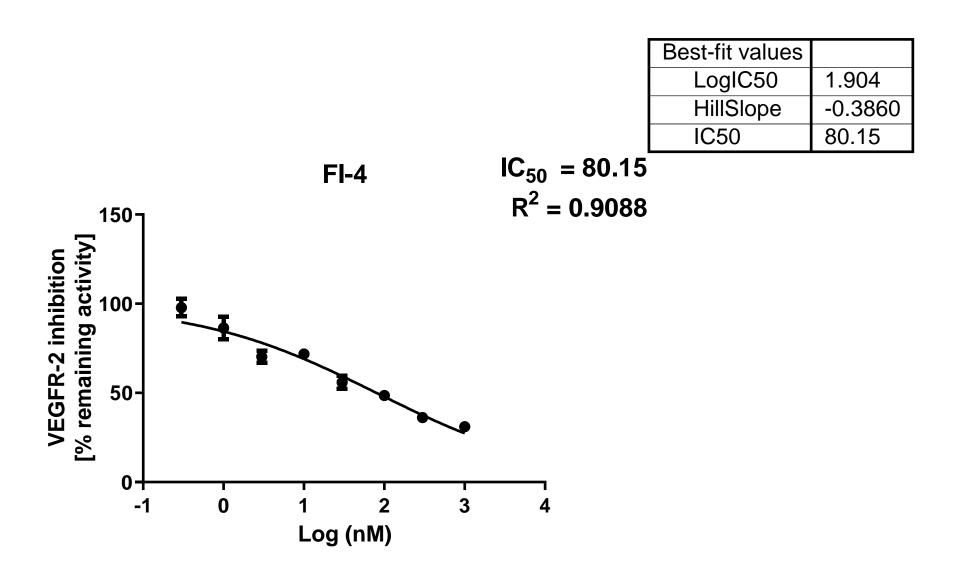
- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 4. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[cH]:[*]
- 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: 136686699: [*]NC

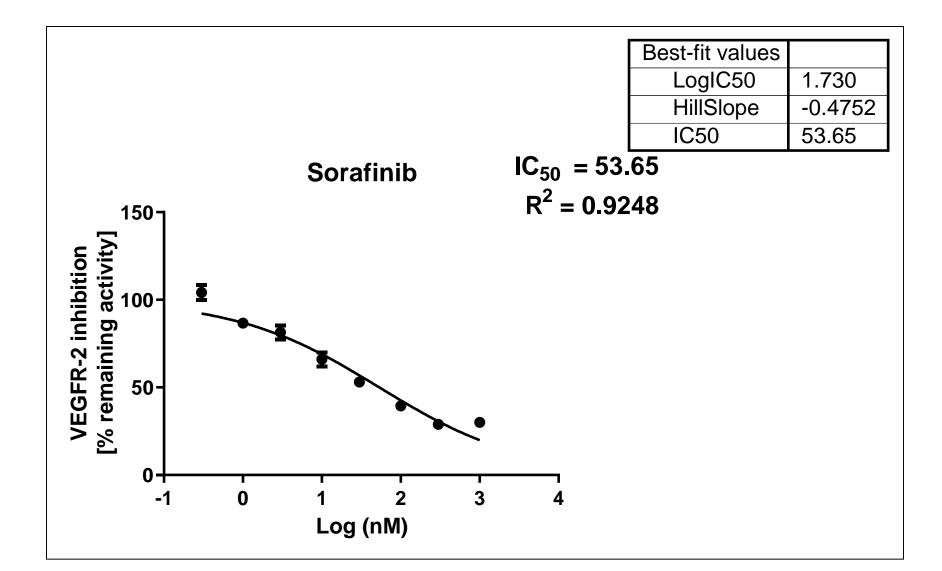

Feature Contribution


Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	


FCFP_6	71953198		0.392
ECFP_6	-1046436026	[*]C([*])([*])F	0.349
ECFP_6	642810091	$F_{F \in Ci}$	0.281
	Top Features	for negative contributior	า
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	226796801	[*]C([*])([*])F	-0.32
ECFP_6	-817402818	[*]CI	-0.263


ECFP_6	-176455838	Ņ	-0.257
		N ^N O L	
		l s ↓	
		'	
		H]:[*]	


RAW DATA OF VEGFR-2 ASSAY



VEGFR-2 assay of compound Sorafenib

