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ABSTRACT

RNA molecules fold into characteristic secondary
and tertiary structures that account for their diverse
functional activities. Many of these RNA structures,
or certain structural motifs within them, are thought
to recur in multiple genes within a single organism
or across the same gene in several organisms and
provide a common regulatory mechanism. Search
algorithms, such as RNAMotif, can be used to mine
nucleotide sequence databases for these repeating
motifs. RNAMotif allows users to capture essential
features of known structures in detailed descriptors
and can be used to identify, with high specificity,
other similar motifs within the nucleotide database.
However, when the descriptor constraints are
relaxed to provide more flexibility, or when there is
very little a priori information about hypothesized
RNA structures, the number of motif ‘hits’ may
become very large. Exhaustive methods to search
for similar RNA structures over these large search
spaces are likely to be computationally intractable.
Here we describe a powerful new algorithm based
on evolutionary computation to solve this problem.
A series of experiments using ferritin IRE and SRP
RNA stem-loop motifs were used to verify the
method. We demonstrate that even when searching
extremely large search spaces, of the order of 102
potential solutions, we could find the correct solu-
tion in a fraction of the time it would have taken for
exhaustive comparisons.

INTRODUCTION

RNA secondary structures have been described in several
important classes of RNAs, including non-coding RNAs such
as rRNAs, tRNAs, RNase P and SRP, as well as cellular and
viral mRNAs where these structures are known to be important
regulators of translation and stability. Some examples of the
mRNA structures include the iron-responsive element (IRE)
located in the 5’- or 3’-untranslated regions (UTRs) of mRNAs
involved in iron metabolism and transport (1,2), stem—loops in

the 3’-UTRs of histones and vimentin (3,4) and IRES elements
in the 5’-UTRs of picornaviruses, pestiviruses and flaviviruses
(5). In all of the known RNA structures, secondary structure is
conserved during evolution, despite substantial sequence
variation. While a number of tools exist for performing
sequence similarity searches, currently there are no useful
techniques for performing RNA structure similarity searches.
A computational tool to explore nucleotide sequence space for
conserved but unknown RNA structures might lead to the
discovery of new structures and improve our understanding of
functional and regulatory relationships amongst related RNAs.

One way to approach the task of de novo identification of
conserved structural elements is to define the space of all
structures that match a particular hypothesized motif and
evaluate the presence or absence of these motifs in the
sequences under consideration. Computational tools such as
RNAMotif have previously been developed to define and
search for RNA secondary structure motifs (6—10). These tools
allow abstraction of the structural pattern into a ‘descriptor’
with a pattern language that gives details regarding pairing
information, length and sequence. A list of all possible
structures that match any given descriptor within a set of
sequences can be easily generated. Depending on the speci-
ficity of the descriptor and the number of nucleotides in the
sequence database, this can result in a few hits or a very large
number of hits (i.e. of the order of 10 hits, or more, for a given
bacterial genome). When the number of hits is large, an
exhaustive search for a set of maximally similar structures can
be computationally intractable. Here we describe methods
based on evolutionary computation (EC) to search possible
RNA secondary structures for common elements across
multiple sequences without requiring pre-alignment or
sequence constraints in the descriptor.

All evolutionary algorithms (EAs) require a population of
contending solutions to be generated (11-13). Each solution in
the population is then scored with respect to a measure of its
worth or ‘fitness’. Solutions of low fitness are more likely to be
removed from the population than solutions of higher fitness
during a process of selection. Following selection, the
surviving solutions are used to generate new contending
solutions with random variations until the population size is
re-established. This process of variation and selection is
iterated for a specified number of generations or until the
population has discovered a solution of adequate worth.
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Previous attempts at RNA structure prediction using EC
have focused on genetic algorithms, but alternative represen-
tations and methods exist and have yet to be explored, not only
for structure prediction but also for calculation of RNA
structure similarity (14). Here, we focus on an alternative
representation and set of operators to search via evolution. The
procedure seeks a set of similar structures in a top-down
fashion rather than focusing mainly on a bottom-up combin-
ation of useful ‘building blocks’, as is common to genetic
algorithm approaches (for additional information on these
differences see 12). These representations and evolutionary
techniques are described in Materials and Methods. Details
of the algorithm and implementation are provided as
Supplementary Material online.

MATERIALS AND METHODS
Evolutionary computation

RNAMotif produces a list of structures (or ‘hits’) that conform
to a particular structure descriptor. The RNAMotif output file
contains the following information: structure pairing infor-
mation, a sequence identifier (ID), the position of a hit relative
to the start of the sequence, the number of nucleotides in the
structure, the strand (sense or antisense) and the nucleotide
sequence associated with the RNA structure. The information
contained in the RNAMotif output serves as input to the EA.

Population initialization. A collection or ‘bin’ of structures is
chosen at random without replacement from structures
represented in the RNAMotif output file. Each bin represents
one contending solution in the population and is referred to as
a ‘parent bin’ for the initial generation of evolution. The
initialization process is repeated until P parent bins are
created. The number of structures contained in each bin is
referred to as the ‘bin size’ (B) (Fig. 1). Both B and P are user
defined and are fixed throughout one run of evolution. During
initialization, each of P bins is constructed by selecting B
structures at random from the RNAMotif output file, where
1 < B =< Bpax (Bmax = the total number of structures in the
RNAMotif file). When B is larger than the number of
organisms represented in the RNAMotif file, multiple struc-
tures for a given sequence ID will occur. A user-defined
parameter can be used to force only one structure to be drawn
at random from each sequence ID.

Variation. For the initial generation, each P is copied to form
O ‘offspring bins’, where O is a user-defined parameter. Once
O offspring bins have been generated, the parent and offspring
bins are treated as one evolving population. During the
copying process, variation operators are applied so that each
offspring will have some difference relative to the parent. A
first random variable is drawn from a probability distribution
(e.g. Poisson or Gaussian) to determine which of the variation
operators are chosen. A second random variable is drawn from
a probability distribution to determine the number of times a
particular variation operator is applied. The possible variation
operators are: (i) structure replacement within a specified
sequence ID; (ii) structure replacement from a different
sequence ID; (iii) random single-point bin recombination;
(iv) random multi-point bin recombination.
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Figure 1. A schematic of the initialization process. Hits from an RNAMotif
file are placed randomly into bins, where the bin size (B) is determined by
the user (here B = 5). For initialization, the randomly generated bins are
considered ‘parent’ bins (P). Each P is then used to generate O offspring
bins with variation (see text). After initialization, the P + O bins are
considered as one evolving population.

For the structure replacement within a specified sequence
ID operator, structures in a bin are replaced at random with
new structures from the same organism in the RNAMotif file.
With this operator, a new set of random variables is required.
A first random variable is chosen to determine which
structure(s) to replace with a minimum number of replace-
ments 1 and maximum B — 1. A second random variable is
selected to determine between two choices of range (local or
global) for the difference in structural similarity between the
old and new structures. RNAMotif output files contain
structures that are listed in order of position relative to the 5
end of the target sequence. Therefore, within the file,
neighboring RNAMotif structure hits have a high probability
of structural similarity. The local version of the structure
replacement within a specified sequence ID operator chooses a
replacement structure from the RNAMotif file that neighbors
the original structure in the file. The global version of the
structure replacement within a specified sequence ID operator
chooses a replacement structure at random from the
RNAMotif file without replacement. The global version of
this operator allows for the possibility of large variation
whereas the local variation operator has a higher probability of
small variation.

The structure replacement from a different sequence ID
variation operator is used to randomly replace a structure in a
bin with a new structure from a different organism in the
RNAMotif file. Assume hits from 10 different organisms in the
RNAMotif file and B = 5. A random number is drawn for the
number of structures to be replaced in the bin, with a minimum
and maximum number of replacements of 1 and B — 1,
respectively. When a structure is chosen for replacement, a
new structure is chosen at random from the set of structure hits
from a different sequence ID in the RNAMotif file.
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The random single-point bin recombination operator makes
use of the information in two parent bins to generate two new
offspring bins via single-point recombination. When using the
random single-point bin recombination operator, one parent
bin (P,) is selected at random from the population whereas the
other parent bin (P,) is a newly constructed random draw of
structures from the RNAMotif file. For example, assume
B =5. Within P, arandom variable is used to select a structure
to serve as a position of single-point recombination between
P, and P, and generate two new offspring bins, O; and O,.
One of the offspring is selected at random as a new member of
the population. During the evolutionary process, this operator
therefore combines a parent bin containing implicit evolu-
tionary history (P;) with a new parent bin (P,) constructed
completely at random in order to allow for very large jumps
across the search space. The random multi-point bin
recombination operator makes use of the same procedure
except with multiple points of recombination. Methods of self-
adaptation can be incorporated concurrent with the process of
evolution (see Supplementary Material).

Fitness. The fitness function is an aggregate of components
that measure RNA structure similarity. These measures are
applied pairwise (15) by each structural component and
then summed into a final bin fitness score. The scoring
components are: (i) nucleotide sequence similarity within a
structural component; (ii) structure component length simi-
larity; (iii) structure thermodynamic stability similarity (see
Supplementary Material for details).

Selection. Based on these scores, a mechanism of selection
determines which bins will be removed from the current
population. Under a tournament selection approach (12), a bin
from the current population is chosen at random and is
‘competed’ with a set of R randomly chosen bins in the same
population, where R is user defined. Each time the first bin’s
fitness score is higher than (or ties) the opponent’s score, the
first bin scores a ‘win’. The number of wins is recorded for all
competitions and this process is iterated over all members of
the population. All bins are then ranked with respect to the
number of wins scored during the competition. Selection is
used to remove the lower O bins on this ranked list. In the case
of a tie in the number of wins, those specific bins are re-ranked
by fitness prior to selection. After selection, the P remaining
bins are saved to serve as parents for the next generation.

Program implementation

Evolution was performed in parallel on four, dual processor
Intel Pentium III, 450 MHz, 256 MB RAM computers,
running Linux O/S using server/client architecture. A ‘master’
server was used as the user interface, reading parameters,
and RNAMotif data files. This program then spawned one or
more clients that performed the evolution. Each client was
initialized with a random number seed, periodically trans-
mitting its best solution set back to the master. Although the
clients acted as parallel evolutionary ‘islands’, data were also
communicated between clients. This sharing of information
between clients is known to facilitate escape from local optima
and improve the rate of convergence.

For all the experiments presented here, tournament selec-
tion, Poisson distributions for the number of mutations and
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Figure 2. Structures of the human ferritin IRE (A and B) and structure of
human SRP domain IV (C) found in the literature (20,23).

Gaussian distribution for self-adaptation were used with
varying population sizes for 1000 generations of evolution
to find similar structures in the sense strand. The time taken to
converge on the known solutions for these RNA structures was
measured and the remainder of evolution was monitored to
ensure that ‘better’ solutions were not generated.

RESULTS
Motif search examples

Iron-responsive element (IRE). IREs have been described in
the 5’- and 3’-UTRs of several mRNAs (1,16-20). IREs bind
iron-regulatory proteins (IRPs) and regulate iron homeostasis
in eukaryotes. Two forms of the RNA secondary structure for
IRE have been proposed in the literature (20). The stem—loop
structure proposed differs in the structure of the internal loop
disrupting the helix. The IRE secondary structure is most
frequently shown with a C bulge on the 5" side of the helix
(Fig. 2A). An alternate structure has an asymmetrical internal
loop at this same position with three unpaired bases on the 5
side of the helix and a single C on the 3’ side (Fig. 2B). A
single, highly specific RNAMotif descriptor can be written to
capture both of these structural elements and identifies IREs in
a number of iron-regulated transporters (10). A less specific
descriptor for this same structure element increases the
number of false positives significantly but may also allow
discovery of distantly related IREs over many species. We
used a series of three descriptors of increasing generality over
four experiments to test the ability of the EA to discover
common IRE structures in ferritin mRNA sequences from a
number of orthologous sequences.

For the first experiment, seven full-length ferritin mRNA
sequences (Homo sapiens, gil507251; Sus scrofa, gil286151;
Cricetulus griseus, gill91071; Gallus gallus, gil2369860;
Rana catesbeiana, gil213691; Xenopus laevis, gil214135;
Drosophila melanogaster, gil3559829) were obtained from
GenBank. The descriptor shown in Figure 3A was used to
generate structure hits using RNAMotif. The number of hits
for each experiment is given in Table 1. Statistics regarding
the number of possible bins, evolution parameters and time to
completion for all experiments are provided in Table 2. When
each bin is allowed to contain one structure from each of the
seven organisms and all possible combinations are allowed,
there are 7.6 X 108 possible bins in the search space (Table 2).
The evolutionary search examined only a fraction of the
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Figure 3. RNAMotif descriptors used IRE experiments 1-4 (A—-C) and SRP experiments 5-10 (D-H). Descriptors (A-C) include the possibility for one
potential mispair at the base of the upper stem (not shown). Descriptor (C) has unpaired nucleotides on the 3’ side of the stem in opposition to the original

bulge providing the possibility for internal loops in the final product.

Table 1. Number of RNAMotif hits for experiments 1-10 using descriptors for the ferritin IRE or the SRP listed by organism

Organism Ferritin IRE SRP

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10
H.sapiens 45 154 154 785 20 136 418 903 903 903
S.scrofa 25 122 122 570
C.griseus 15 67 67 260
G.gallus 37 91 91 1228
R.catesbeiana 9 100 100 142
X.laevis 9 62 62 148
D.melanogaster 15 137 137 554
C.porcellus 128
O.nerka 57
C.familiaris 59
D.rerio 116
M.musculus 71
A.fulgidus 15 69 200 724 724 724
B.subtilis 12 62 374 520 520 520
E.coli 14 45 258 523 523 523
M.voltae 11 30 121 315 315 315
S.pyogenes 57295
S.aureus 13591
Total 155 733 1164 3687 72 342 1371 2985 60280 16576

The total number of RNAMotif hits is also provided.

possible bins (1.4 X 1075) before converging on a solution,
which contained a set of structures that exactly matched the
proposed IRE structure (Table 3). This was achieved by the
13th generation in <3 min. Exhaustive evaluation of all
possible bin combinations for this experiment at the same rate
of calculation would have required 125 days.

For the second experiment, the descriptor was altered to
provide additional variation in the length of the upper stem
(Fig. 3B). This resulted in an increased number of hits and
possible bin combinations (Table 2). By generation 33, the
best bin in the population contained a set of structures
identical to the IRE (Table 3). This calculation took 6 min and

an even smaller fraction of the possible search space was
evaluated, demonstrating the efficiency of the approach. In a
third experiment, five additional ferritin mRNA sequences
(Cavia porcellus, gill6416388; Oncorhynchus nerka,
gil12802902; Canis familiaris, gil15076950; Danio rerio,
gil11545422; Mus musculus, gil6753911) were added to
increase the size of the search space when using the descriptor
from experiment 2. The results of this experiment are shown in
Table 3. The size of this space was larger than that of
experiment 1 by 15 orders of magnitude. A larger population
size of 100 parents and 50 offspring was used to converge on
the correct solution in 21 generations (1.1 h) (Table 2).



5314 Nucleic Acids Research, 2002, Vol. 30, No.23

Table 2. Results of experiments with IRE and SRP using RNAMotif
coupled with an evolutionary search

Experiment  Possible bins P o G Time  FE
(min)

1 7.6 X 108 40 20 13 3 1.4 X 107
2 9.7 X 1013 40 20 33 6 2.7 X 10719
3 3.5 X 10?3 100 50 21 66 3.0 X 1071
4 1.7 X 10'8 100 50 115 180 34 x 1013
5 5.5 X 10° 80 40 3 2 1.7 X 102
6 7.9 X 108 80 40 7 4 2.8 X 107
7 9.8 X 10" 80 40 27 13 8.8 X 1078
8 5.6 X 1013 80 40 27 12 5.9 x 1071
9 3.2 X 108 200 100 25 90 1.5 X 10713
10 7.6 X 107 200 100 13 41 34 X 1018

For each of the eight experiments, the number of possible bins in the search
space, the number of parents (P), offspring (O) and generations (G) to the
correct solution are provided as well as the time taken to arrive at the
correct solution in minutes, and the fraction of the total bin space evaluated
(FE) during evolution (the result of equation 24 in Supplementary Material
divided by the number of possible bins).

A fourth experiment was designed with a very generic
stem—loop descriptor with an optional internal loop (symmet-
ric or asymmetric) on either side of a helical region (Fig. 3C).
This descriptor, while capturing both known variants of the
IRE element, could represent any short RNA helical motif,
and generated a very large search space (1.7 X 10'8 bins).
Using a population size of 100 parents and 50 offspring, our
algorithm converged on the correct IRE structure in 115
generations (<3 h), once again having sampled only a small
fraction of the search space (Table 2). The best solution
(Table 3) matches the known variant of the ferritin IRE
structure, with the exception of the D.melanogaster sequence
that does not fit the 3:1 internal loop structure hypothesis. This
is consistent with previous reports.

SRP RNA domain IV stem—loop descriptor. The signal
recognition particle (SRP) targets signal peptide-containing

Table 3. Top bin structures in each experiment with the IRE and SRP motifs

proteins to plasma membranes (prokaryotes) or the endoplas-
mic reticulum (eukaryotes) (21-23). The SRP RNA (4.5S
RNA in prokaryotes and 7S RNA in eukaryotes) is an essential
component of the particle. A key portion of SRP is the domain
IV stem—loop, which has been conserved from bacteria to
mammals. Domain IV is the binding site for the protein
component of the particle (23). Key features of the domain IV
stem—loop have been identified. These include two internal
loops, a symmetrical loop near the top of the stem and a
variable asymmetric loop closer to the base of the stem (10).
The helices are of varying length and the loop is typically one
of two predominant types, either a tetraloop or hexaloop
(Fig. 2C). Previous experimentation demonstrated that a
single, highly specific RNAMotif descriptor is capable of
finding SRP RNA domain IV structures in a wide range of
bacterial genomes (10). Here we tested the hypothesis that a
more general descriptor with appropriate fitness functions
would be able to find the motif from a much larger search
space.

Experiment 5 (Table 1) used five full-length sequences for
4.5S/7S tRNA (Archaeoglobus fulgidus, gil38795; Bacillus
subtilis, gil216348; Escherichia coli, gil42758; H.sapiens,
gill77793; Methanococcus voltae, gil150042) obtained from
GenBank. The descriptor shown in Figure 3D was used to
screen these sequences for structures using RNAMotif. The
resulting number of hits for each organism within the sense
strand of these sequences is listed in Table 1. When each bin
contains one structure from each of the five organisms and all
combinations are allowed, there are 5.5 X 10° possible bins
(Table 2). Only three generations of evolution (2.4 min) were
required to generate a set of structures that matched the known
SRP domain IV structure (Table 3).

For the sixth experiment, the descriptor was modified to
allow greater length variation in the stems (Fig. 3E), resulting
in a search space of 7.9 X 108 possible bins. A population of
80 parents and 40 offspring arrived at the correct solution in
seven generations (4 min) (Table 3). In experiment 7, the

Run # IRE Search Run # SRP Search
gi507251 34 23 ctg ¢ ttcaa cagtgc ttgga cgg
gi286151 17 23 ctg ¢ ttcaa cagtgc ttgga cgg gi38795| 192 |24 |gce cagg ccc ggaa ggg agca ggc
gil91071 11 23 ctg ¢ ttcaa cagtgc ttgaa cgg 5.6 gi216348| |153 |24 |tgt cagg tcc ggaa gga agca gca
1, 2 [gi2369860 36 23 ctg ¢ gtcaa cagtgc ttgga cgg 7’8’ gi42758| 204 |24 |ggt cagg tcc ggaa gga agca gcc
gi213691 28 23 ttg ¢ ttcaa cagtgt ttgaa cgg ! gil77793| |308 |24 |gcc cagg tcg gaaa cgg agca ggt
gi214135 11 23 ttg ¢ ttcaa cagtgt ttgaa cgg gil150042| |310 |26 |ccg ccagg ccc ggaa ggg agcaa cgg
gi3559829 153 |23 ctt ¢ tgcgc cagtgt gtgta aag
gi507251 34 23 ctg c ttcaa cagtgc ttgga cgg
gi2g86151 17 23 ctg ¢ ttcaa cagtgc ttgga cgg
91191071 11 23 ctg ¢ ttcaa cagtgc ttgaa cgg
gi2369860 36 23 ctg ¢ gtcaa cagtgc ttgga cgg 9138795 192 |24 |gcc cagg ccc ggaa ggg agca ggc
gi213691 28 23 ttg c ttcaa cagtgt ttgaa cgg gi216348 153 |24 tgt cagg tcc ggaa gga agca gca
3 gi214135 11 23 ttg ¢ ttcaa cagtgt ttgaa cgg 9 gi42758 204 |24 |ggt cagg tcc ggaa gga agca gcc
913559829 153 |23 ctt ¢ tgcgc cagtgt gtgta aag 91177793 308 |24 |gcc cagg tcg gaaa cgg agca ggt
gil6416388 |9 23 ctg ¢ ttcaa cagtgc ttgga cgg gil150042 310 |26 |ccg ccagg ccc ggaa ggg agcaa cgg
gil2802902 |15 23 ctg ¢ ttcaa cagtgc ttgaa cgg gil14286347|190360|24 |ggt cagg gga ggaa tcc agca gcc
gi15076950 |7 23 ctg c ttcaa cagtgc ttgga cgg
gil1545422 |10 23 ctg ¢ ttcaa cagtgc ttgaa cgg
gi6753911 33 23 ctg c ttcaa cagtgc ttgaa cgg
gi507251 |31 |28|ttcc tgc ttcaa cagtgc ttgga c aa
gi286151 |14 |28|ttcc tgc ttcaa cagtgc ttgga c ggaa 9}38795 192 |24|gce cagg  ccc ggaa ggg agea  gge
R gi2l6348 153 |24 |tgt cagg tcc ggaa gga agca gca
gi191071 |8 28|ttcc tgc ttcaa cagtgc ttgaa c ggaa
4 gi2369860|33 |28|ttcc tgc gtcaa cagtgc ttgga ¢ ggaa 10 9%42758 204 [24|ggt cagg tcc ggaa gga agca gec
. 91177793 308 |24 |gcc cagg tcg gaaa cgg agca ggt
1213691 |25 |28|ttct tgc ttcaa cagtgt ttgaa c ggaa 5i150042 310 [26]ccg cca cce aa agcaa ¢
pi21413s |8 |28|trct tgc ttcaa cagtgt ttgaa c ggaa 115922990(525890 |24 ]t ¢ caga too tgac gga agea goa
gi3559829|151|27|gcct  tc tgcgc cagtgt gtgta a aggce g g 99 g 99 g g

New results (the structures for S.pyogenes and S.aureus) are shown in bold in experiments 9 and 10.
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Figure 4. Alignment of the S.pyogenes and S.aureus SRP RNA domain IV structures discovered, relative to the four closest organisms found in the SRPDB.
The top line of the alignment provides information on proposed base pairing for the S.pyogenes structure. The symbols ( and ) are used to denote the 5" and 3’

sides of the helix, respectively.

internal loops of the descriptor were allowed to have
additional length variation (Fig. 3F). With this change, the
number of possible bins increased significantly (Table 2);
however, evolution arrived at the correct SRP solution
(Table 3) in 27 generations (13 min). An eighth experiment
adding variability to the hairpin loop (Fig. 3G) further
increased the number of hits per organism (5.6 X 1013
possible bins). The known SRP structure was identified in
27 generations (12 min) (Table 3).

To test the utility of the system for discovery, we reviewed
GenBank and the SRPDB (24) (http://psyche.uthct.edu/dbs/
SRPDB/SRPDB.html) for bacterial genomes that had recently
been fully sequenced but did not have their SRP RNA
identified. The SRPDB website has a useful alignment for
this region for over 100 organisms and was last updated in
August 2001. Streptococcus pyogenes M1 (gil14286347) and
Staphylococcus aureus Mu50 (gil15922990) are two of 33
recently sequenced bacteria not represented in SRPDB. We
searched the S.pyogenes genome with the descriptor shown in
Figure 3H and generated over 58 000 matches scattered over
the entire genome. In order to see if the SRP domain IV
stem—loop was represented in this set, we added the hits from
this search to the hits used in the previous experiments and
used evolutionary computation to search for similarity
(experiment 9). A population of 200 parents and 100 offspring
was used with one structure for each gi in the RNAMotif
output file. After 25 generations (90 min), the best solution
contained SRP structures identical to experiment 8 with the
addition of a very similar sequence and structure from
S.pyogenes (Table 3). We used the genomic coordinates of
this hit to extract flanking sequences from the S.pyogenes
genomic sequence. This entire region compares favorably to
the structure-based alignment of the larger SRP RNA from
SRPDB (Fig. 4).

Using a similar approach with the S.aureus Mu50 genome
(Table 3), we obtained a best-match solution within 13
generations (40 min). This best solution compared favorably
with the SRPDB alignment (Fig. 4) but had an atypical
tetraloop sequence UGAC instead of GGAA commonly
observed in the rest of the bacterial SRPs.

DISCUSSION

We have coupled EC with RNAMotif to discover similar RNA
structure motifs over a wide phylogenetic range of organisms.
Our hypothesis is that by identifying regions of structural
similarity over a number of orthologs, one can find kernels that

could lead to the discovery of larger structures through
downstream investigation. The current tool described above
provides a method for discovering these kernels. By itself, the
RNAMotif algorithm can be used to specify RNA secondary
structure in the form of a descriptor that contains both
sequence and structure context with varying complexity. This
approach is more robust than previous motif searching tools
and can be used to find structures that match a particular
descriptor in a sequence database. However, development of
an appropriate descriptor for RNAMotif is typically problem
dependent and presumes prior knowledge of the structure,
which may or may not be available for a target of interest.

An alternative approach might be to ‘loosen’ the descriptor
by allowing for mispairing in helices, variation in length for
structural elements, variation in nucleotide sequence, etc. This
method gives greater flexibility to the descriptor, allows the
possibility for the detection of more distantly related structure
elements, but at the same time increases the size of the space
that must be searched for similarity. The number of hits can be
too large to be searched with exhaustive calculation, but can
be efficiently searched with an EA. For the experiments above,
no information regarding correct base sequence or structure
location was provided to the algorithm and the approach was
able, in all cases, to converge on the solution known to be
correct even when the descriptors were very generic.

Comparison of results from the IRE (Fig. 3C) and SRP
RNA (Fig. 3G) experiments demonstrates that in both cases
generic stem—loop descriptors with very little sequence
constraints could find the known, correct structural elements
in a large set of RNA structures. Further, as demonstrated in
SRP experiments 9 and 10, we were able to discover SRP
RNA-containing regions in newly sequenced genomes with-
out prior knowledge of the SRP sequences specific to these
genomes. We validated our findings by matching a larger
region flanking our motif hits with the global features of the
SRP RNA seen in the SRPDB.

As we were finishing our analysis, a method for predicting
SRP RNA was published (25) and included the same results
from the S.pyogenes and S.aureus genomes. In addition, they
also showed the presence of the unusual UGAC tetraloop in
the Lactococcus lactis genome. We verified this using our
technique (data not shown). It is noteworthy that in order for
Regalia et al. (25) to find these atypical SRPs, a number of
additional bioinformatic steps had to be undertaken, such as
BLAST or FASTA searches with closely related organism
genomes, as well as modification of their original search to
specifically include the tetraloop nucleotide sequences.
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Further, their technique depended on using a specific search on
the target organism class, archaea, eubacteria, plant, yeast and
metazoans. We have previously shown similar results using
RNAMotif (10), where, with the exception of Buchnera sp.,
we could identify SRPs in all branches of life with a single
descriptor. The current method overcomes all of the limita-
tions of these specific motif-based descriptors that require
some prior knowledge of expected structures in the target
genome, and allows the overall similarity of the structures in
the search results to identify novel variants of structural motifs
such as those described above. Further, the methods described
here using EAs can search very large spaces (~1023 structures)
in a fraction of the time it would require to search this space
exhaustively, making this a convenient method for motif
discovery.

Comparative analysis has been used extensively in deter-
mining RNA structure (26-28). This is a very reliable method
for inferring RNA secondary structure but requires multiple
sequences and alignment. Unfortunately, for many molecules
(especially mRNAs), very few related sequences are known.
Previous computational approaches for the task of discovering
common stem-loop structures have relied on software that
first builds an alignment to then build a model representing the
sequences and structures found in the alignment (29). Here, we
present a method to efficiently discover common structures in
even just a few homologous sequences without the require-
ment for sequence alignment. The utility of this method does
increase with an increasing number of orthologous sequences
in a manner similar to comparative sequence analysis.

Many measures of RNA structure similarity can easily be
incorporated into the fitness function for further refinement
(30,31). For instance, energy minimization can be used to
discover potential lowest energy structures for a single
sequence (31). Previous methods using EC for RNA structure
folding (32-42) and for discovering common structures (43)
used free energy calculations to define RNA structure. Rather
than exclusively relying on thermodynamic calculations (efn),
we use this as one of many optional metrics that can be
computed in arriving at the final solution. In all the examples
shown here, we did not use any thermodynamic calculations in
the fitness function, and showed that successful results can still
be achieved. In the rare case where two solutions in the final
generation might share the same fitness value, efn could be
used to resolve these ties. Information regarding relative motif
position can also be used as a measure of similarity. Following
evolution, similar hits are mapped back to true coordinates
based on the original sequence. Should the structures lie in
similar locations with respect to a gene of interest, the results
are considered more valuable. Position similarity can also
be included as an additional fitness function term during
evolution.

Taking a broad view, one might consider generating a space
of all possible stem structures for each of a number of
orthologous mRNA sequences, and then comparing folded
structures from this space to arrive at the set of structures that
is most similar across all species. An exhaustive search
through this stem space may be plausible if the sequence
lengths for each mRNA and/or number of orthologous
sequences are small. Algorithms have been developed
previously to generate all potential helices of a specific length
given a sequence of RNA and base pairing rules (44,45).

However, it is known that the number of potential RNA
structures in a single sequence of n nucleotides increases on
the order of 2" (46). Therefore, an exhaustive search of this
space for similar helices across two or more mRNAs of any
biological relevance is likely to be computationally intract-
able. We have initiated a series of experiments to examine the
potential of EC for searching these spaces. Such an approach
obviates the requirement for RNAMotif but increases the
complexity of the search space dramatically.

PROGRAM AVAILABILITY

Please contact the authors for information regarding program
implementation and/or motif searches using the code.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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