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Abstract
Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide
association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained
0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-
analyses.
Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association re-
sults from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants
were selected for follow-up in an independent dataset (UK Biobank, N¼134 251). Conditional and gene-based testing was
undertaken, and variants were investigated with bioinformatics methods.
We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established
heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71,
DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve
tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2
and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrich-
ment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle
samples by including our novel variants.
Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up
functional studies.

Introduction
Increased resting heart rate (HR) is a known risk factor for car-
diovascular morbidity and mortality (1–3), including stroke (4)
and sudden cardiac death (5,6). Heart rate increased by 20 beats
per minute (BPM) is associated with 30-50% higher mortality
and appears to be independent of confounder factors (7). High
HR increases myocardial oxygen consumption yet lessens oxy-
gen delivery to myocardial tissue. It also increases arterial stiff-
ness and risk of plaque rupture (8). Although HR can be
influenced by many non-genetic factors (e.g. exercise, smoking

and cardiovascular drugs), the heritability of resting HR is esti-
mated to be 26–32% from family studies (9,10), and 55–63% from
twin studies (11).

Several meta-analyses of genome-wide association studies
(GWASs) have been undertaken to detect genetic determinants
of HR (12–16). There were 21 HR loci previously reported at the
time of our study by den Hoed et al. (12) in a GWAS analysis of
180 000 individuals, predominantly of European ancestry. The
study implicated 20 candidate genes from follow-up functional
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studies in Danio rerio and Drosophila melanogaster models.
Smaller GWAS analyses have also been performed in Icelandic
and Norwegian populations (15), African Americans (13) and
genetically isolated European populations (16). The variants dis-
covered by GWAS are common, and are mostly in introns or
intergenic regions. Together the previous loci from GWAS at the
time of our study only explain a small percentage [0.9% of the
variability in HR (12,17)].

To increase our knowledge of genetic determinants influ-
encing HR and discover novel loci, especially rare or low fre-
quency coding variants with larger effects, we meta-analysed
data from 104 452 individuals of European-ancestry using the
Exome Chip, from cohorts that participated in the Cohorts for
Heart & Aging Research in Genomic Epidemiology (CHARGE)
EKG consortium. The Exome Chip permits a cost-efficient
analysis of coding variants derived from sequencing
of>12 000 individuals and includes many rare and low-fre-
quency variants (18). We performed a validation experiment
using independent replication samples from UK Biobank
data, and bioinformatics investigations to gain an under-
standing of the new HR loci.

Results
Single-nucleotide variant analysis in individuals of
European-ancestry

In the discovery phase, association results of 235 677 single-nu-
cleotide variants (SNVs) from 104 452 individuals were meta-
analysed using a fixed-effects model (Supplementary Material,
Fig. S1). Two analyses were performed. The first used RR-inter-
vals (RR in milliseconds¼ 60 000/HR, in beats per minute, ac-
cording to the inverse relationship between HR and RR). The
second used the inverse-normalized residuals of the linear re-
gression RR-interval adjusted for ageþ sexþbody mass index
(BMI) as covariates (denoted as RR-INVN). An overview of the
study design is provided in Figure 1.

We observed a high correlation of effect sizes and P-values
between the RR-interval and RR-INVN meta-analyses (r2¼ 0.99
and 0.98, respectively; Supplementary Material, Fig. S2).
Furthermore, the RR-interval was near-normally distributed,
so inverse normalization was deemed unnecessary
(Supplementary Material, Fig. S3).

Beta-blockers are clinically known to lower HR, therefore
the phenotype measurements of beta-blocker users may be
under-estimated, and hence the inclusion of beta-blocker
users in our analysis may potentially bias our analysis results.
We therefore performed a sensitivity analysis by also meta-
analysing a subgroup of cohorts that provided beta-blocker
data (N¼ 48 347; 17 cohorts). Results including or excluding
beta-blocker users were highly correlated (r2 of the
betas¼ 0.97; r2 of the P-values¼ 0.74; Supplementary Material,
Fig. S4), suggesting there is little or no bias from including
beta-blocker users in the analysis. Therefore we report the
meta-analysis results from the full dataset for the RR-interval,
to maximize sample size and power.

Replication and meta-analysis with the UK Biobank
dataset

To identify novel associated loci, we selected 12 variants with
P< 1� 10�5 that mapped outside the 21 HR loci reported in the
previous GWAS (12) for follow-up in an independent dataset.
Within each unknown locus, there were no potential secondary

SNVs not in linkage disequilibrium (LD) with the lead SNV
(r2< 0.2) and meeting our look-up significance threshold
(P< 1� 10�5). Hence only 12 new lead SNVs were carried for-
ward. We also followed-up 12 potential secondary signals at 9 of
the 21 previously reported HR loci (further details on selection
criteria are provided in the Materials and Methods) (12). None of
the selected variants was in LD (r2< 0.2) with each other, or with
the published SNVs. Thus, a total of 24 variants were taken for-
ward into replication. The UK Biobank dataset provided results
for the selected genetic variants (N¼ 134 251 individuals).

Nine of the 12 previously unknown variants were validated
based on exome-wide significance (P� 2.12� 10�7) in the com-
bined meta-analysis of CHARGE and UK Biobank data, and on
Bonferroni-adjusted significance (P� 0.0042 for 12 tests) in the
replication dataset alone, with concordant directions of effects
taking into account the inverse relationship between the RR-
interval from the discovery data and HR from the replication
data (Table 1; Fig. 2). Indeed, all nine SNV associations were
genome-wide significant in the combined meta-analysis
(P< 5.0� 10�8). Four of our nine validated novel loci were re-
ported in a UK Biobank study (17) that was published after com-
pletion of our study (Table 1B). Hence, we present results here
for five unreported novel loci (Table 1A; Supplementary
Material, Figs S5 and S6).

Twelve of the 21 HR-associated SNVs from the previously re-
ported GWAS (12) were covered on the Exome Chip, either dir-
ectly or by a proxy SNV in high LD (r2> 0.8). Our discovery meta-
analysis showed strong support for the previous findings, with
11 of the 12 SNVs validated at Bonferroni-adjusted significance
(P� 0.0042 for 12 tests), of which nine were validated at exome-
wide significance (P< 2� 10�7; Fig. 2). Only rs4140885 at the TFPI
locus was not supported in our data (P¼ 0.10; Supplementary
Material, Table S1).

Independent secondary signals at known loci

All 12 potential secondary signals at loci previously reported by
den Hoed et al. (12) were genome-wide significant in the com-
bined meta-analysis (Supplementary Material, Table S2) and are
independent to the known SNPs according to LD (r2< 0.2). We
performed a conditional analysis using Genome-wide Complex
Traits Analysis (GCTA) to formally identify secondary signals of
association. Five of the 12 validated potential secondary SNVs
(within CD46, CCDC141, SLC35F1, ACHE and KIAA1755 loci) were
selected within the final GCTA model (Supplementary Material,
Table S3). At four of the previously reported HR regions the sec-
ondary signals that we identified were confirmed to be statistic-
ally independent signals of association: CD46 (rs2745967),
CCDC141 (rs10497529), SLC35F1 (rs12210810) and KIAA1755
(rs41282820) in addition to the known SNV, as both the pub-
lished SNV and the new secondary SNV were present in the
final GCTA model of jointly independent associated variants.
Hence, we identified two distinct signals of association at each
of these four known HR loci. However, the published SNV at the
ACHE locus (rs13245899) is not covered on the Exome Chip, or by
any proxies (Supplementary Material, Table S1), so the GCTA
analysis does not include the known variant. As we are not able
to condition on the unavailable published SNV and formally
test association jointly with the known SNV, we are unable to
statistically confirm the total number of independent signals at
the ACHE locus.

The secondary SNVs at CCDC141, ACHE and KIAA1755 are
non-synonymous variants. Furthermore, the SNVs at CCDC141
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and KIAA1755 are low-frequency with minor allele frequencies
(MAFs) of 3.6 and 1.7%, respectively. Secondary signals have
also recently been observed at four of the five loci (CD46,
CCDC141, SLC35F1 and ACHE) in UK Biobank data (17), since
completion of our meta-analysis. At CD46, our secondary SNV
(rs2745967) is in high LD (r2¼ 0.78) with the secondary SNV
(rs2745959) reported in UK Biobank, so likely to be the same sig-
nal. At CCDC141 our secondary variant is exactly the same SNV
as from UK Biobank (rs10497529). Similarly, at SLC35F1, our sec-
ondary SNV (rs12210810) is in very high LD (r2¼ 0.98), so is likely
to be the same signal. Hence at these three known loci (CD46,
CCDC141, SLC35F1), all existing data suggest there are two inde-
pendent signals of association. At the ACHE locus, our second-
ary SNV (rs542137; �38 kb and r2< 0.2 from the published SNV)
is not in LD (r2< 0.2) with the secondary SNV from UK Biobank
(rs140367586; �659 kb and r2< 0.2 from the published SNV). We

are unable to clearly determine the number of distinct signals at
the ACHE locus from our Exome Chip RR-interval discovery
meta-analysis data, without the published SNV being covered
on the Exome Chip. The low-frequency non-synonymous vari-
ant (rs41282820) at the known KIAA1755 locus is a new, second-
ary variant, with strong evidence of independent association, it
does not overlap with other published findings.

Variance explained

Twelve of the 21 previously reported HR-associated SNVs (12)
covered on the Exome Chip explain 1.14% of RR-interval vari-
ance (P¼ 3.96� 10�10) within the 1958 Birth Cohort study (see
Materials and Methods). The added contribution of the lead
SNVs at our five unreported novel loci, combined with the 12

Figure 1. Schematic flow diagram of the study design. N, sample size; SKAT, SNV-set Kernel Association Test; P, P-value; LD, linkage disequilibrium; SNV, single nucleo-

tide variant; GCTA, Genome-wide Complex Traits Analysis software; 1958BC, 1958 Birth Cohort; UKB, UK Biobank.
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previously reported SNVs, increases the variance explained to
1.28% overall (P¼ 9.17� 10�11).

Comparison of results between European and
non-European populations

To investigate our data from non-European samples [9358
African Americans (AA), 1411 Hispanic (HIS) and 754
Chinese-Americans (CH); Supplementary Material, Table S4], we
first extracted results for the 12 of the 21 previously reported

HR-associated SNVs covered on the Exome Chip (12). In contrast
to previous results for Europeans, only two known HR-SNVs
showed evidence of association (P< 0.05), at the GJA1 and MYH6
loci, in the AA population only. This is likely due to a lack of
power from the smaller non-European sample sizes, consider-
ing the power was calculated to be only 48, 11.7 and 8.5% for AA,
HIS and CH, respectively. Concordance in the direction of effects
compared with Europeans was only significant for AA, with 92,
64 and 50% concordance, corresponding to P-values of
2.9� 10�3, 0.16 and 0.23 from binomial tests for AA, HIS and CH,

Figure 2. Manhattan plot for the RR-interval discovery meta-analysis in European individuals. The Manhattan plot displays the results from the discovery meta-analy-

sis of RR-intervals from N ¼ 104,452 individuals of European ancestry (from 30 cohorts). On the X axis, P-values are expressed as �log10(P) are plotted according to phys-

ical genomic locations by chromosome. The Y-axis is truncated to �log10(P) ¼ 20 with any variants with P < 1 � 10�20 displayed on the �log10(P) ¼ 20 line. The nine

novel variants validated from the combined meta-analysis with UK Biobank data are represented by squares. Variants in linkage disequilibrium (LD; r2 > 0.8) with pub-

lished GWAS variants are highlighted with black circles (12). New secondary variants validated in our analysis are indicated as triangles. Locus names of the novel loci

correspond to the nearest annotated gene, with 5p13.3 denoting an intergenic variant. The dashed line indicates a P-value threshold of 1 � 10�5, corresponding to the

lookup significance threshold and the continuous line indicates a P-value threshold of 2 � 10�7, corresponding to exome-wide significance.

Table 1. Heart rate-associated loci identified from Exome Chip analysis

SNV Locus Chr:Pos EA EAF Ndiscovery BETA-RR (SE) Pdiscovery BETA-HR (SE) Preplication Pcombined

(A) Five unreported novel loci
rs17853159a TESK2 1:45810865 A 0.07 104 452 �6.03 (1.20) 5.02� 10�7 0.31 (0.08) 9.55� 10�5 4.09� 10�10

rs3087866a DALRD3 3:49054692 T 0.25 104 452 3.29 (0.72) 4.92� 10�6 �0.31 (0.05) 7.06� 10�10 2.09� 10�14

rs1635852 JAZF1 7:28189411 C 0.50 104 452 2.96 (0.62) 2.04� 10�6 �0.15 (0.04) 4.10� 10�4 6.97� 10�9

rs10857472a C10orf71 10:50534599 A 0.45 104 452 �2.97 (0.63) 2.11� 10�6 0.16 (0.04) 1.49� 10�4 2.21� 10�9

rs3793706a,b SEC31B 10:102269085 A 0.22 104 452 3.52 (0.75) 2.54� 10�6 �0.19 (0.05) 2.06� 10�4 3.72� 10�9

(B) Four loci validated in our study and also recently published in the UK Biobank study
rs709209a RNF207 1:6278414 G 0.35 104 452 �3.30 (0.66) 4.94� 10�7 0.27 (0.04) 2.14� 10�9 5.44� 10�15

rs6795970a SCN10A 3:38766675 A 0.40 104 452 2.97 (0.64) 3.10� 10�6 �0.24 (0.04) 1.81� 10�8 2.73� 10�13

rs4282331 5p13.3 5:30881510 G 0.42 104 452 �3.56 (0.63) 2.03� 10�8 0.26 (0.04) 2.97� 10�9 3.34� 10�16

rs12004a KDELR3 22:38877461 G 0.30 104 452 3.30 (0.68) 1.24� 10�6 �0.31 (0.05) 4.92� 10�11 4.04� 10�16

Due to the inverse relationship between R-R interval and HR the opposite beta directions do relate to concordant directions of effect between discovery and replication.

SNV, single-nucleotide variant; Chr:Pos, Chromosome:Position based on HG build 19; EA, effect allele; EAF, effect allele frequency from the discovery data; BETA-RR,

beta effect estimate of RR-interval (milliseconds) taken from the ExomeRR discovery data; SE, standard error of the effect estimate; N, sample size analysed per variant

(provided for genotyped discovery data only, as replication data was imputed so N¼maximum N for all variants); BETA-HR, beta effect for heart rate (in beats per mi-

nute) taken from the UK Biobank replication data; P, P-value from either the discovery meta-analysis, the replication data, or the combined meta-analysis of discovery

and replication data. Locus name indicates the nearest gene to the HR-associated SNV.
aIndicates that the lead or a proxy SNV (r2>0.8) is a non-synonymous SNV.
bIndicates if the lead SNV is predicted to be damaging. Mapping to more than 500 kb from either side of a previously reported HR-associated SNV. A novel locus is a

genomic region with no SNVs in LD (r2<0.2) with HR-associated SNVs.
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respectively. The lack of support of previous findings from the
under-powered non-European data led us to restrict our pri-
mary discovery meta-analysis to Europeans only.

We also performed a look-up of the nine validated SNV asso-
ciations in the non-European samples. Due to the lack of power,
and different allele frequencies compared with Europeans,
none of the SNVs had results with P< 0.05 within any ancestry
(Supplementary Material, Fig. S6), and there was little concord-
ance in effect directions: 56% and P¼ 0.246 for AA; 33% and
P¼ 0.164 for HIS and CH.

Gene-based tests

Gene-based testing was performed to identify genes which may
have multiple rare variant associations. None of the gene-based
test results was significant, after excluding the single most sig-
nificant low-frequency variant from the tests (Supplementary
Material, Table S5).

Look-up of UK Biobank HR-SNVs

Since completion of our meta-analysis of Exome Chip geno-
types, a genome-wide scan for HR has been completed in UK
Biobank (17). This study published 46 new HR loci. Four of these
novel loci were simultaneously discovered in our analyses
(RNF207, SCN10A, 5p13.3, KDELR3:Table 1B). Among the 42 re-
maining UK Biobank loci, only five of the lead SNVs were cov-
ered on the Exome Chip at r2 � 0.8. Results from our exome RR
European-ancestry meta-analyses show support for all five of
these loci (P< 0.01; Bonferroni-adjusted significance for five
tests; Supplementary Material, Table S6).

HR loci and association with other traits

To provide insights into possible shared aetiologies or mechan-
isms of disease, we assessed association of our five unreported
novel HR-SNVs (and their proxies, r2� 0.8) with other traits.
Genome-wide significant phenotype–genotype associations
were observed for three novel loci (Supplementary Material,
Table S7). The SNV at the DLRD3 locus was associated with age
of menarche. The SNV at the JAZF1 locus was highly pleiotropic,
as shown by associations with several autoimmune disorders
(systemic lupus erythematosus, Crohn’s disease and selective
immunoglobulin A deficiency), height, type 2 diabetes and
JAZF1 transcript levels in adipose tissue. The SNV at the SEC31B
locus was associated with plasma palmitoleic acid levels and
differential exon expression of SEC31B.

Functional annotation of novel HR-SNVs and candidate
genes

Four of the five unreported novel HR-SNVs or their proxies
(r2> 0.8) are non-synonymous SNVs in TESK2, DALRD3, C10orf71
and SEC31B (Table 1A). The non-synonymous SNV in SEC31B
(rs2295774, c.1096T>G, p.Ser332Ala) is in a conserved region of
the protein, and is predicted to be damaging using three differ-
ent algorithms in ANNOVAR (19). We also investigated whether
the novel HR-associated SNVs or their proxies (r2> 0.8) were
associated with changes in expression levels of nearby genes
(i.e. as expression quantitative trait loci, or eQTLs) in the
Genotype-Tissue Expression database (GTEx) dataset (20). We
observed a significant eQTL association at one novel HR locus
(Supplementary Material, Table S8). Specifically, the HR

increasing allele of the non-synonymous SNV at SEC31B was
associated with increased levels of SEC31B in tibial nerves
(P¼ 8.08 � 10�33), lung (P¼ 1.22 � 10�23), atrial appendage tissue
(P¼ 4.56 � 10�11) and the left ventricle (P¼ 4.0 � 10�9), tissues
which may be regarded as physiologically relevant for HR.

We also observed HR loci to be significantly enriched for
DNase I hypersensitive sites (DHSs; Fig. 3). We evaluated regions
containing the five unreported novel HR loci and five independ-
ent secondary variants at previously reported HR loci (12) to-
gether with all 67 published HR-associated SNVs [21 loci
reported from the original GWAS (12) plus 46 loci recently pub-
lished from UK Biobank (17)]. Highest enrichment for DHSs in
HR loci occurred within regions that are transcriptionally active
in fetal heart tissue and fetal lung, as reported in the UK
Biobank study. Moreover, for the first time we found significant
enrichment for DHSs in human neuronal progenitor cells
(derived from embryonic stem cells) and fetal muscle samples,
with the inclusion of our novel loci.

Pathway analyses

We used Ingenuity pathway analyses to determine whether
there was any increased enrichment in HR-associated pathways
with the contribution of our five newly identified loci. We iden-
tified 16 significantly enriched pathways at P< 1� 10�4. Most of
these pathways are related to the cardiovascular system and in-
volve, for example, supraventricular arrhythmias, dilated car-
diomyopathy and HR (Supplementary Material, Table S9).

Coding variants at HR loci

The Exome Chip provides a unique opportunity to search for
coding variants within known HR loci. Although GWAS analyses
typically identify intron or intergenic variants, Exome Chip ana-
lysis may identify HR-associated coding variants, which would
point to candidate causal genes. We considered all 67 published
HR loci [21 previously reported GWAS loci (12) plus 46 recently
published loci from UK Biobank (17)] and extracted all SNVs in
high LD with the lead variants (r2� 0.8), tagging the same asso-
ciation signal, restricted to variants covered on the Exome Chip.
We further filtered variants to obtain SNVs that reached exome-
wide significance for associations with RR-interval in our pri-
mary discovery meta-analysis, to ensure that variants have a
highly significant association with the trait. Coding SNVs were
identified, using the CHARGE Exome Chip annotation file.

We only observed two such coding variants in two reported
loci: CCDC141 and KIAA1755. The published CCDC141 coding
variant was previously annotated as being non-synonymous
(12), and is predicted to be damaging in our annotation
(rs17362588; p.Arg935Trp). The coding SNV at KIAA1755 is the
best proxy (r2 � 1) for the published non-synonymous SNV
(rs6127471) covered on the Exome Chip (Supplementary
Material, Table S1). The original GWAS (12) had reported this
signal as non-synonymous. Therefore, our Exome Chip analyses
do not reveal any new evidence of likely causal coding variants
at well-established HR loci.

Regulatory variants at HR loci

Our analyses of coding variants at all known HR loci indicated
that the majority of HR-associated SNVs and the variants in
high LD with them are non-coding. We thus investigated which
variants could have a causal effect through regulatory

2353Human Molecular Genetics, 2017, Vol. 26, No. 12 |

Deleted Text: to
Deleted Text: Supplementary Figure 
Deleted Text: ere
Deleted Text: Supplementary Table 
Deleted Text: <italic>B</italic>
Deleted Text: <italic>heart rate</italic> 
Deleted Text: 5 
Deleted Text: r<sup>2</sup>
Deleted Text: 5 
Deleted Text: Supplementary Table 
Deleted Text: Heart rate
Deleted Text:  
Deleted Text: r<sup>2</sup>
Deleted Text: -
Deleted Text: Supplementary Table 
Deleted Text: ,
Deleted Text: ,
Deleted Text: <italic>heart rate</italic> 
Deleted Text:  
Deleted Text: r<sup>2</sup>
Deleted Text: ,
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: if 
Deleted Text: r<sup>2</sup>
Deleted Text: ,
Deleted Text: Supplementary Table 
Deleted Text: x 
Deleted Text: x 
Deleted Text: x 
Deleted Text: ,
Deleted Text: x 
Deleted Text: ,
Deleted Text: (
Deleted Text: )
Deleted Text: if 
Deleted Text:  
Deleted Text: ,
Deleted Text: heart rate
Deleted Text: Supplementary Table 
Deleted Text: <italic>heart rate</italic>
Deleted Text: Whereas 
Deleted Text: (
Deleted Text: ,
Deleted Text: )
Deleted Text: r<sup>2</sup>
Deleted Text:  
Deleted Text: r<sup>2</sup>
Deleted Text: Supplementary Table 
Deleted Text: <italic>heart rate</italic>


chromatin interactions, such as promoter–enhancer contacts.
We considered all 67 published HR loci [21 previously reported
GWAS loci (12) plus 46 recently published loci from UK Biobank
(17)], and the five novel loci reported here. We found variants
that potentially affect enhancer function using RegulomeDB
(21) and found genes whose promoter regions form significant
chromatin interaction with them from right ventricle Hi-C data
(22). We found 64 potential target genes in 49 HR loci (4 new loci,
18 loci from the GWAS and 27 loci from the UK Biobank study;
Supplementary Material, Table S10). Including these long-range
interactors in the candidate causal genes list increased the sig-
nificance of enrichment for many HR-related terms, such as ar-
rhythmia and cardiac fibrillation in our IngenuityVR Pathway
Analysis (IPAVR ; Supplementary Material, Table S11).

For newly identified loci, the TESK2 promoter had a long-
range interaction with the SNVs with highest regulatory

potential in the locus, underlining it as a candidate. LOC441204,
a gene of unknown function was found to interact with the
JAZF1 locus. At the SEC31B locus, there were interactions with
two genes, SCD and SLF2. At the C10orf71 locus, MAPK8 showed
the most significant interaction.

In the 21 loci from the previously published GWAS (12), we
identified significant chromatin contacts for the regulatory
SNVs of 18 loci. We found CALCRL, TTN, HTR2B, PLD1 and CHRM2
as strongest interactors at the TFPI, CCDC141, B3GNT7, FNDC3B
and CHRM2 loci, respectively, out of these only CALCRL is in LD
(r2 > 0.8) with the lead SNV. The previous study (12) functionally
tested 31 candidate genes, they found 20 of them to have an HR
phenotype in either Drosophila melanogaster or Danio rerio experi-
ments. All five of the strongest interactor genes were amongst
the 20 genes with an HR phenotype.

Finally, we found 41 potential causal genes that have not
been implicated by previous GWASs. A few of these genes have
a cardiac function, including RAPGEF4 (18) and PIM1 (23),
whereas some are involved in neuronal development and func-
tion, e.g. PBX3, NRNX3. These candidates open up new avenues
that may aid our understanding of HR biology.

Discussion
Our meta-analysis of Exome Chip genotypes yielded five unre-
ported novel HR loci, and one unreported independent new sec-
ondary signal, which was a low-frequency non-synonymous
SNV at the previously reported KIAA1755 locus. Our data
strongly supported the association of SNVs at 11 of the 12 previ-
ously reported GWAS loci that were covered on the Exome Chip.
All lead SNVs at all validated novel loci are common (MAF� 5%)
and have similar effect sizes, which are smaller than the effect
sizes for the majority of previously reported SNVs
(Supplementary Material, Fig. S7). Our study did not yield any
rare SNV associations with HR, indicating that much larger
sample sizes will be required in future studies to have sufficient
power to detect effects of any rare variants and assess their con-
tributions to HR heritability.

The same observation of the need of larger sample sizes
applies to the analysis of HR loci identified within Europeans in
other ancestries, where the lack of significance and concord-
ance in the results from non-European populations is most
likely due to a lack of power, as well as differences in the allele
frequencies and LD patterns between Europeans and non-
Europeans. As the non-European samples were much smaller,
we did not perform a comprehensive comparison across popu-
lations or a robust trans-ethnic meta-analysis.

Annotation of novel HR-SNVs or their close proxies, eQTL
analyses and long-range chromatin interactions in heart tissue
reveal new potential causal candidate HR genes
(Supplementary Material, Tables S10 and S12). At the SEC31B
locus there is a predicted damaging non-synonymous variant in
SEC31B, and SNVs at this locus are also significantly associated
with SEC31B expression levels. Although its precise function is
unknown, the SEC31B gene encodes SEC31 homolog B, a COPII
coat complex component. SEC31B has been proposed to func-
tion in vesicle budding, and cargo export from the endoplasmic
reticulum (24). The gene is ubiquitously expressed at low levels,
but there are higher levels of expression in the cerebellum.
There are 13 transcripts, and thus several predicted SEC31B pro-
teins. The major isoform is 129 kDa, but the HR-associated non-
synonymous SNV maps to all SEC31B transcripts. There are no
existing mouse models, and the predicted protein does not dir-
ectly interact with other proteins or pathways currently

Figure 3. Enrichment of HR-SNVs in DNase I hypersensitive sites of 299 tissue

samples. The right panel shows the enrichment of the combined known and

novel (all) HR-SNVs in DNase I hypersensitivity sites of 212 Roadmap Epigenome

tissue samples (those with positive Z-scores). Enrichment is expressed as a

Z-score compared with the distribution of 1000 matched background SNV sets.

Significant enrichments are shown in red (Z-score � 2.58, false discovery rate

(FDR) <1.5%), enrichments below this threshold are shown in blue. The left

panel shows the enrichment difference (DZscore¼ Zscoreall � Zscoreknown) for

those tissue samples in which we found significant enrichment using all SNPs

and that further show a positive change using all SNVs compared with only

known SNVs, with increased enrichment hence due to the novel loci identified.
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recognized as being important to HR. Chromatin interactions in
heart tissue indicate SCD and SLF2 as two other candidate genes
for consideration at this locus. SCD encodes a stearoyl-CoA
desaturase, which has a role in myocardial dysfunction (25) and
SLF2 encodes the SMC5–SMC6 complex localization factor 2.
TESK2, C10orf71 and DALRD3 can be considered as candidates
for further analyses, based on the lead SNVs being non-
synonymous variants in each gene. TESK2 encodes a serine/
threonine protein kinase with an N-terminal protein kinase do-
main that is structurally similar to the kinase domains of testis-
specific protein kinase-1 and the LIM motif-containing protein
kinases. TESK2 is ubiquitously expressed, but its function is un-
known (26). There is also support for TESK2 from the chromatin
interaction analyses. C10orf71 encodes an open reading frame
of unknown function that is highly expressed in heart and skel-
etal muscle. Chromatin interaction analyses indicate MAPK8 as
a second candidate gene at the C10orf71 locus, MAPK8 is
involved in formation of the heart as well as HR regulation
(27,28). DALRD3 encodes a protein with a DALR anticodon-bind-
ing domain similar to that of class Ia aminoacyl tRNA synthe-
tases (29).

The conditional analysis results provided one new, unre-
ported association at a previously reported HR locus, KIAA1755
(rs41282820; c.1528C>T or c.1528C>A; p. Arg510Ter, a loss of
function variant). KIAA1755 is predicted to encode an uncharac-
terized protein, and is only characterized at the transcriptional
level. The transcript is highly expressed in the brain and nerves,
and it is also expressed in the heart.

Our analyses and the recently published UK Biobank ana-
lyses (17) discovered a second low-frequency non-synonymous
SNV at CCDC141 (rs10497529, c. 442C>T, P. Ala141Val). CCDC141
(also known as CAMDI) encodes the coiled-coil domain contain-
ing 141 protein and interacts with DISC1 (disrupted in schizo-
phrenia 1) and MYL2 (phosphorylatable myosin light chain).
CCDC141 is highly expressed in heart muscle (30). Knockdown
of CCDC141 in neurons leads to abnormal cortical neuronal mi-
gration, but there are otherwise limited functional studies of
CCDC141 (30). The CCDC141 locus includes TTN (titin), which en-
codes a major structural protein in striated muscle. TTN muta-
tions are associated with a range of hereditary myopathies (31).
Prior work (12) using RNA interference in Drosophila melanogaster
has shown that knockdown of TTN leads to significant changes
in resting HR and HR post tachypacing, supporting TTN is a
causal candidate gene at this locus. The new data described
here implicate CCDC141 as a second candidate gene at this locus
for functional follow-up.

Enrichment analysis of HR variants in DNase I hypersensi-
tivity sites across nearly 300 tissue samples and cell lines indi-
cated new candidate tissues, such as neuronal progenitors and
fetal muscle as being functionally relevant. Our data suggest
these tissues should be targeted for future functional studies.

Our long-range regulatory chromatin interaction analyses
provided additional support for some of the candidate genes
have been experimentally tested previously (12) and shown to
have an HR-related phenotype (CALCRL, TTN, HTR2B, PLD1 and
CHRM2). By expanding the list of HR loci to include new and
published, several new candidate genes are highlighted for
functional studies in Supplementary Material, Table S10.

The Exome Chip contains non-synonymous, splicing and
stop-coding variants that are thought to alter protein expres-
sion and function. Our analyses discovered four novel coding
variants, indicating potential candidate causal genes at these
loci. Our two-stage study design permitted the robust validation
of all our novel loci findings, with a large replication sample size

from UK Biobank (N¼ 134 251) to add together to our European
discovery data (N¼ 104 452) for a large combined meta-analysis.
However, due to the Exome Chip covering mainly coding re-
gions, we were not able to compare results with all previous
GWAS findings. In conclusion, our results taken together with
recent studies (12) indicate HR-associated SNVs are mostly com-
mon (MAF> 5%) and have relatively small effect sizes. The max-
imum effect sizes reported thus far are �0.70 BPM per allele and
MAF of 1% for SNVs at CCDC141 (rs17362588) and GJA1

(rs1015451). An analysis of much larger sample sizes (1M and
above) including rare and common SNVs, and samples across
different ancestries may provide further information on the
contributions of both coding and non-coding variants, and the
importance of rare coding variants in HR.

Materials and Methods
Study populations, phenotypes and exclusions

Thirty cohorts contributed data to the discovery meta-analysis
in individuals of European ancestry. Details of all participating
cohorts are provided in Supplementary Material, Table S13,
including phenotype, cohort ancestry, study design and key ref-
erences. The UK Biobank study, which was only recently pub-
lished since the completion of our meta-analysis (17), provided
results for replication analyses. Details of this study are also
included in Supplementary Material, Table S13.

All participating cohorts either measured RR-intervals from
the standard 12-lead electrocardiogram (ECG) or used HR meas-
urements (in beats per minute) from peripheral pulse measure-
ments (Supplementary Material, Table S14), which were
converted to the RR-interval scale (in milliseconds) using the in-
verse relationship formula: RR (ms)¼ 60 000/HR (BPM). The dis-
covery analysis was undertaken using the RR-interval
phenotype. The exclusion criteria included: extreme RR-inter-
vals (< 600 or> 1500 ms), atrial fibrillation on the ECG, a history
of myocardial infarction or heart failure, use of non-
dihydropyridine calcium-antagonists [Anatomic Therapeutic
Chemical (ATC) code C08D], digoxin (ATC code C01AA5), second
or third degree atrioventricular block and a pacemaker signal on
the ECG. Local ethics committees approved the contributing
studies from the CHARGE consortium, and all individuals pro-
vided their consent in writing. The UK Biobank study has ap-
proval from the North West Multi-centre Research Ethics
Committee and has Research Tissue Bank approval.

Study-level genotyping and quality control

All discovery cohorts were genotyped using a human Exome
Chip array (exact details of the chip for each study are provided
in Supplementary Material, Table S15). Quality control (QC) was
done according to CHARGE Exome QC guidelines, including joint
variant calling with zCall (32). At the study-level, the sample-
level QC consisted of excluding samples of non-European an-
cestry (for European-ancestry cohorts), samples with call rates
<95%, samples with sex discordance or related samples with an
unexpected high identical by descent estimate. It was recom-
mended that principal components (PCs) be obtained using vari-
ants with MAF� 1%. The variant QC consisted of exclusion of
SNVs with call rate< 95%, with Hardy–Weinberg equilibrium
values of P< 1� 10�6, and of variants that were strongly associ-
ated with plate assignment.
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Study-level statistical analysis

Each cohort performed two SNV association analyses using
an additive model implemented with the R package SeqMeta,
http://cran.r-project.org/web/packages/seqMeta/index.html.
Analyses were stratified by ancestry. One SNV association ana-
lysis used an untransformed model with RR-interval as the out-
come, adjusted for age, sex, BMI and cohort-specific
adjustments. The other SNV association analysis was a model
based on the rank-based inverse-normal transformed residuals
(RR-INVN), with residuals taken from a linear regression RR-
interval adjusted for age, sex and BMI covariates. The RR-INVN
analysis was performed to check for potential sensitivity to de-
viations from normality within the analysis of rare variants.
Additional cohort-specific covariate adjustments were also
applied, which included for example PCs or family structure.

Central QC and meta-analyses

We performed additional QC checks centrally. For each study,
we checked the sample size and the total number of SNVs
(monomorphic and polymorphic) and assessed the beta distri-
bution. Within each cohort’s results, all monomorphic SNVs
were checked to have non-available results. In order to detect
potential strand-flip issues, the cohort-coded effect allele fre-
quencies (EAF) of each SNV were compared with the meta-
analysed EAF of a group of CHARGE cohorts (AGES, ARIC, CHS,
FHS and WHI). Any discordant SNVs showing cohort-EAF � 0 in
at least one study, but meta-EAF � 1, or vice versa, were
excluded from the central meta-analysis. A set of approxi-
mately 11 000 SNVs that were known to have QC issues from
central CHARGE QC were also excluded from the meta-analysis.
Quantile–Quantile plots were produced to inspect each cohort.
After all QC steps were completed 235 677 SNVs remained. The
results from all cohorts were then combined into a discovery
meta-analysis using the SeqMeta R package.

Sensitivity analyses

A sensitivity analysis was performed on the use of beta-
blockers (ATC code C07) due to the recognized effects of beta-
blockers on HR. All cohorts with data on beta-blocker use were
re-analysed with exclusion of individuals using beta-blockers at
the time of phenotype measurement. Results of this meta-
analysis were compared with the results from the same subset
of cohorts with beta-blocker users included.

Selection of variants for replication

All SNVs with P< 1� 10�5 from the discovery meta-analysis in
European individuals were considered for follow-up. As a QC
step after meta-analysis, we excluded four SNVs with unrealis-
tically high beta values, large standard errors and results that
were reported in less than four studies. We defined a novel
locus as a genomic region (i) with SNVs not in LD (r2< 0.2) with
any well-established HR-associated SNVs from the previously
reported GWAS (12) (Supplementary Material, Table S1), and (ii)
mapping to more than 500 kb from either side of a previously re-
ported HR-associated SNV. At the time of our study, there were
21 loci reported from GWAS analyses with HR-associated SNVs
(12). A potential secondary signal within a previously reported
locus was defined as being within a 1 Mb region centred around
the published SNV, but not in LD (r2< 0.2) with the published
SNV in that region. LocusZoom plots were produced for all

selected SNVs. Only the lead SNV was carried forward, for each
signal being followed up. Specifically, the most significantly
associated SNV was selected for any SNVs in pairwise-LD
(r2> 0.2). LD was calculated within UK Biobank genetic data, in
order to calculate pairwise-LD for all 21 known SNVs (not only
those covered on the Exome Chip).

Replication analyses

We used data from UK Biobank for replication of the selected
SNVs (at the time of analysis genetic data were available for
150 000 individuals). The UK Biobank data were analysed with
untransformed HR as the phenotype, with no exclusions for
medication use. In UK Biobank resting HR was assessed by two
methods: first, pulse rate using an automated reading during
blood pressure measurement, and second, pulse rate during ar-
terial stiffness measurement using the pulse wave form ob-
tained of the finger with an infra red sensor. When multiple HR
measurements were available during the first visit for an indi-
vidual, these measurements were averaged. In 99.7% of partici-
pants at least one single measurement was available.
Individuals were excluded with extreme (> 4 SD) values
(N¼ 818). Further details are provided (17). The results of our
European exome discovery meta-analysis for RR were combined
with the UK Biobank replication results for HR (N¼ 134 251), and
a combined meta-analysis, using sample-size weighted fixed ef-
fects meta-analysis in METAL was performed (33). All alleles
were aligned between the discovery and replication data, and
the inverse relationship between RR-interval and HR was taken
into account, i.e. so that a negative beta direction from our dis-
covery data for a decreased effect on RR-interval was made
equivalent to a positive beta.

A novel locus was declared if the lead SNV reached exome-
wide significance in the combined meta-analysis of discovery
and replication data (P< 2.12� 10�7) and replicated with
Bonferroni-adjusted significance (P< 0.0042 for 12 tests) in the
replication data alone. In addition, the directions of effect be-
tween the discovery and replication data were required to be
concordant, taking into account the inverse relationship be-
tween RR from our discovery data and HR from the replication
data.

Potential secondary SNVs at known regions were declared as
validated if there was an exome-wide significant association in
the combined meta-analysis. Variants that validated were sub-
sequently tested for independence from previously reported HR
variants in a conditional analysis.

Conditional analysis

In order to determine whether the validated secondary signals
at previously reported loci were independent of the published
SNV, conditional analysis was performed within GCTA software
(34) applying the –cojo method (consisting of conditional and
joint analysis with stepwise model selection). The input data
were the exome-wide summary statistics from the full discov-
ery meta-analysis of RR-interval in Europeans. The 1958 Birth
Cohort Study (1958BC; N¼ 5815) dataset was used as the refer-
ence for genotype data, because it represents one of the largest
discovery studies (See Supplementary Material, Table S13). LD
was calculated between pairwise SNVs, but any SNVs further
than 10 Mb apart were assumed to not be in LD. All autosomal
chromosomes were analysed, with MAF restricted to� 0.01%, to
allow for low frequency secondary SNVs, whilst taking into
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account the statistical power achievable. To allow for secondary
associations a P-value cut-off of 1� 10�4 was used as the model-
ling selection threshold within the GCTA analysis. Results were
then extracted for the nine previously reported regions, within
which potential secondary signals had been validated from the
combined meta-analysis. To be consistent with the look-up
threshold for selecting SNVs to carry forward from discovery to
replication, results were restricted to SNVs with a significance
level of P< 1� 10�5 from both the discovery meta-analysis and
the joint association from GCTA.

Gene-based testing

Gene-based testing was conducted using the primary discovery
data in Europeans. Analysis was performed using the SNV-set
Kernel Association (SKAT) test within the seqMeta R Package.
SKAT tests were performed according to two different MAF fil-
ters of 1% and of 5%, and three different levels of variant filter-
ing, based on annotations within the CHARGE Exome SNP Info
annotation file: (i) all variants, (ii) variants deemed predicted to
be damaging (24) and (iii) variants that were non-synonymous
or leading to abnormal splicing. For gene-based tests we ad-
justed for multiple testing using the Bonferroni correction, ac-
cording to the number of genes tested. The gene-wide
significance level was calculated as 1.98 � 10�6 for 25 241 tests
(i.e. the number of genes on the Exome Chip). For any genes at-
taining significance, the gene-based tests were repeated with
exclusion of the most significantly associated lead variant, in
order to confirm that the association was due to multiple rare
variants.

Non-European ancestry analyses

Association results were also received for non-European sam-
ples. Analysis and QC were performed as described for the
European data. A meta-analysis was performed centrally in
seqMeta for AA ancestry, combining data from the five AA co-
horts. Study-level results remained for HIS and CH ancestries
(from only the MESA cohort), in order to consider the three non-
European ancestries (AA, CH and HIS) separately from stratified
analyses. Due to the smaller sample sizes, power calculations
were performed using the Genetic Power Calculator (35), based
on the average percent trait variance explained per locus being
0.04%, according to the recently published results from 64 vali-
dated HR loci explaining �2.5% of HR variance (17). To assess
the level of heterogeneity by ancestry in non-European data, we
performed a look-up of SNVs at the 12 published HR loci covered
on the Exome Chip, extracting results for these variants from
each of the AA, CH and HIS results. We restricted our primary
discovery analysis to Europeans only after finding a lack of sig-
nificant validation and concordance between EUR and non-EUR
data for previously reported HR variants. As a secondary ana-
lysis, we performed look-ups of all validated novel loci within
the non-European data. The forest plots for all validated novel
loci display non-European results, to serve as a comparison to
results within Europeans. In addition to calculating the percent-
age of concordance of effect directions for each ancestry com-
pared with Europeans, a Binomial sign test was also performed
in R. This test was based on the number of SNVs with consistent
effect directions, and it was done to determine whether the con-
cordance was higher than expected by chance alone, using
P< 0.05 to declare significant concordance.

Variance explained

The percentage variance explained for RR-interval was calcu-
lated using data from all subjects in the 1958BC study. The SNV
genotypes were extracted from the 1958BC Exome Chip data
and considered in two different sets: the 12 previously reported
SNVs covered on the chip including proxies (r2� 0.8; see
Supplementary Material, Table S1); and the lead SNVs from the
five unreported novel loci (see Table 1A). First, RR-interval was
regressed in a linear model against the sex and BMI covariates
(not age, as all 1958BC subjects are of same age). Then the trait
residuals from this first model were used as the phenotype in a
second linear regression model, with all SNVs in the given set
analysed jointly as multiple predictors, and adjusted for the top
10 PCs. The percentage trait variance explained by the set of
SNPs was estimated from this second model, according to the
adjusted R2 value.

HR loci annotation

For the purposes of annotation, all signals were expanded to in-
clude SNVs in LD. LD was calculated within the UK Biobank full
genetic dataset using PLINK (v1.9). All variants with an r2� 0.8
within 500 kb downstream or upstream of the SNVs of interest
were identified. These variants were annotated using
ANNOVAR [vJun2015 (19)]. ANNOVAR functionally annotates
variants, provides their conservation score, identifies SNVs that
may cause protein-coding changes and reports their damaging
prediction scores. Various prediction scores are available in
ANNOVAR, including SIFT, PolyPhen and MutationTaster,
among others.

We investigated the unreported novel SNVs and their prox-
ies (r2� 0.8) across 44 tissues available in the GTEx dataset (20)
for eQTLs. We reviewed the results for SNV-eQTL associations
across all tissues, focusing on the heart, nerve, lung, muscle, ad-
renal and brain tissues which may be relevant tissues for HR
based on known physiology of HR and our results from the en-
richment analysis. Genes reported as eQTLs are based on study-
specific significance thresholds (P-values< 10�8) and r2� 0.8 be-
tween HR-SNV and top-eQTL SNV (the SNV most significantly
associated with transcript).

PhenoScanner

PhenoScanner (36) was used to identify variants that are associ-
ated with other traits. All proxy SNVs in high LD (r2� 0.8) with
the lead SNVs at our five unreported novel loci were investi-
gated in the PhenoScanner 1000 Genomes reference dataset.
Results were filtered to those reaching a genome-wide signifi-
cance P-value� 5 � 10�8.

Potential candidate genes at new HR loci

Candidate genes at each locus were compiled using LD informa-
tion, ANNOVAR-derived annotation and eQTL lookup results. A
literature review was conducted for potential candidate genes
at each new HR locus. Sources of information included: pub-
lished articles, GeneCards, Online Mendelian Inheritance in
ManVR , the Human Protein Atlas, STRING and UniProt. We
searched for information on the corresponding mouse models
via the International Mouse Phenotyping Consortium and the
Jackson Laboratory online catalogue. URLs for each of the sour-
ces is provided in the URL section below.
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Pathway analyses

Pathway analyses were performed using QIAGEN’s IPAVR

(QIAGEN Redwood City) software. In order to distinguish the
pathway enrichment contribution of novel loci from known HR
loci, two sets of analyses were conducted. The first analysis cap-
tured the total known signal to date, investigating all 67 loci cur-
rently published, which include the 21 loci from the previously
reported GWAS (12) and the 46 loci recently published from UK
Biobank (17) since the completion of our meta-analysis. The se-
cond analysis included our five unreported novel loci in add-
ition to all the previously reported loci. In each case, the
analysis included all genes annotated from the lead SNVs and
their proxies (r2� 0.8). Results were filtered for pathway enrich-
ment of P-values� 10�4. We specifically report the pathways for
which enrichment is increased with the inclusion of genes from
our novel loci.

Enrichment in DHSs

To identify the tissues in which HR-associated SNVs are active,
we used FORGE to look for enrichment of DHSs in 299 tissue
samples from the Roadmap Epigenome Project (37). FORGE cal-

culates enrichment for overlap of HR variants with DHS by com-
parison with overlap of DHSs with 1000 matched background
variant sets (matching distance to transcriptional start sites, GC
content and MAF).

We performed two different enrichment analyses. First, we
did a ‘known’ analysis using all 67 currently published lead
SNVs to date [21 previously reported from the original GWAS
(12) and 46 new loci from the recently published UK Biobank
study (17)]. Second, we did an ‘all’ analysis using the lead SNVs
at our five unreported novel loci and the five independent sec-
ondary SNVs that we found at previously reported loci; together
with the 67 known signals, denoted as the ‘all’ analysis. We
compared the enrichment results of the two analyses, in order
to identify any new enrichment due to the inclusion of our
novel loci. The enrichment is expressed as Z-score statistics. A
Z-score of 2.58 was used as a threshold for statistical signifi-
cance, which corresponds to false discovery rate (FDR)< 1.5%.
We calculated the Z-scoreall � Z-scoreknown (DZ-score) for those
tissue samples that were found statistically significant in the
‘all’ analysis in order to assess the effect of the 10 new, add-
itional SNVs from our study.

Regulatory potential of SNVs

We selected the HR-associated SNVs and proxies in LD (r2� 0.8;
calculated using the UK Biobank full genetic dataset) that were
identified in this study, and from the previous GWAS (16) and
UK Biobank studies (17) for annotation. To identify the potential
regulatory variants, we retrieve the functional confidence score
for SNVs from the RegulomeDb database (21). RegulomeDb as-
signs a functional confidence score to each SNV by overlapping
them with functional genomic data mainly from ENCODE (e.g.
DNase I hypersensitivity, DNase I footprinting, ChIP-seq), with
eQTL data and with computational prediction (e.g. TF-binding
sites and their disruption). We considered any SNP with at least
one functional annotation to have regulatory potential (this cor-
responds to functional confidence scores: 1a-6).

Long-range regulatory contacts

Using significant long-range chromatin interactions as identi-
fied by Fit-Hi-C in right ventricle Hi-C data [40 kb resolution
(22)], we annotated the potential regulatory SNVs with potential
target genes, whose promoter is in contact with the given SNV.
Where the 40-kb genomic region containing the SNV had more
significant promoter interactions, we show the genes in order of
most significant interaction to least significant. For every locus,
we took the gene that had the most significant promoter inter-
action with a regulatory SNV, and using IPAVR , we assessed
which pathways were affected, and specifically those that were
enriched compared to using only genes in LD with HR-SNVs.

Supplementary Material
Supplementary Material is available at HMG online.
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headed by Jean-Francois Deleuze.
RS: The generation and management of the Illumina Exome
Chip v1.0 array data for the Rotterdam Study (RS-I) was exe-
cuted by the Human Genotyping Facility of the Genetic
Laboratory of the Department of Internal Medicine, Erasmus
MC, Rotterdam, The Netherlands. The authors are grateful to

the study participants, the staff from the Rotterdam Study and
the participating general practitioners and pharmacists. We
thank Ms Mila Jhamai, Ms Sarah Higgins and Mr Marijn Verkerk
for their help in creating the Exome Chip database, and Carolina
Medina-Gomez, MSc, Lennard Karsten, MSc and Linda Broer
PhD for QC and variant calling. Variants were called using the
best practice protocol developed by Grove et al. as part of the
CHARGE consortium Exome Chip central calling effort
SardiNIA: We thank all the volunteers who generously partici-
pated in this study and made this research possible.
SHIP: We thank all SHIP and SHIP-TREND participants and staff
members as well as the genotyping staff involved in the gener-
ation of the SNP data.
WHI: The authors thank the WHI investigators and staff for
their dedication, and the study participants for making the pro-
gram possible. A full listing of WHI investigators can be found
at: http://www.whi.org/researchers/Documents%20%20Write%
20a%20Paper/WHI%20Investigator%20Long%20List.pdf
YFS: The expert technical assistance in the statistical analyses
by Irina Lisinen is gratefully acknowledged.
UK Biobank: This research has been conducted using the UK
Biobank Resource Application Number 9628.

Conflicts of Interest statement. Dr B.M.P. serves on the DSMB of a
clinical trial funded by the manufacturer (Zoll LifeCor) and on
the Steering Committee of the Yale Open Data Access Project
funded by Johnson & Johnson. Dr P.T.E. is the PI on a grant from
Bayer HealthCare to the Broad Institute focused on the genetics
and therapeutics of atrial fibrillation. Dr N.P. has received finan-
cial support from several pharmaceutical companies that
manufacture either blood pressure lowering or lipid lowering
agents or both and consultancy fees. Dr P.S. has received re-
search awards from Pfizer. Dr M.J.C. is Chief Scientist for
Genomics England, a UK government company.

Funding

Individual investigators

B.M holds a Medical Research Council eMedLab Medical
Bioinformatics Career Development Fellowship, funded from
Medical Research Council award MR/L016311/1. Part of this proj-
ect was enabled through access to the Medical Research Council
eMedLab Medical Bioinformatics infrastructure, Medical
Research Council award MR/L016311/1. R.N.E. is supported by
the Netherlands organization for health research and develop-
ment (ZonMw grant 90.700.441). Niek Verweij is supported by
ICIN-Netherlands Heart Institute and Marie Sklodowska-Curie
Global Fellowship, call: H2020-MSCA-IF-2014, Project ID: 661395.
N.J.S is supported by the British Heart Foundation and N.J.S is a
NIHR Senior Investigator. C.P.N is supported by the British Heart
Foundation. The work of Marten van den Berg, Bruno H. Stricker
and Mark Eijgelsheim is supported by grants from the
Netherlands Organisation for Health Research and
Development [ZonMw grant Priority Medicines Elderly
113102005 to ME; and ZonMw grant DoelmatigheidsOnderzoek
80- 82500-98-10208 to BHS]. Ilonca Vaartjes: Dutch Heart
Foundation grant DHF project ’Facts and Figures’. Folkert W.
Asselbergs is supported by a Dekker scholarship-Junior Staff
Member 2014T001 Netherlands Heart Foundation and UCL
Hospitals NIHR Biomedical Research Centre. Niels Grarup,
Torben Hansen and Oluf Pedersen: The Novo Nordisk
Foundation Center for Basic Metabolic Research is an

2359Human Molecular Genetics, 2017, Vol. 26, No. 12 |

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf


independent Research Center at the University of Copenhagen
partially funded by an unrestricted donation from the Novo
Nordisk Foundation (www.metabol.ku.dk). Steven A. Lubitz:
National Institutes Health grant K23HL114724 and a Doris Duke
Charitable Foundation Clinical Scientist Development Award
2014105. P.B.M, M.J.C, H.R.W, C.P.C, P.D and A.T, wish to
acknowledge the NIHR Cardiovascular Biomedical Research
Unit at Barts and The London, Queen Mary University of
London, UK for support. M.J.C is a Senior National Institute for
Health Research Investigator. Nona Sotoodehnia is supported
by National Institutes Health grants R01 HL116747 and R01
HL111089. P.B.M, and A.T, are supported by the Medical
Research Council grant: MR/N025083/1.

Contributing studies

1958BC: Sample collection funded by the Medical Research
Council grant G0000934 and the Wellcome Trust grant 068545/Z/
02. Genotyping was funded by the Wellcome Trust.
AGES: This study has been funded by National Institutes Health
contracts N01-AG-1-2100 and National Institutes Health:
271201200022C, the NIA Intramural Research Program,
Hjartavernd (the Icelandic Heart Association), and the Althingi
(the Icelandic Parliament). The study is approved by the
Icelandic National Bioethics Committee, VSN: 00-063. The
researchers are indebted to the participants for their willingness
to participate in the study.
ARIC: The Atherosclerosis Risk in Communities (ARIC) study is
carried out as a collaborative study supported by the National
Heart, Lung, and Blood Institute (NHLBI) contracts
(HHSN268201100005C, HHSN268201100006C, HHSN268201100007C,
HHSN268201100008C, HHSN268201100009C, HHSN268201100010C,
HHSN268201100011C, and HHSN268201100012C). Funding support
for Building on GWAS for NHLBI-diseases: the U.S. CHARGE con-
sortium was provided by the National Institutes Health through
the American Recovery and Reinvestment Act of 2009 (ARRA)
(5RC2HL102419).
ASCOT: The ASCOT study and the collection of the ASCOT DNA
repository was supported by Pfizer, New York, NY, USA, Servier
Research Group, Paris, France; and by Leo Laboratories,
Copenhagen, Denmark. Genotyping of the Exome Chip in
ASCOT-SC and ASCOT-UK was funded by the National
Institutes of Health Research (NIHR).
BRIGHT: This work was supported by the Medical Research
Council grant number: G9521010D; and by the British Heart
Foundation, grant number: PG/02/128. A.F.D. was supported by
the British Heart Foundation (Grant Numbers RG/07/005/23633,
SP/08/005/25115); and by the European Union Ingenious
HyperCare Consortium: Integrated Genomics, Clinical Research,
and Care in Hypertension (grant number LSHM-C7-2006-
037093). The BRIGHT study is extremely grateful to all the
patients who participated in the study and the BRIGHT nursing
team. The Exome Chip genotyping was funded by Wellcome
Trust Strategic Awards, 083948 and 085475. We would also like
to thank the Barts Genome Centre staff for their assistance with
this project.
CHS: The Cardiovascular Health Study research was supported
by NHLBI contracts HHSN268201200036C, HHSN268200800007C,
N01HC55222, N01HC85079, N01HC85080, N01HC85081,
N01HC85082, N01HC85083, N01HC85086; and NHLBI grants
U01HL080295, R01HL087652, R01HL105756, R01HL103612,
R01HL120393, and R01HL130114 with additional contribution
from the National Institute of Neurological Disorders and Stroke

(NINDS). Additional support was provided through National
Institutes Health R01AG023629 from the National Institute on
Aging (NIA). A full list of principal CHS investigators and institu-
tions can be found at CHS-NHLBI.org. The provision of genotyp-
ing data was supported in part by the National Center for
Advancing Translational Sciences, CTSI grant UL1TR000124,
and the National Institute of Diabetes and Digestive and Kidney
Disease Diabetes Research Center (DRC) grant DK063491 to the
Southern California Diabetes Endocrinology Research Center.
The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.
CROATIA-Korcula: This study was funded by the Medical
Research Council UK and the Ministry of Science, Education and
Sport in the Republic of Croatia (Medical Research Council grant
number 108-1080315-0302).
ERF: The ERF study as a part of EUROSPAN (European Special
Populations Research Network) was supported by European
Commission FP6 STRP grant number 018947 (LSHGCT- 2006-
01947) and also received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013)/
grant agreement HEALTH-F4-2007-201413 by the European
Commission under the programme Quality of Life and
Management of the Living Resources of 5th Framework
Programme (no. QLG2-CT-2002-01254). The ERF study was fur-
ther supported by ENGAGE consortium and CMSB. High-
throughput analysis of the ERF data was supported by joint
grant from Netherlands Organisation for Scientific Research
and the Russian Foundation for Basic Research (NWO-RFBR
047.017.043).
FHS: The National Heart, Lung and Blood Institute’s
Framingham Heart Study is supported by contract N01-HC-
25195 and HHSN268201500001I
GOCHA: The Genetics of Cerebral Hemorrhage with
Anticoagulation was carried out as a collaborative study sup-
ported by grants National Institutes Health grant R01NS073344,
R01NS059727, and 5K23NS059774 from the NIHNational
Institute of Neurological Disorders and Stroke (NIH-NINDS)
GoDARTs: The Wellcome Trust United Kingdom Type 2
Diabetes Case Control Collection (GoDARTS) was funded by The
Wellcome Trust (grant numbers: 072960/Z/03/Z, 084726/Z/08/Z,
084727/Z/08/Z, 085475/Z/08/Z, 085475/B/08/Z) and as part of the
EU IMISUMMIT program.
GRAPHIC: The GRAPHIC Study was funded by the British Heart
Foundation (BHF/RG/2000004). CPN and NJS are supported by
the British Heart Foundation.
GS:SFHS: Generation Scotland received core funding from the
Chief Scientist Office of the Scottish Government Health
Directorate CZD/16/6 and the Scottish Funding Council
HR03006. Genotyping of the GS:SFHS samples was carried out by
the Genetics Core Laboratory at the Wellcome Trust Clinical
Research Facility, Edinburgh, Scotland and was funded by the
UK s Medical Research Council.
HELIC: This work was funded by the Wellcome Trust, grant
number: 098051 and the European Research Council (ERC-2011-
StG 280559-SEPI)
Inter99: The Inter99 was initiated by Torben J½rgensen (PI),
Knut Borch-Johnsen (co-PI), Hans Ibsen and Troels F. Thomsen.
The steering committee comprises the former two and
Charlotta Pisinger. The study was financially supported by
research grants from the Danish Research Council, the Danish
Centre for Health Technology Assessment, Novo Nordisk Inc.,
Research Foundation of Copenhagen County, Ministry of
Internal Affairs and Health, the Danish Heart Foundation, the

2360 | Human Molecular Genetics, 2017, Vol. 26, No. 12

www.metabol.ku.dk


Danish Pharmaceutical Association, the Augustinus
Foundation, the Ib Henriksen Foundation, the Becket
Foundation, and the Danish Diabetes Association.
KORA: The KORA study was initiated and financed by the
Helmholtz Zentrum München German Research Center for
Environmental Health, which is funded by the German Federal
Ministry of Education and Research (BMBF) and by the State of
Bavaria. Furthermore, KORA research was supported within the
Munich Center of Health Sciences (MC-Health), Ludwig-
Maximilians-Universit€at, as part of LMUinnovativ.
LifeLines: The LifeLines Cohort Study, and generation and man-
agement of GWAS genotype data for the LifeLines Cohort Study
is supported by the Netherlands Organization of Scientific
Research NWO (grant 175.010.2007.006), the Economic Structure
Enhancing Fund (FES) of the Dutch government, the Ministry of
Economic Affairs, the Ministry of Education, Culture and
Science, the Ministry for Health, Welfare and Sports, the
Northern Netherlands Collaboration of Provinces (SNN), the
Province of Groningen, University Medical Center Groningen,
the University of Groningen, Dutch Kidney Foundation and
Dutch Diabetes Research Foundation.
MESA: This research was supported by the Multi-Ethnic Study
of Atherosclerosis (MESA) contracts HHSN2682015000031, N01-
HC-95159, N01-HC-95160, N01-HC-95161, N01- HC-95162, N01-
HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-
HC- 95167, N01-HC-95168, N01-HC-95169 and by grants UL1-TR-
000040, UL1-TR-001079, and UL1-RR-025005 from National
Center Research Resources (NCRR). Funding for MESA Family
was provided by National Institutes of Health grants R01-HL-
071205, R01-HL- 071051, R01-HL-071250, R01-HL-071251, R01-HL-
071252, R01-HL-071258, and R01-HL071259, and by UL1-RR-
025005 and UL1RR033176 from NCRR. Funding for MESA SHARe
genotyping was provided by NHLBI Contract N02-HL-6-4278.
The provision of genotyping data was supported in part by the
National Center for Advancing Translational Sciences, CTSI
grant UL1TR000124, and the National Institute of Diabetes and
Digestive and Kidney Disease Diabetes Research Center (DRC)
grant DK063491 to the Southern California Diabetes
Endocrinology Research Center.
NEO: The NEO study is supported by the participating
Departments, the Division and the Board of Directors of the
Leiden University Medical Center, and by the Leiden University,
Research Profile Area Vascular and Regenerative Medicine.
Dennis Mook-Kanamori is supported by Dutch Science
Organization (ZonMW-VENI Grant 916.14.023).
PROSPER: The PROSPER study was supported by an investigator
initiated grant obtained from Bristol-Myers Squibb. Prof. Dr. J.
W. Jukema is an Established Clinical Investigator of the
Netherlands Heart Foundation (grant 2001 D 032). Support for
genotyping was provided by the seventh framework program of
the European commission (grant 223004) and by the
Netherlands Genomics Initiative (Netherlands Consortium for
Healthy Aging grant 050-060-810).
RS: The Rotterdam Study is funded by Erasmus Medical Center
and Erasmus University, Rotterdam, Netherlands Organization
for the Health Research and Development (ZonMw), the
Research Institute for Diseases in the Elderly (RIDE), the
Ministry of Education, Culture and Science, the Ministry for
Health, Welfare and Sports, the European Commission (DG XII),
and the Municipality of Rotterdam. The Exome Chip array data
set was funded by the Genetic Laboratory of the Department of
Internal Medicine, Erasmus MC, from the Netherlands
Genomics Initiative (NGI)/Netherlands Organisation for
Scientific Research (NWO)-sponsored Netherlands Consortium

for Healthy Aging (NCHA; project nr. 050-060- 810); the
Netherlands Organization for Scientific Research (NWO; project
number 184021007) and by the Rainbow Project (RP10;
Netherlands Exome Chip Project) of the Biobanking and
Biomolecular Research Infrastructure Netherlands (BBMRINL;
www.bbmri.nl).
SardiNIA: This research was supported by National Human
Genome Research Institute grants HG005581, HG005552,
HG006513, HG007022 and HG007089; by National Heart, Lung,
and Blood Institute grant HL117626; by the Intramural Research
Program of the US National Institutes of Health, National
Institute on Aging, contracts N01-AG-1-2109 and
HHSN271201100005C; by Sardinian Autonomous Region (L.R. 7/
2009) grant cRP3-154
SHIP: SHIP (Study of Health in Pomerania) and SHIP-TREND
both represent populationbased studies. SHIP is supported by
the German Federal Ministry of Education and Research
(Bundesministerium für Bildung und Forschung (BMBF); grants
01ZZ9603, 01ZZ0103, and 01ZZ0403) and the German Research
Foundation (Deutsche Forschungsgemeinschaft (DFG); grant GR
1912/5-1). SHIP and SHIP-TREND are part of the Community
Medicine Research net (CMR) of the Ernst-Moritz-Arndt
University Greifswald (EMAU) which is funded by the BMBF as
well as the Ministry for Education, Science and Culture and the
Ministry of Labor, Equal Opportunities, and Social Affairs of the
Federal State of Mecklenburg-West Pomerania. The CMR
encompasses several research projects that share data from
SHIP. The EMAU is a member of the Center of Knowledge
Interchange (CKI) program of the Siemens AG. SNP typing of
SHIP and SHIP-TREND using the Illumina Infinium
HumanExome BeadChip (version v1.0) was supported by the
Federal Ministry of Education and Research (BMBF) grant
03Z1CN22.
TwinsUK: This work was funded by a grant from the British
Heart Foundation (PG/12/38/29615). The TwinsUK study was
funded by the Wellcome Trust; European Community s Seventh
Framework Programme (FP7/2007-2013). The study also receives
support from the National Institute for Health Research (NIHR)
BioResource Clinical Research Facility and Biomedical Research
Centre based at Guy’s and St Thomas’ NHS Foundation Trust
and King’s College London
UHP: The Utrecht Health Project received grants from the
Ministry of Health, Welfare and Sports (VWS), the University of
Utrecht, the Province of Utrecht, the Dutch Organisation of
Care. Research, the University Medical Centre of Utrecht, and
the Dutch College of Healthcare Insurance Companies. The
Exome Chip data were generated in a research project that was
financially supported by Biobanking and Biomolecular resources
Research Infrastructure (BBMRI-NL, a Research Infrastructure
financed by the Dutch government (NWO 184.021.007).
WHI: The WHI program is funded by the National Heart, Lung,
and Blood Institute, National Institutes of Health, U.S.
Department of Health and Human Services through contracts
HHSN268201600018C, HHSN268201600001C, HHSN268201600002C,
HHSN268201600003C, and HHSN268201600004C.
YFS: The Young Finns Study has been financially supported by
the Academy of Finland: grants 286284, 134309 (Eye), 126925,
121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi);
the Social Insurance Institution of Finland; Kuopio, Tampere
and Turku University Hospital Medical Funds (grant X51001);
Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish
Foundation for Cardiovascular Research; Finnish Cultural
Foundation; Tampere Tuberculosis Foundation; Emil Aaltonen
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