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Abstract

The serotonin transporter (SERT), a member of the neurotransmitter sodium symporter (NSS)
family, is responsible for the reuptake of serotonin from the synaptic cleft to maintain
neurotransmitter homeostasis. SERT is established as an important target in the treatment of
anxiety and depression. Because a high-resolution crystal structure is not available, a
computational model of SERT was built based upon the x-ray coordinates of the leucine
transporter LeuT, a bacterial NSS homolog. The model was used to develop the first SERT
structure-based pharmacophore. Virtual screening (VS) of a small molecule structural library
using the generated SERT computational model yielded candidate ligands of diverse scaffolds.
Pharmacological analysis of the VS hits identified two SERT-selective compounds, potential lead
compounds for further SERT-related medication development.

Introduction

Signaling between cells in the central nervous system is mediated by the controlled release
and reuptake of neurotransmitters in the synapse.1 An excess or deficit of the monoamines
serotonin, dopamine or norepinephrine in the synapse has been associated with various
psychiatric and neurological disorders including depression, anxiety, compulsivity, attention
deficit hyperactivity disorder (ADHD), substance abuse, Parkinson’s disease and
schizophrenia. 2–7 Control of synaptic monoamine levels is affected by the plasma
membrane monoamine transporters (MATs), which terminate the action of these biogenic
amines via reuptake into the presynaptic cell. The mechanisms of action of drugs related to
the above medical conditions typically involve the MAT proteins. Tricyclic antidepressants
(TCAs) such as imipramine (Tofranil™), developed in the 1950s, alleviate depression by
blocking serotonin and norepinephrine transporters (SERT and NET, respectively), thereby
extending the lifespan of synaptic serotonin and norepinephrine. Unfortunately, the TCAs
also block adrenergic, muscarinic acetylcholine and histamine receptors, responsible for a
plethora of adverse effects.8, 9 Selective serotonin reuptake inhibitors (SSRIs), the next
generation of antidepressants led by fluoxetine (Prozac™) in the 1980s, carry far fewer
adverse effects compared to the TCAs. The SSRIs block SERT, but because the resultant
surge of serotonin can activate any of 14 serotonin receptor types, this drug class is not
without its own adverse effects.10–12

The driving force for MAT uptake of monoamine substrate is electrogenic, harnessing the
inward Na+ gradient across the cell membrane.13, 14 The SERT, NET and DAT (dopamine
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transporter) are members of the neurotransmitter:sodium symporter (NSS) family as well as
members of a larger group of Na+ and Cl− dependent transporters known as the “solute
carrier 6” (SLC6) family.15 The lack of a high-resolution 3-D MAT structure had hindered
structure-function and therapeutic development efforts until a breakthrough was achieved in
the form of crystallization of the bacterial NSS homolog LeuT, a leucine transporter.16 The
LeuT x-ray structure has provided a template to build credible MAT computational
models.16–21 Although model quality increases with sequence identity with the template,
structural similarity also plays a significant role.

In the absence of high-resolution 3D structures for SERT, development of a ligand based
pharmacophore22–25 or QSAR26–28 are feasible alternatives to obtain structural information
about the binding pocket. Ligand-based approaches analyze a set of ligands and generate
possible protein-ligand interaction patterns without knowledge of the protein structure. A
limitation of ligand-based approaches is that flexible alignment using dissimilar scaffolds is
less reliable; knowledge of the bioactive conformation of at least one active molecule
significantly improves alignment accuracy.29 These limitations can be overcome by using
structure-based approaches, in which diverse scaffolds can be used to capture ligand
interactions and the binding pocket environment in general. Docking, a structure-based
technique, is capable of reliably predicting the bioactive conformation for a co-crystallized
ligand.30 In the absence of an experimental 3D structure, however, a reasonable 3D model
can be constructed for a receptor using crystallographic or NMR data from genetically and
functionally related proteins.31, 32

Comparative modeling correctly predicts the 3D fold of a protein in most cases and has
often provided insight into the atomistic details of ligand binding.33, 34 Models created by
this method have identified potential binding pockets, and have been employed for docking,
structure-based pharmacophore generation and virtual screening (VS) to identify new
ligands and their interactions with the protein.33, 35, 36 Pharmacophore models, defined as a
3D collection of features essential for bioactivity of a ligand, have been widely
employed.37, 38 The approach of combining a pharmacophore with VS has yielded novel
structural scaffolds for ligands of a target receptor.39–44 Application of this technique with
the DAT led to the identification of structurally novel VS “hit” compounds which, upon
further modification, created a more potent analog through rational drug design.33, 43, 45 The
present work describes the development of a structure-based pharmacophore and its VS
utilization to identify novel ligand structural scaffolds that display SERT selectivity.

Results and Discussion

Four discrete amino acid sequence alignments with LeuT were generated that primarily
differed in the loop regions. Manual refinement of the alignments was conducted to remove
gaps within the TM regions. Rotamers of the residue side chains lining the hSERT halogen-
binding pocket were selected based on their ability to form a sub-pocket, as these residues
have been reported to be important for binding of certain SSRIs.21 A total of 80 SERT
homology models were built using Discovery Studio (DS) 2.5.1. Five models from each
alignment (20 models total) having the lowest discrete optimized protein energy (DOPE)
score were chosen for further evaluation. DOPE is an atomistic-based statistical potential for
model evaluation and structure prediction. This conformational energy measure reflects the
stability of a model relative to other models generated. 46 The models were also deposited
into the PDB evaluation server and assessed with respect to stereochemical
quality.47 (accessed Sep 30, 2010) The plots generated by the server were evaluated for unusual
phi-psi angles, bond lengths, bond angles and van der Waals contacts. Two models were
selected for further evaluation, specifically their fitness in a 3D environment assessed by
Profiles-3D. This DS module assesses the protein’s tertiary structure compatibility with its
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sequence. Finally, spatial overlap of the model and template polypeptide backbone atoms
was examined to check the integrity of the model’s TM domains and the volume of its
binding pocket. On this basis, “Model 1” was chosen for further studies.

The MOE alpha site finder was used to identify possible ligand sites in Model 1. A site
exposed to the extracellular space was chosen based on evidence for inhibitors binding in
this vestibule.21 A sphere with a radius of 8 Å was created to constrain the resulting docked
poses, in keeping with recent reports.18, 21 The combination of proxy triangle as the
placement method and force field refinement with an affinity scoring function yielded MOE
docking poses of leucine into LeuT with an RMSD of 0.31 Å (data not shown). This strategy
was next used to dock each of 16 structurally diverse antidepressants (Figure 1), possessing
a large range of SERT binding affinities (0.1 nM – 9100 nM). It is acknowledged that
certain SSRI ligands used in the docking have been reported to access the interior S1
substrate pocket 48; however, the VS pocket employed in this study contained elements of
the vestibular (S2 substrate) pocket and the halogen binding pocket (HBP) (Figure 2A). The
latter pocket is defined in part by hSERT residues Leu-99 (TM 1), Trp-103 (TM 1) and
Ile-179 (TM 3). The ligand-accessible region of the HBP (green cloud) is adjacent to that of
the S2 pocket (orange cloud) (Figure 2A); the HBP appears to be important for recognition
of halogen-containing inhibitors. Poses in which the halogen atom of the ligand was directed
toward this pocket were thus favored. A consensus was developed by overlaying the
highest-ranked poses to generate a “common interaction pattern”.

Residues identified as common interaction points were then chosen to develop a 3D
pharmacophore (Figure 2B). Pharmacophore feature F1 of radius 1 Å was created midway
between Arg-104 (TM 1) and Glu-493 (TM 10) to capture possible ionic or H-bond
interactions, particularly with protonated ligand nitrogen atoms. Previous reports of SERT-
based pharmacophore models indicated the importance of a positively charged nitrogen
atom.49, 50 Feature F2 (radius 1 Å) was created in the vicinity of Lys-490 (TM 10) to capture
possible H-bond interactions. The lysine side chain is among the more flexible of the
naturally occurring amino acids; 78 rotamers were possible for Lys-490. The rotamer
oriented toward the vestibular pocket, analogous to Asp-401 in LeuT, was chosen to capture
possible interactions with ligands. Asp-401 is reported to interact with different
antidepressants in LeuT crystal structures21; thus, Lys-490 would be expected to play a
similar role in hSERT. Feature F3 (radius 1 Å) was created to capture H-bond or cation-π
interactions with Tyr-107 (TM 1). Residues 104–106 of hSERT TM 1b are analogous to
LeuT residues 30–32, although hSERT Tyr-107 and LeuT Val-33 differ substantially
regarding the nature of potential ligand interactions. Feature F4 (radius 1.5 Å) in the HBP
was designed for hydrophobic interactions believed to be important in recognizing SSRIs.
Residues lining the pocket are conserved between hSERT and LeuT.21 Substitution of the
hSERT TM 3 residue Ile-179 (Ile-111 in LeuT) with alanine, phenylalanine or aspartic acid
increased SSRI substrate uptake inhibition potency by 7 – 1080 fold.21 The TM 1 mutations
Ala77Gly in hNET and Ala81Gly in hDAT were observed to improve SSRI affinity,
suggesting a negative influence of the methyl side chain of alanine on SSRI binding. Finally,
an exclusion volume was added to make the pharmacophore more stringent and selective.

Approximately one million members of the ZINC small molecule structural library
database51 were screened with the hSERT pharmacophore for possible “hit” compounds
(those predicted to be SERT ligands). A total of 4097 molecules were acceptable to the
pharmacophore filter. Docking of this subset into the SERT model followed by monitoring
of affinity dG scores with visual inspection of the resulting poses yielded 68 preferred
compounds. Due to lack of availability, only ten of the top 15 compounds (labelled SM-1 to
SM-15) were initially tested for hSERT, hDAT or hNET affinity in single point in vitro
binding assays. Two compounds, SM-10 and SM-11, at 10 μM significantly displaced the
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cocaine analog [125I]-RTI-55 from hSERT membranes, indicating measurable hSERT
affinity. At the same final concentration, these two compounds did not displace the
radioligand at hDAT or hNET cells. SM-14, curiously, displaced [125I]-RTI-55 at hDAT
cells alone (Figure 3). A DAT binding affinity Ki value of 15.6 ± 2.4 μM (mean ± s.e.m.)
and a dopamine uptake inhibition potency IC50 value of 10.5 ± 4.6 μM were observed
(manuscript in preparation). SM-10 and SM-11 were further characterized at hSERT
HEK293 membranes in competition assays to obtain Ki values for inhibition of [125I]-
RTI-55 binding. hSERT Ki values of 38 ± 17 μM and 17 ± 7 μM were obtained for SM-10
and SM-11, respectively (Figure 4). SM-10 and SM-11 were also screened for the ability to
inhibit uptake of [3H]-serotonin by intact hSERT HEK293 cells. Because no inhibition of
[3H]-serotonin uptake was detected at the 10 μM final concentration employed for these two
VS hit compounds (Figure 5), IC50 values were not obtained. Given their structural
flexibility (Figure 6), SM-10 and SM-11 greatly differ from the SSRIs and TCAs that were
employed to develop the pharmacophore.

Given the high sequence similarity (~ 50%, as calculated with BLAST) among the three-
hMATs, finding a specific inhibitor that targets a single transporter is a challenging task. VS
is more precarious with the additional inhibitor binding pocket uncertainty associated with a
homology model built using a template sharing < 30% sequence identity (Figure 7). Because
of this handicap, and because the goal of the study was to identify SERT ligands of novel
structural scaffold, a very high concentration of VS hit compound relative to the SERT
ligand radiotracer (100,000-fold) was employed in the pharmacologic screen. The
observation that most of the VS hits showed no ability to displace the radioligand at the
SERT-HEK cells confirms that the huge molar ratio of VS compound:radiotracer was itself
insufficient for decreasing radiotracer binding (i.e., some SERT affinity is required to
register a response in this assay).

The two VS hits pharmacologically verified as SERT ligands displayed micromolar Ki
values. These binding affinities are very low compared to the nanomolar or better SERT
affinities of certain SSRI therapeutics. Inhibition of serotonin uptake was not observed for
any VS hit compound at the 10 μM screening concentration. Substrate uptake inhibition
potency is often lower than binding affinity for a given MAT inhibitor, possibly due to
differences in MAT conformational or population requirements for the two processes.52, 53

The 10 μM SM-10 or SM-11 concentration employed may be above the threshold for
detecting SERT ligand binding but below the threshold for detecting serotonin uptake
inhibition.

Micromolar affinities for VS hit compounds are common when homology models are
employed.54–61 From this research team, the first reported VS effort based on a DAT
homology model yielded a hit compound (MI-4) with low micromolar DAT affinity and
slightly better (high nanomolar) SERT affinity. Without modification, this compound
displayed antipsychostimulant and antidepressant properties (Ref. 43 and unpublished data).
The same VS effort using a DAT model yielded a hit compound (MI-17) with a SERT Ki
value of 284 nM. An MI-17 analog designed to increase SERT selectivity resulted in a
compound with a SERT Ki value of 37 nM, and SERT:DAT and SERT:NET selectivity
ratios of 50 and over 200, respectively.45 Thus, VS hit compounds with micromolar
affinities appear to be useful as lead compounds for medication development.

Conclusion

To our knowledge this is the first study to identify novel SERT-selective reuptake inhibitors
through VS performed with an hSERT homology model. Conventional drug development
usually involves creation of analogs of established ligands for a given receptor. In contrast,
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the VS approach affords the possibility of discovering ligands with very different scaffolds,
ligands that in all likelihood would never be otherwise identified for that receptor. In the
case of the SERT, inhibitors of novel scaffold provide new opportunities for development of
rationally designed multi-site drugs (e.g., SERT/5-HT2A/5-HT3 blockers) that address the
therapeutic goal while mitigating the adverse effects associated with the SSRI drug class. It
is anticipated that the two SM compounds described herein should serve as lead compounds
toward the treatment of depression, anxiety, and other serotonin-related disorders.

Methods

Materials

[125I]-RTI-55 and [3H]-serotonin were purchased from PerkinElmer (Foster City, CA). VS
hit compounds were purchased from enamine and molport. The N2A-hDAT cell line was a
gift from Dr. Margaret Gnegy (University of Michigan). HEK293 cells stably transfected
with hSERT or hNET were prepared in collaboration with Dr. Mads Larsen and Dr. Susan
Amara (University of Pittsburgh, Pittsburgh, PA).

Construction of SERT homology models

Polypeptide sequence retrieval and alignment—The FASTA sequence for human
SERT was downloaded from the Uniprot database (accession number P31645).62 The x-ray
crystal structure of the Aquifex aeolicus protein LeuT (2a65) was used as a template and
downloaded from the Protein Data Bank (PDB).63 The template was checked for missing
residues using the “protein reports and utilities” module in Discovery Studio (DS) 2.5.1.64

Prior to modeling efforts, the missing residues Asn-133 and Ala-134 of the second
extracellular loop (EL2) were built into the LeuT template and subjected to the DS loop
refinement protocol. Different hSERT models were created using the Align2d
methodology65 and the three previously proposed sequence alignments. 16, 66, 67

hSERT Model 1: Manepalli et al. alignment (this article)—The sequences of hSERT
and modified LeuT were aligned using the “align sequence to templates” protocol in DS. An
alignment similar to Celik et al.66 was generated, with minor manual modifications further
increasing the sequence identity with LeuT (Figure 7). N- and C-terminal overhangs were
deleted, increasing sequence identity to 24% and sequence similarity to 47%. The hSERT
model sequence began at Arg-79 in the N-terminal tail and ended with Lys-605 in the C-
terminal tail. The “build homology model” protocol in DS, which employs MODELLER
version 9v4,31 was used to construct 20 hSERT models. The models were further refined
(see “Model validation”) and ranked by discrete optimized protein energy46 (DOPE) score.
The model with the best DOPE score was designated “Model 1”.

hSERT Model 2: Beuming et al. alignment—The hSERT query sequence and
modified LeuT were loaded into DS and aligned as described by Beuming et al.67 Terminal
residues not having the matching template coordinates at both ends were omitted, and 20
models were built and assigned DOPE scores as described above. Models based on this
alignment resulted in EL2 positioned directly above the substrate permeation pore, which
would likely have influenced ligand docking. The dangling EL2 was adjusted using the DS
loop refinement protocol. Models were then evaluated using the “verify protein” protocol,
which assesses the score of each residue in the known 3D environment. This was followed
by superposition of the hSERT model onto LeuT to check for TM domain coincidence. The
final version was designated “Model 2”.

hSERT Model 3: Yamashita et al. alignment—The hSERT query sequence and
modified template were aligned as proposed by Yamashita et al.16 N- and C-terminal
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overhangs were deleted, leaving 527 hSERT residues. The optimal model resulting from this
alignment was designated as “Model 3”.

hSERT Model 4: Celik et al. alignment—Twenty hSERT models were built with DS as
described above but following the proposed Celik et al. alignment66, which offered a
sequence identity match comparable to the Manepalli alignment and greater than the
Beuming and Yamashita alignments. A 527-residue hSERT polypeptide was used to
develop “Model 4”, as described for Model 1.

Model Refinement and Validation

Five models from each of the four alignment groups were chosen based on DOPE scores.
The stereochemical quality of the preferred models was assessed with the validation server
used to evaluate structures deposited into PDB.46 From each group of five, two models were
then chosen based on their having the fewest outliers on the phi-psi angle Ramachandran
plot. These two models were evaluated for 3D fold, using the “verify protein” protocol in
DS. This protocol reduces 3D structures to a simplified 1D representation, compares this to
the 1D amino acid sequence, and assigns a score. This score is compared to the expected
high and low scores for the sequence predicted from statistical analysis of high-resolution
PDB structures.

TM domain assembly and ligand binding pocket volume were checked by superposing the
SERT models onto the LeuT model using MOE (Figure 8).68 A single hSERT model was
selected for each of the four groups. The all-atom force field AMBER99 69, 70 was used to
add hydrogen atoms and partial charges to the models. Keeping the non-hydrogen atoms
fixed in space, hydrogen atoms were minimized with a convergence criterion of 0.05 kcal/
mol. The final hSERT models chosen from each alignment were further optimized to
minimize the outliers and avoid unnecessary protein contacts. Of the four models, Model 1
had the smallest RMSD on superposition with LeuT and maximal ligand binding pocket
volume, similar to the LeuT.

Ligand binding site delineation and docking; pharmacophore development

The alpha site finder function of MOE 2008.09 was used to identify possible ligand binding
sites in Model 1. The site finder is purely geometric; no energy terms are used. Alpha
spheres within the hSERT model that were too exposed to solvent were eliminated; spheres
that corresponded to locations of tight atomic packing in the model were retained. Spheres
were classified as either “hydrophobic” or “hydrophilic” depending on the potential for
hydrogen bonding. Following the default settings, alpha spheres were clustered to produce a
collection of putative binding sites that are ranked according to the number of hydrophobic
atoms within contact distance of the spheres. Finally, dummy atoms were created in the S1
and S2 pockets to specify the algorithm to dock the ligands.

Ligand coordinates were obtained from the small molecule crystal database CCSD
(Cambridge Crystallographic Structural Database).71, 72 Ligands having no coordinates were
drawn using MOE. Partial charges and hydrogen atoms were added to all ligands using
Merck Molecular Force Field 94X (MMFF94x).73–75 Ligand geometry was optimized via
energy minimization with a conjugated gradient truncated Newton optimization algorithm
with convergence criteria = 0.01 kcal/mol, ε = 1. Leucine or selected TCA drugs were first
docked with the LeuT model to test for consistency with the reported cocrystal
structures.16, 21 Atom placement methods including proxy triangle, alpha triangle and
triangle matcher were employed, as were refinement techniques using grid-based and force
field-based methods. The combination that produced poses very close to the crystal structure
(<1Å) was chosen for hSERT docking. Interaction plots for all docked poses of different
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antidepressants in hSERT were generated using the MOE ligand interaction module.76 A
consensus of residues and their predicted ligand interactions was developed and used in
creating the pharmacophore features for the vestibular ligand-binding pocket.

A pharmacophore feature was generated at each amino acid side chain – ligand interaction
point obtained from initial docking iterations. Pharmacophore points F1, F2, F3 (each with a
radius of 1 Å) and F4 (radius = 1.5 Å) were delineated to better encompass the hydrophobic
features of the docked ligands. An excluded volume was created, and the algorithm assigned
a penalty to poses that encroached on this space. The final pharmacophore product was
tested using a database containing known hSERT ligands and decoy ligands. The
pharmacophore model successfully discriminated the classic hSERT ligands from the
decoys.

Virtual Screening

An 18 million entry “all-purchasable” subset of the ZINC database containing was
downloaded.51 The subset was “washed” by importing the collection into MOE, which
removes unwanted salts, ions and disconnected molecular fragments from the database. The
Lipinski’s Rule of Five descriptor was applied to the database to remove nondrug-like
molecules.77 Compounds with reactive groups were removed by further screening the
database using a toxic moiety descriptor. From this database a subset containing
approximately one million compounds was selected for further use. Tautomers and
protomers of these entries were generated at physiological pH. Using the “import
conformation” module of MOE, different conformations were generated and minimized
using the MMFF94x force field; conformations with strain energy 4 kcal/mol or more above
the lowest energy conformation were discarded. This final database was screened using the
4-point pharmacophore. “Hit” compounds acceptable to the pharmacophore filter were
further screened to ensure the presence of halogens and a molecular weight < 350 daltons,
features common to most of the known antidepressants. These steps yielded a pool of 4,097
hit compounds. Three hSERT docking iterations were performed with this pool of
structures. Affinity scores < −6.0 kcal/mol plus visual inspection was used to condense the
pool to 68 candidate ligands. Of these, 10 of the top-ranked 15 compounds (coded “SM-1”
through “SM-15”) were procured from various sources and pharmacologically tested.

Pharmacology

In vitro VS compound binding screen—Compounds identified from the virtual screen
were purchased and dissolved in 100% DMSO to a concentration of 10 mM. Initial one-
point competition binding assays were conducted using 10 μM final concentration of VS hit
compound and 0.1 nM of the radiolabeled cocaine analog [125I]-RTI-55, a radioligand with
high affinity at all three MATs. Stably transfected HEK293-hSERT membranes or N2A-
hDAT or HEK293-hNET whole cells were employed for all binding assays. Non-specific
binding was determined by inclusion of 10 μM paroxetine, mazindol or desipramine for
hSERT, hDAT or hNET assays, respectively. Screening results were analyzed with one-way
ANOVA (P < 0.05) with a post-hoc Dunnett’s Multiple Comparison Test.

hSERT membrane binding assay—hSERT binding affinities were obtained by
displacement of [125I]-RTI-55 in membrane binding assays. Membrane was prepared from
stable hSERT-HEK cells grown at 37°C in a 5% CO2 environment on 150 × 25 mm plates.
At 95% confluence (3 days of growth), cells were washed twice with 10 mL cold phosphate-
buffered saline (DPBS). An additional 10 mL of DPBS was added and cells were harvested
by scraping and transferred to cold centrifuge tubes (15 mL), followed by centrifuging for
10 min at low speed (700 × g). After removal of the supernatant, the cell pellet was
resuspended in 500 uL cold TE buffer (50 mM Tris, 1 mM EDTA, pH 7.5). Following
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centrifuging for 30 min at 100,000 × g at 4°C, the supernatant was discarded and the pellet
was frozen for later use or resuspended in ice-cold binding buffer (50 mM Tris, pH 7.5, 100
mM NaCl). Each sample was analyzed for protein content using the Bradford protein assay.
For competition binding, membrane was incubated with [125I]-RTI-55 (0.1 nM
concentration) and increasing concentrations of cold competitor (1 nM to 1 mM), or 10 μM
paroxetine to measure non-specific binding. Reactions were carried out in 12 × 75 mm
borosilicate glass tubes with gentle shaking at room temperature for 1 hour and terminated
by rapid filtration through GF/B filters (Schleicher and Schuell, Keene, NH) presoaked in
0.5% polyethylenimine solution (v/v). Filters were washed twice with 5 mL cold 50 mM
Tris buffer and transferred to vials. Radioactivity was determined using a Beckman gamma
counter. For saturation binding assays, data were analyzed with GraphPad Prism 5.0
software. IC50 values were generated and converted to Ki values using the Cheng-Prusoff
equation (Ki = IC50/(1+ ([RTI-55]/Kd RTI-55)).78

hDAT and hNET whole cell binding assays—Whole-cell competition binding assays
were performed for hDAT and hNET using stable hDAT-N2A or hNET-HEK293 cell lines,
respectively, grown at 37°C in a 5% CO2 environment. Cell monolayers were grown in 24-
well plates to >90% confluence. Cells were washed twice with 1 mL of KRH buffer (25 mM
HEPES, pH 7.3, 125 mM NaCl, 4.8 mM KCl, 1.3 mM CaCl2, 1.2 mM MgSO4, 1.2 mM
KH2PO4, 5.6 mM glucose) supplemented with 50 mM ascorbic acid (KRH/AA). Cells were
incubated for 15 minutes with 1 nM [125I]-RTI-55 supplemented with tropolone (total
volume of 500 uL) along with increasing concentrations of drug or 10 μM mazindol (hDAT)
or 10 μM desipramine (hNET). Following incubation, cells were washed twice with 1 mL
KRH/AA buffer, then treated with 1 mL 1% SDS with gentle shaking at room temperature
for 1 hour. Cell lysates were transferred into vials. Radioactivity was determined using a
Beckman gamma counter and analyzed using GraphPad Prism 5.0 as described above.

Serotonin uptake inhibition screen—One-point competition binding assays were
performed using stably transfected HEK293-hSERT whole cells grown to >90% confluence
on 24-well plates. Cells were washed with KRH buffer, then preincubated with 10 μM VS
hit compound for 10 min, followed by addition of 10 nM [3H]-serotonin. After an additional
5 min, cells were washed twice, then treated with 1% SDS and shaken for 1 hr. Lysates were
transferred to 5 mL scintillation fluid and radioactivity was detected using a Beckman liquid
scintillation counter. Non-specific radioligand uptake was determined in the presence of 10
μM clomipramine.
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Figure 1.

Chemical structures of SERT inhibitors used to develop the pharmacophore.
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Figure 2.

Panel A: Ligand-accessible regions of SERT substrate and inhibitor binding pockets.
Regions available to ligands in the S1 (blue), S2 (orange) and HBP (green) pockets are
displayed as surfaces. The pocket employed for virtual screening combined the S2 and HBP.
Residues defining each pocket are displayed as sticks (atomtype color). For clarity, the TM1
(red), TM3 (orange), TM6 (green), TM8 (cyan) and EL4 (pink) helices are highlighted.
Panel B: The pharmacophore employed for VS was comprised of four features (dotted
spheres). F1: Donor/acceptor (red). F2: Acceptor (pink). F3: Cation/acceptor (blue). F4:
Hydrophobic/π ring (green). Predicted hydrophobic (green dashed lines) and H-bonding (red
dashes lines) are shown for the VS hit compound SM-10 (yellow sticks with heteroatoms in
green (halogen), red (oxygen) or blue (nitrogen).
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Figure 3.

VS hit compound in vitro MAT binding screen. Compounds at 10 μM final concentration
were tested for the ability to inhibit [125I]-RTI-55 binding at hSERT HEK293 cells (top
panel), hDAT N2A neuroblastoma cells (middle panel), or hNET HEK293 cells (bottom
panel). Non-specific binding was assessed by the presence of 10 μM paroxetine (PAR),
mazindol (MAZ) or desipramine (DSP) for SERT, DAT and NET, respectively. Data
represent n=3 independent experiments performed in duplicate. Data are presented as the
mean ± s.e.m. and were analyzed by one-way ANOVA with Dunnett’s multiple comparison
post-hoc test. *P < 0.05 vs. total binding for that assay. ***P < 0.0001 vs. total binding for
that assay.
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Figure 4.

Saturation binding of VS hit compounds SM-10 (closed circles) and SM-11 (open circles) at
hSERT HEK293 cells. Binding affinity Ki values were determined via displacement of
[125I]-RTI-55. n=3 experiments.
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Figure 5.

VS hit compound in vitro serotonin uptake inhibition screen. Compounds at 10 μM final
concentration were tested for the ability to inhibit [3H]-serotonin uptake by hSERT HEK293
cells. Non-specific radioligand uptake was assessed by the presence of 10 μM paroxetine
(PAR). Data represent n=3 independent experiments performed in duplicate. Data are
presented as the mean ± s.e.m. and were analyzed by one-way ANOVA with Dunnett’s
multiple comparison post-hoc test. *P < 0.05 vs. total uptake for that assay. **P < 0.001 vs.
total uptake for that assay.
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Figure 6.

Structures and hSERT binding affinities of SM-10 and SM-11.
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Figure 7.

Alignment of LeuTAa and hSERT amino acid sequences used to build Model 1. Identical
(blue) and similar (red) aligned residues are indicated. The dots and stars correspond to
residues lining S1 and S2 pockets respectively. Transmembrane and connecting loop
topology is displayed above the sequences. Gaps relative to the other sequence are
represented by dots. Position of the residue in its respective chain is indicated before and
after each line of sequence. The figure was prepared using TEXshade.79
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Figure 8.

Polypeptide backbone superposition of the four homology SERT models. Good overall
spatial overlap was observed for Models 1 (Manepalli et al.; red), 2 (Beuming et al.;67 blue),
3 (Yamashita et al.;16 yellow) and 4 (Celik et al.;66 green), with essentially perfect overlap
of TM domains. EL2 (arrow) was the most divergent region among the four models.
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