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Abstract

Gene regulatory networks elucidated from strategic, genome-wide experimental data can aid in the
discovery of novel gene function information and expression regulation events from observation of tran-
scriptional regulation among genes of known and unknown biological function. To create a reliable and
comprehensive data set for the elucidation of transcription regulation networks, we conducted systematic
genome-wide disruption expression experiments of yeast on 118 genes with known involvement in transcrip-
tion regulation. We report several novel regulatory relationships between known transcription factors and
other genes with previously unknown biological function discovered with this expression library. Here we
report the downstream regulatory subnetworks for UME6 and MET28. The elucidated network topology
among these genes demonstrates MET28’s role as a nodal point between genes involved in cell division and
those involved in DNA repair mechanisms.
Key words: expression data; disruptant; gene regulatory network; MET28 regulation

1. Introduction

Methods designed to elucidate gene regulation path-
ways have been reported previously.1–3 However, the in-
ferred networks reported in these studies were derived
from gene expression data sets derived from time course,
cell cycle and environmental perturbation.4,5 Control re-
lationships inferred from such data sets are suspect since
they are not based on comprehensive experimental data
designed specifically to elucidate transcription-related
regulatory control functions and can therefore only pro-
duce information on co-regulation of expression, not hi-
erarchical dependency. To rigorously and precisely iden-
tify novel and complex gene regulatory networks from de
novo expression data sets, a systematic and integrated
strategy of expression experiments on genomic deletion
mutants combined with suitable computational methods
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is necessary.6–9

We have implemented for the yeast genome a system-
atic, iterative approach that combines full-genome bio-
logical expression experiments with gene regulatory infer-
ence. First, we constructed a gene expression data library
using full-genome yeast c-DNA microarrays. The library
was comprised of expression experiments on 118 yeast
strains, each with one gene disrupted by homologous re-
combination. From this data we use computational tech-
niques to infer gene expression regulatory relationships.
In this paper, we introduce a static Boolean network
model based on a multi-level digraph approach which
can handle large sets of expression data and can ana-
lyze large-scale gene regulatory networks at high speed.
With the model we then examine the biological relevance
of putative regulatory relationships using computerized
visualization and simulation software and finally validate
our findings on novel or biologically interesting subnet-
works through their presence in other databases as well
as through further biological experimentation, including
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Figure 1. Construction of a gene regulatory subnetwork model using the Boolean method. A; Numerous profiles are integrated into an
expression matrix. Each element of the matrix indicates the ratio of gene expression. B; evaluate binary relationships between genes.
If gene ‘G1’ is deleted and the intensity of gene ‘G2’ is significantly altered as a result then gene ‘G1’ affects gene ‘G2’. C; Identify
looped regulation genes. If gene ‘G3’ and gene ‘G4’ affect each other mutually, they form a loop (strongly connected component)
regulation. D; An equivalence set is introduced which treats a loop logically as a gene. An equivalence set is a group of genes that
affect each other or as a group effect one discrete gene. E; A skeleton matrix is reconstructed. The shortest path relationships should
be selected to build hierarchical connections. F; The regulation pathway can be formed from the skeleton matrix.

combinatorial disruption experiments.

2. Materials and Methods

2.1. Boolean network inference algorithms (Fig. 1)
A static Boolean network model based on the

multi-level digraph approach infers gene regulatory net-
works by using a set of binary relations between genes. In
the model, a network is expressed by a directed graph us-
ing symbols of a gene and a relation between two-paired
genes represented as a node and an arc, respectively. A
gene expression matrix E is created from a set of gene dis-
ruption experiments. The value of matrix element E(a, b)
indicates the expression ratio of gene ‘b’ to the normal
condition, in the experiment of gene ‘a’ deletion. The
inference procedures are as follows:

(A) Obtain the gene expression matrix E using several
sets of the gene expression patterns resulting from
disruption of one gene.

(B) Binary relation R; Using the gene expression ma-
trix E, if the intensity of gene ‘b’ is changed higher
than a given threshold value θ, or is changed lower
than a given threshold 1/θ resulting from the disrup-
tion of gene ‘a,’ it is defined that gene ‘a’ affects gene
‘b’ directly or indirectly. Thus the binary relation R

is created by cutting the value of each element in
the gene expression matrix E at the threshold (θ or
1/θ).

(C) Adjacency matrix A; The adjacency matrix A is de-
rived directly from the binary relation R. If there
is a relation that gene ‘a’ affects gene ‘b’, then the
value of element (a, b) in the adjacency matrix A is
set to 1; A(a, b) = 1.

(D) Equivalence set; If there is the relation, such that
gene ‘a’ and ‘b’ affect each other, that is A(a, b) =
A(b, a) = 1, we cannot decide which gene is located
upstream or downstream in a gene regulatory net-
work. This is the limitation and disadvantage of
this method, however, we introduce an “equivalence
set”, which comprises a group of genes affecting each
other and the group is treated as a one-gene node
for determining influence on other genes. In Fig. 1,
genes G3 and G4 are partitioned into a equivalence
set G3**, or a new artificial gene G3**, and the ad-
jacency matrix A is contracted to a 3 × 3 matrix.
After this process, any two genes, gene ‘a’ and gene
‘b’, stand in only one relation, that is “Gene a affects
gene b,” “Gene b affects gene a” or “Gene a and b
are independent.” This shows that genes are in a
semi-ordered (topologically sorted) matrix.
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(E) Skeleton matrix S; Semi-ordered matrix A(n×n ma-
trix) includes indirect effects between genes. In or-
der to remove them, we process as follows: The value
of line i and column j in semi-ordered matrix A
and skeleton matrix S are represented as A(i, j) and
S(i, j), respectively. If A(i, j) equals 1, S(i, k) is set
to max{A(i, k)−A(j, k), 0}(k = 1, . . . , n). Thus, all
indirect effects are removed from the semi-ordered
matrix. In Fig. 1, the relation between gene G1 and
gene G3** are removed, and the skeleton matrix S
is constructed.

(F) Draw multi-level digraph; Arrows are drawn be-
tween nodes based on the value of each element in
the skeleton matrix. The genes with parentheses in-
dicate an equivalence set of genes. The multi-level
digraph method shown in Fig. 1 is consistent with
the experiment data E and the binary relation R.

2.2. Microarray experiments
We collected gene expression data using full-genome

yeast c-DNA microarrays.10 BY4741 (MATa, HIS3D1,
LEU2D0, MET15D0, URA3D0) served as the wild type
strain. Gene disruptions for strain BY4741 were pur-
chased from Research Genetics, Inc. Cells were inocu-
lated and grown in YPD medium (1% yeast extract, 1%
bacto-peptone, 2% glucose) at 30◦C until OD600 reached
1.0 in the logarithmic growth phase and then harvested
to isolate mRNA for assay of gene expression. The re-
spective parental strain was the control used for each
disruptant strain.

2.3. Data Normalization
We measured the quantities of 5871 cDNA in microar-

ray assays of 155 yeast disruptant species. A difference
in fluorescent strength between Cy3, Cy5 causes bias of
the expression quantity ratio. We normalized the expres-
sion quantity ratios of each expression profile. The ratio
bias had a fixed trend in each spotted block, thus we cal-
culated a linear regression to normalize the mean value
ratio of each block to 1.0.

The logarithm value of the ratio was used to indi-
cate the standard expression level; therefore, we found
the logarithm value of the ratio and calculated the av-
erage and standard deviation (SD) of these log val-
ues (Table 1). The SD of expression levels of all
spotted genes from the UME6 (YDR207C) disrup-
tant expression array for which UME6 is defined as a
“Global Regulator” in Yeast Protein Database (YPD
(http://www.incyte.com/sequence/proteome/databases/
YPD.shtml)) was 0.4932. We thus recognized that an un-
acceptable number of errors exist in any array data whose
overall SD was larger than 0.5 and we eliminated 37 ex-
pression experiments from this analysis.

2.4. Selection of genes for modeling
In YPD, 314 genes were defined as “Transcription

factors,” and 98 of these have previously been stud-
ied for control mechanism. The expression profile data
of 552 genes including the genes controlled by these
98 “Transcription factors” were selected from 5871 pro-
files. Thus, we constructed the gene regulatory network
from the expression profile data set based on the values
of these 552 genes in 118 separate gene disruption exper-
iments.

3. Results and Discussion

3.1. 552 gene member regulatory networks
Each of the genes in this library was selected for experi-

mentation because it was reported in the Yeast Proteome
Database (YPD) to be a factor involved in transcrip-
tion regulation. Previously reported gene regulatory net-
works show that genes can interact with themselves as
well as with other regulatory genes. To reconstruct hi-
erarchical regulatory relationships from the expression
library, we applied a novel Boolean algorithm that ac-
commodates common looped regulatory relationships to
our data.11 As shown in Fig. 1, the gene regulatory re-
lationships modeled by this method can be represented
as a directed graph of upregulation or downregulation of
gene expression between 2 given genes of the 5871 genes
measured in each expression experiment. We constructed
a 552-gene member model of the regulatory control rela-
tionships evident in the library. For further discussion,
we constrained the data to a subnetwork model com-
prised of 98 well-known transcription factors. The resul-
tant model contains a total of 552 nodes representing the
included genes and 2953 putative regulatory links among
these genes.

The relations describe the effects of one gene on the
expression level of the other genes and, in this study, are
obtained from the data of gene disruption experiments.
Systematic analysis enables us to reconstruct a network
that is consistent with all of the relation data.

3.2. Relationships among functional categories
We classified transcription factors in the network

model according to their cellular functional roles (CFR)
as defined in YPD. Figure 2 shows the control rela-
tionships among classified transcription factors in the
network. We identified several control lines emanat-
ing from “carbohydrate metabolism” genes to all other
functional gene groups. This finding is consistent with
the energy-dependent nature of many cellular processes
and metabolic pathways. As shown in Fig. 2, a dis-
tinct feature is that expression levels of lipid fatty-acid
metabolism transcription factors were exclusively under
control of carbohydrate metabolism transcription factors.
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Table 1. List of disruptants.

Standard Deviation Standard Deviation

logarithm of ratio (in base 2) logarithm of ratio (in base 2)
 UME6 0.4932 selected  CWP1 0.2575 selected

 OSH1 0.3677 selected  TPK3 0.8840 not selected

 HTB2 0.4381 selected  ASH1 0.2968 selected

 HTA2 0.4062 selected  CNB1 0.4961 selected

 ACH1 0.3297 selected  BAS1 0.6352 not selected

 HAP3 0.3480 selected YLL055C 0.3423 selected

YBL037C 0.4966 selected  GAT3 0.3905 selected

YBL055W 0.2859 selected  RIC1 0.3550 selected

YBL056C 0.6857 not selected  SPT8 0.3739 selected

 BOI1 .3176 selected  ACE2 0.3524 selected

 SMP1 0.3208 selected  SWI6 .3873 selected

 HPC2 0.7516 not selected  CPR6 0.3532 selected

 THI2 .3780 selected  ECM22 0.3998 selected

 MAK31 0.3824 selected  RCK2 0.3205 selected

 BDF2 0.7060 not selected YLR266C 0.3673 selected

 GCS1 0.3845 selected YLR278C 0.2928 selected

 SOK1 0.7753 not selected  BUD6 0.3136 selected

YDR027C 0.7210 not selected  NIT3 0.5772 not selected

 LYS14 0.4600 selected  BUD8 0.3264 selected

 NRG1 0.3298 selected  BDF1 0.5327 not selected

 INO2 0.4785 selected  LEU3 0.3664 selected

 SWI5 .4021 selected  GAL80 0.4073 selected

 STB3 0.3364 selected  CMP2 0.6240 not selected

 HST4 0.3405 selected YML077C 0.4298 selected

YAR003W 0.3398 selected YML082W 0.3183 selected

YDR214W 0.7977 not selected  ARGR2 0.3965 selected

 ADR1 0.2955 selected  TUB3 0.2506 selected

 HTA1 0.5430 not selected  SOK2 0.6848 not selected

 BTT1 0.4487 selected  STB4 0.2767 selected

 RMS1 0.4631 selected  TSP1 0.3109 selected

 YAP6 0.7667 not selected  ARGR1 0.5233 not selected

YDR295C 0.8278 not selected YMR100C 0.6441 not selected

 SUM1 0.4828 selected  SAS2 0.5227 not selected

 SWR1 0.4592 selected  RGM1 0.2902 selected

YDR341W 0.3903 selected  CAT8 0.4778 selected

 CAD1 0.3674 selected  SCW10 0.2882 selected

 GCN4 0.4791 selected  SPS18 0.3440 selected

 HAT2 0.3774 selected  STB1 0.3536 selected

 HPA3 0.4060 selected  DAL82 0.3750 selected

YER028C 0.2712 selected  KRE1 0.3071 selected

 FIR1 0.3754 selected  RPD3 0.2987 selected

 DOT6 0.3726 selected YNR064W 0.3063 selected

YER131C 0.4844 selected  PHO80 0.8956 not selected

 HAC1 0.3698 selected  SIN3 0.6336 not selected

 RPO41 0.7767 not selected  YAP7 0.3854 selected

YFL053W 0.4188 selected YOL042W 1.0904 not selected

YFR039W 0.5023 not selected YOL054W 0.5047 not selected

 SCW11 0.2715 selected  THI20 0.3857 selected

 DST1 0.2939 selected  RTG1 0.3816 selected

 SIP2 0.3850 selected  HAL9 0.6720 not selected

 MIG2 0.2886 selected  INO4 0.3310 selected

 SKI8 .3201 selected  CIN5 0.2901 selected

 HAP2 0.3306 selected  STD1 0.3062 selected

 FZF1 0.3184 selected  SFL1 0.4158 selected

 BUD9 0.3171 selected YOR173W 0.5837 not selected

 RME1 0.3380 selected  SAS5 0.7989 not selected

 RSC1 0.4529 selected  TEA1 0.3619 selected

 SCW4 0.2966 selected  PIP2 0.3702 selected

 BGL2 0.3176 selected  HST2 0.3836 selected

 OPI1 .3983 selected  EGD1 0.3485 selected

 EGD2 0.4532 selected YPL061W 0.3019 selected

 SKN7 0.4098 selected  RLM1 0.3104 selected

 BAR1 0.3554 selected YPL134C 0.7037 not selected

 SDS3 0.4920 selected  UME1 0.3773 selected

 MET28 0.3963 selected  BEM4 0.3766 selected

 MUC1 0.3001 selected YPL166C 0.6183 not selected

 MRS1 0.3937 selected  CUP9 0.3730 selected

 GZF3 0.2798 selected  PKA3 0.5210 not selected

 LSM1 0.4317 selected YPL230W 0.5565 not selected

 NIT2 0.5389 not selected  GAL4 0.4492 selected

 TPK1 0.4648 selected YPR013C 0.6422 not selected

 ASG7 0.2709 selected YPR022C 0.7080 not selected

 BUD4 0.3086 selected YPR115W 1.0641 not selected

 HMS2 0.3071 selected YPR125W 0.3931 selected

 SPT23 0.4320 selected YPR145C 0.8397 not selected

 RGT1 0.4011 selected  HPA2 0.3506 selected

 STB6 0.3717 selected YPR197W 0.4002 selected

 MBR1 0.4121 selected

Disrupted Gene
name

selction
Dirupted Gene

name
selection

0

0

0

0

0

0
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Figure 2. Transcription factor regulatory network model classified by cellular functional roles (CFR). In this model, there were
98 transcription factors grouped by cellular functional roles according to information provided in the Yeast Proteome Database.
Genes inside the circles are grouped into a given cellular functional category. Regulatory control relationships are depicted with
colored lines. Colors indicate the category of genes from which the control relationships emanate. Blue: Carbohydrate metabolism,
Bluish purple: Chromatin/Chromosome structure, Brown: Energy generation, Dark Green: Other metabolism, Gray: DNA repair,
Green: Lipid, fatty acid metabolism, Light Green: Amino acid metabolism, Orange: Cell stress, Red: Meiosis/Mating response,
Pink: Differentiation, Purple: Cell cycle. The bold red lines indicate regulatory control of transcription factors related to cell cycle
originating from genes in the meiosis/mating response group. The bold blue lines indicate control relationships emanating from the
carbohydrate metabolism group exerting influence over genes in the lipid fatty-acid metabolism group.

In our CFR model, only 2 individual genes, SKN7,
which can activate G1 cyclins through the cell cycle
box (CCB) element and Mlu1 cell cycle box (MCB)
element,12 and HMS2, which codes a transcription fac-
tor with a probable role in pseudohyphal growth,13 di-
rectly influenced cell cycle-related gene expression. These
genes and their related cellular functions would necessi-
tate some, albeit limited, interaction with the cell cycle
process, whereas general control over cell cycle events
by many genes would decrease the biological stability
of cell division processes, which would not be evolu-
tionarily beneficial. It is known, for example, that eu-
karyotic organisms use discreet and highly conserved
cell-cycle checkpoints to ensure that nuclear division
is restrained while DNA is undergoing replication or
repair.14,15 Likewise, it is apparent that expression levels
of lipid fatty-acid metabolism transcription factors were

affected by the expression of carbohydrate metabolism
transcription factors. Also, PDR1, which recognizes the
Pdr1p/Pdr3p response element (PDRE) to activate genes
involved in multi-drug resistance of yeast,16 is influenced
by the expression of CAT8, which controls key enzymes
of gluconeogenesis in yeast.17 Interactions among pro-
teins involved in phospholipid synthesis pathway with
genes of the glucose response pathway, the lipid signal-
ing pathway and other lipid synthesis pathways have
been documented.17 Genes encoding many enzymes of
phospholipid biosynthesis contain variants of UASINO in
their promoters and these are regulated in response to
growth phase and nutrient starvation.18 For example,
Snf1p/Snf4p and Ire1p are reported to be key molecules
that bind to the UASINO sequence, which are associ-
ated with the glucose response,19 and are required for
de-repression of UASINO-containing genes.
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Figure 3. A detailed view of a gene regulatory subnetwork
of transcription factors reconstructed from Boolean analysis
of gene expression experiments on disruptant mutant yeast
strains. Black lines indicate a regulatory relationship, with
the arrows showing the direction of expression influence. The
colors and shapes of the nodes denote the general categories
of cellular function of the gene product according to their de-
scriptions in the YPD. Genes related to cell division mecha-
nisms are indicated with triangular nodes and genes related
to DNA repair and chromosome structure are depicted with
squares. The elucidated network shows novel topological con-
trol relationships among genes related to meiosis, the mating
response and DNA structure and repair mechanisms via UME6
and MET28. Genes related to meiosis and mating response
genes are downstream of a cascade regulated by INO2 and a
further sub-grouping of genes related to DNA repair and struc-
ture appears hierarchically downstream of MET28.

3.3. MET28 regulation
The models were employed to further explore de-

tailed relationships between expression regulatory genes,
such as transcription factors with regulatory and
non-regulatory genes, from all of the gene expression ex-
perimental data. We were able to characterize the reg-
ulatory roles of genes with unreported biological func-
tion by virtue of their expression control by and/or over
genes with known function. Figure 3 shows the largest
hierarchical transcription factor subnetwork elucidated
by our network calculations. Novel control relation-
ships among transcription factors involved in cell division

regulation and DNA replication/repair regulation were
found in this largest subnetwork. Two discrete func-
tional branches in the subnetwork that correspond to
cell division regulation and DNA replication/repair are
linked by UME6 and MET28, indicating the important
role of these two transcription factors in coordinating the
expression regulation of these interdependent regulatory
pathways. MET28, as its name suggests, was previously
characterized as a transcription factor related to methio-
nine metabolism.20 The novel putative role for Met28p in
regulation of chromosome segregation is supported by its
reported interaction with known chromosomal segrega-
tion component Smc1p, as part of a larger nexus of chro-
mosomal segregation proteins, in mating-type two-hybrid
assays.21

3.4. Detection of transcription factor binding sites
Through sequence analysis of coding sequences and

upstream regions of genes in the above-mentioned sub-
network, we validated the sequence level control mech-
anisms between transcription factors and their target
genes and DNA binding sequences. In the case of UME6,
which is known as a global transcriptional regulation
of many meiotic genes22,23 and its control system, we
performed Multiple Expectation-Maximization for mo-
tif Elicitation (MEME) analysis24 of regions upstream
of the 34 genes controlled by UME6 in our model. We
found two consensus sequences, TAGCCGCCGA and
TGGGCGGCTA, that were present upstream of 14.7%
and 32.4% of the 34 genes respectively, and that had sig-
nificant P values according to the MEME search (Table 2
http://www.grt.kyushu-u.ac.jp/data/table2.html). Ac-
cording to the TRANSFAC database, TAGCCGCCGA
is defined as the binding site of Ume6p22 and TCG-
GCGGCA is reported to be the binding site of a re-
pressor of CAR125 which were repressed by a three-
component complex containing Ume6p (Ume6p, Sin3p,
and Rpd3p).26

We identified 103 genes in the yeast genome in which
these Ume6p-associated binding motifs can be found
within 500 bp upstream of the coding sequence and di-
vided those genes among 9 functional categories based
on their descriptions in YPD (Table 3 http:// www.grt.
kyushu-u.ac.jp/data/table3.html). UME6 is a known
global transcriptional regulator involved in pathway-
specific repression and induction of many meiotic
genes.22,23 Our results support this literature and add
new biological insight into the specific regulatory mecha-
nisms of action in UME6-mediated meiotic transcription
control. From the genes with putative UME6-related se-
quences according to expression profiles in UME6 dis-
ruptant experiments, the expression of almost all genes
related to meiosis containing the Ume6p binding mo-
tif were affected by the absence of UME6 whereas the
other functional categories showed no such association.

D
ow

nloaded from
 https://academ

ic.oup.com
/dnaresearch/article/10/1/1/424544 by guest on 16 August 2022



No. 1] S. Aburatani et al. 7

Aside from the Ume6p-related binding motifs, no other
MEME consensus sequence was present upstream of the
11 meiosis-related genes, a finding which suggests that
these 11 genes are regulated exclusively by UME6 and
that Ume6p directly influences their expression. Con-
versely, only two other genes possessed the putative bind-
ing sequence but did not show expression influence on the
count of UME6 in our experiments.

Experimentally driven discovery of network models of
expression control allows for specific biological insights
relevant to gene regulatory pathways that are not read-
ily reconstructed from the available biological literature
or present in pre-compiled pathway databases. We have
shown here that such a system is useful in discovering
novel gene function information as well as novel regula-
tory mechanisms. The use of this and similar strategies
to elucidate hierarchical regulatory pathways from full
genome expression libraries will allow for rapid insight
into transcription regulation that can be applied to fields
such as rational drug discovery and agrochemical target-
ing.
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