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Abstract

While vanishing point (VP) estimation has received ex-

tensive attention, most approaches focus on static images

or perform detection and tracking separately. In this pa-

per, we focus on man-made environments and propose a

novel method for detecting and tracking groups of mutually

orthogonal vanishing points (MOVP), also known as Man-

hattan frames, jointly from monocular videos. The method

is unique in that it is designed to enforce orthogonality

in groups of VPs, temporal consistency of each individual

MOVP, and orientation consistency of all putative MOVP.

To this end, the method consists of three steps: 1) proposal

of MOVP candidates by directly incorporating mutual or-

thogonality; 2) extracting consistent tracks of MOVPs by

minimizing the flow cost over a network where nodes are

putative MOVPs and edges are putative links across time;

and 3) refinement of all MOVPs by enforcing consistency

between lines, their identified vanishing directions and con-

sistency of global camera orientation. The method is eval-

uated on six newly collected and annotated videos of urban

scenes. Extensive experiments show that the method out-

performs greedy MOVP tracking method considerably. In

addition, we also test the method for camera orientation es-

timation and show that it obtains very promising results on

a challenging street-view dataset.

1. Introduction

Often a number of simplifying assumptions are made in

order to facilitate the reasoning about complex man-made

environments. Most man-made structures can be described

in terms of geometric primitives, such as parallel or orthog-

onal planes and lines. Under a projective transformation,

sets of parallel lines often converge to an intersection point

in the imaged scene. This point is known as a vanishing

point (VP). The vanishing points provide strong cues for the

3D geometry of the scene. Since for scenes like urban envi-

ronments the orthogonal planes are the dominant geometric

primitives, one can constrain the detection to mutually or-

Figure 1: One mutually orthogonal vanishing point (MOVP) dis-

covered from a video sequence and visualized using 5 frames. The

discovered MOVP allows extraction of the global camera orienta-

tion for each frame.

thogonal vanishing points (MOVP, also know as Manhattan

frames [28]). One MOVP is depicted in Fig. 1. Generally

in man-made environments, there can be multiple MOVPs

present, which may or may not share one common VP. Of-

ten a clearly dominant MOVP is not present, as visualized

in Fig. 7, and a set of MOVPs have to be estimated.

Camera calibration [11], pose estimation [22], 3D re-

construction [7, 14], and autonomous navigation [23], are

areas in the field of computer vision, where the VPs are

used as low-level input. Many such applications, working

on video sequences or image sets, require VP estimates in

every frame and links across views or frames. If this is

needed, the camera pose for each frame is usually assumed

to be known [1, 12], facilitating the VP association across

images, or the VP detection and tracking tasks are sepa-

rated (greedy assignment [9] and particle filters [23, 25] are

used). However, the pose knowledge is often not available,

requires odometry or external motion measurements.

We propose the discovery of sets of MOVPs from videos

where only the internal camera calibration is known. For
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this purpose, the method is designed to leverage mainly

three sources of information: orthogonality in groups of

VPs, temporal consistency of each individual MOVP, and

orientation consistency of all putative MOVPs. We extract

MOVP proposals in each video frame by directly incorpo-

rating mutual orthogonality, then enforce temporal consis-

tency by using a multi-target tracking formulation, and fi-

nally refine the MOVP tracks by enforcing consistency be-

tween lines and their identified MOVP and consistency of

global orientation of all MOVP. Our main contributions are:

1. We are the first to consider the problem of discovery

of multiple MOVPs from videos with unknown camera

pose. We provide a new evaluation dataset for this task.

2. We adapt the established Multi-Target Tracking formu-

lation using min-cost network flows to the problem of

MOVP discovery.

3. We propose a Non-Linear Least-Squares refinement

step to jointly refine all discovered MOVPs and to re-

liably extract the global camera orientation.

The method is tested on six newly collected videos of

real urban scenes, in which all vanishing points are manu-

ally labeled. Extensive experiments validate the effective-

ness of the method, especially for challenging scenes where

multiple MOVPs, with equally strong line support, appear.

Furthermore, we apply the method to the task of global

camera orientation estimation and show promising results

on the large, challenging Antwerp street-view dataset [16].

2. Related Work

VP extraction is a popular topic in computer vision. We

categorize according to algorithmic design choices the most

relevant recent literature:

Input: Most works start from lines [6, 9], or line seg-

ments [3, 21, 26, 11, 29, 12, 34, 2]. Some approaches em-

ploy continuous image gradients or texture [27, 25, 23] and

thresholded edges images [30]. When the 3D geometry is

known, the surface normals can be directly used [28].

Accumulator space: The intersections of imaged lines

are computed in the (unbounded) image space [26, 27, 29, 9,

2, 35] or on a (bounded) Gaussian unit sphere, as introduced

in [3] and used in [21, 24, 20, 1, 15, 11, 12, 4, 22, 28].

Line-VP consistency and VP refinement: The consis-

tency between an estimated VP and the image lines is usu-

ally measured using line endpoint distances in the image,

used by us and [29, 12, 4, 2, 17], the angular differences in

the image [26, 8], with explicit probabilistic modeling of the

line end point errors [35], or with angles between normals

of interpretation planes in the Gaussian sphere [21, 24, 20].

We sample MOVP candidates on the Gaussian sphere be-

cause testing for orthogonality directly translates to vector

cross products, but revert to image-space fitting errors for

refinement to avoid distorted errors and to attenuate depen-

dance on (potentially) noisy internal camera calibration.

The VP computation or refinement with given associ-

ated lines is commonly done by Hough voting and non-

maximum suppression [21, 24, 20, 32, 23], by solving

a quadratic program [2], implicitly in an Expectation-

Maximization (EM) setting [1, 27, 29, 35], or by linear

least-squares, as in [15].

Solution: For a final solution, different methods com-

bine the input, the accumulator space and the line-VP con-

sistency measures and refinement. Efficient search [26, 8],

direct clustering [29, 17], multi-line RANSAC [4, 34], EM

procedures [1, 15, 27, 12, 35], or MCMC inference [28] are

among the methods employed directly on the accumulator

space. If a discretization is enforced on the accumalator

space, the solutions are found by voting schemes [21, 24,

20, 23] or inference over graphical models [30, 2].

Camera calibration and VP orthogonality: The in-

ternal camera calibration is assumed known in [24, 20,

25, 12, 9, 23], while others do not [21, 15, 26, 35, 2].

From the extracted VPs the internal parameters can be es-

timated [6, 11, 34]. Also VPs have been used for the es-

timation of external camera parameters such as the ori-

entation of camera to scene [15] and the orientation of

3D shape to camera [3], and as additional constraints for

full camera pose [22]. Often, the VPs are extracted by

imposing further scene-dependent constraints. It is the

case of mutual VP orthogonality constraint (or Manhattan

World) [4, 8, 12, 9, 34], sets with a shared vertical VP (At-

lanta World) [27, 2], and as in our paper, sets of mutually

orthogonal VPs (MOVPs) [28].

Multi-view extraction and VP Tracking: [1] uses

known camera poses to solve multi-view VP extraction by

Hough voting with EM refinement. [12] uses Structure-

from-Motion (SfM) camera pose estimates to extract or-

thogonal VPs independently in multiple views and enforce

consistency. [9] extracts orthogonal VPs separately in each

video frame. VP sets are then greedily linked across frames.

[25, 23] aim at road direction finding based on tracked VPs.

A single finite VP is extracted and tracked using particle

filters. It corresponds to the heading direction.

3. Our Approach

We aim at the discovery of multiple sets of MOVPs.

For this, we start from line segments as image primitives,

The lines in the image space are the observations we make

over the scene world and support the presence of MOVPs.

Therefore, the sets of MOVPs compete on the set of obser-

vations. Since we work over a video sequence, the temporal

consistency of the MOVPs is another key information we

use. We expect that over a whole sequence a reduced set of

MOVPs is capable to explain all the observations and to be



temporally consistent. Since all VPs are constant in space,

and only the camera can move freely, temporal constancy of

MOVPs directly translates to finding the global camera ori-

entation in all frames, such that all locally extracted MOVPs

are constant when transferred to the global reference frame.

In the following we derive the algorithmic formulation of

our method. We will describe MOVP candidate generation

in § 3.1, temporal linking in § 3.2 and refinement in § 3.3.

3.1. MOVP candidate extraction

For reasoning over VPs we first extract line seg-

ments [33] as image primitives. Since exhaustively search-

ing for all line convergence points is intractable due to

the large amount of line segments, we employ a 3-line

RANSAC sampling to extract MOVP candidates [4]. In

highly textured scenes the number of line segments is large,

and in consequence we will obtain many duplicate MOVPs.

We reduce all samples to a set of representative candidates

in a subsequent non-maximum suppression step.

Additionally, we need an approximate orientation

change Dn,n+1 between all pairs of frames n to n + 1 in

order to compute the linking cost between two MOVPs in

§ 3.2.2. This can be done using image descriptors, such as

SIFT [19], feature matching, Essential matrix computation,

and decomposition. SIFT features can be expensive to com-

pute and match, and the orientation estimate may be noisy,

as shown in the experiments in § 4.2. Because of this we

chose to estimate the orientation change differently using a

RANSAC process again: We randomly sample one MOVP

candidate from frame n as well as n+ 1, compute the nec-

essary camera orientation change for a perfect overlap, and

compute the inliers, i.e. how many MOVP candidates from

frame n find a close fit in frame n+1. For each frame n we

keep the best orientation change Dn,n+1, which produces

the most MOVP candidate inliers in the next frame.

3.2. MultiMOVPs Tracking

The data association of the MOVPs extracted in each

frame to global identities is formulated as a Maximum A

Posteriori (MAP) problem. We follow (including the nota-

tions) the traditional approach of Zhang et al. [36] as used

for multi-object tracking. We use a cost-flow network to

model the problem and a min-cost flow algorithm to solve it.

The intuition is that finding non-overlapping MOVPs tracks

is analogous to finding edge-disjoint paths in a graph, which

admits a solution by efficient network flow algorithms.

Let X = {xi} be the set of MOVP observations, each

defined by a 3 × 3 orthonormal matrix xi ∈ SO(3), and

time step (frame index), xi = (xi, ti). A time ordered list

of MOVP observations represents a single track hypothesis,

i.e. Tk = {xk1
,xk2

, · · · ,xklk
} where xki

∈ X and lk is

the length. A set of such track hypotheses defines an asso-

ciation hypothesis, T = {Tk}.
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Figure 2: An example of the cost-flow network with 3 time steps

and 9 observations (as in [36]).

The objective is to maximize the posteriori probability of

T given the observation set X :

T ∗ = argmaxT P (T |X )
= argmaxT P (X|T )P (T )
= argmaxT

∏

i P (xi|T )P (T )
(1)

under the assumption of conditional independence of the

likelihood probabilities given the hypothesis T .

Optimizing directly over the space of T is infeasible.

The search space can be reduced if we use the fact that an

observation can not belong to more than one track, therefore

Tk ∈ T can not overlap with each other:

Tk ∩ Tl = ∅, ∀k 6= l (2)

Generally, MOVP tracks may not be independent. But if

we assume the camera orientation to be given or computed

(in our case by RANSAC in § 3.1), then we can assume

independence of MOVP tracks. Thus, Eq. (1) becomes:

T ∗ = argmaxT
∏

i P (xi|T )
∏

Tk∈T P (Tk)
s.t. Tk ∩ Tl = ∅, ∀k 6= l

(3)

where

P (xi|T ) =

{

1− βi ∃Tk ∈ T ,xi ∈ Tk

βi otherwise
(4)

P (Tk) = P ({xk0
,xk1

, · · · ,xklk
})

= Pentr(xk0
)Plink(xk1

|xk0
), Plink(xk2

|xk1
)

· · ·Plink(xklk
|xklk−1

)Pexit(xklk
)

(5)

P (xi|T ) is the likelihood for an observation xi, βi being

the false alarm probability of xi. P (Tk) is the likelihood for



a track Tk and is modeled through a Markov chain of transi-

tion probabilities Plink(xki+1
|xki

), initialization Pentr and

termination Pexit probabilities. Since P (xi|T ) models not

only T associated observations (true MOVPs) but also those

without association (false alarms), the method is able to

prune the observations by selecting the most consistent ob-

servations, thus forming strong tracks.

3.2.1 Min-cost flow solution

We use the following 0-1 indicators:

fen,i =

{

1 ∃Tk ∈ T , Tk starts from xi

0 otherwise
(6)

fex,i =

{

1 ∃Tk ∈ T , Tk ends at xi

0 otherwise
(7)

fi,j =

{

1 ∃Tk ∈ T , xj is right after xi in Tk

0 otherwise
(8)

fi =

{

1 ∃Tk ∈ T ,xi ∈ Tk

0 otherwise
(9)

and the notations:

Cen,i = − logPentr(xi) Cex,i = − logPexit(xi)

Ci,j = − logPlink(xj |xi) Ci = log βi

1−βi

(10)

Given the above notations, the objective function (1) in log-

arithmic form is as follows:

T ∗ = argmaxT
∑

Tk∈T − logP (Tk) +
∑

i − logP (xi|T )
= argmaxT

∑

Tk∈T (Cen,k0
fen,k0

+
∑

j Ckj ,kj+1
fkj ,kj+1

+ Cex,klk
fex,klk

)

+
∑

i(− log(1− βi)fi − log βi(1− fi))
= argmaxT

∑

i Cen,ifen,i +
∑

i,j Ci,jfi,j
+
∑

i Cex,ifex,i +
∑

i Cifi
(11)

subject to that hypotheses in T do not overlap, equivalent to

fen,i +
∑

j

fj,i = fi = fex,i +
∑

j

fi,j , ∀i (12)

This still allows for MOVPs to share one vanishing direc-

tion, such as the gravity direction, but prohibits tracks in

which all vanishing directions are shared.

The MAP formulation, in logarithmic form (11), can

now be expressed in terms of a cost-flow network G(X )
with source s and sink t, as in [36]. A cost-flow net-

work is depicted in Fig. 2. To each MOVP observation

xi ∈ X correspond two nodes ui, vi, an edge (ui, vi) of cost

c(ui, vi) = Ci and flow f(ui, vi) = fi, an edge (vi, t) of

cost c(vi, t) = Cex,i and flow f(vi, t) = fex,i, and an edge

(s, ui) of cost c(s, ui) = Cen,i and flow f(s, ui) = fen,i.

For each Plink(xj |xi) 6= 0 will correspond a transition edge

VP

line segment

centroid

perfect line to VP

Figure 3: Fitting error for line segment to associated VP: The seg-

ment endpoints are projected onto a perfect line from the segment

centroid to the VP. The projection error is denoted as errL.

(vi, uj) of cost c(vi, uj) = Ci,j and flow f(vi, uj) = fi,j .

The eqs. (11) and (12) are equivalent to the flow conserva-

tion constraint and the cost of flow in network G. Optimiz-

ing over the data association hypothesis T ∗ is equivalent

to sending the flow from source s to sink t, thus achieving

the min-cost flow. To solve for the min-cost flow we use the

efficient push-relabel algorithm proposed by Goldberg [10].

3.2.2 Costs

In the following we will define the terms Pentr, Pexit,

Plink, and βi as needed in (10). Entry and exit probabili-

ties are a constant penalty for each started track, similar to

a fixed model cost, and can be used to fine-tune the overall

sensitivity of the MAP solution. We estimated the best sen-

sitivity to be Pentr = Pexit = .01 on hold-out sequences.

The probability Plink describes the linking probability for

two MOVPs in subsequent frames. Between MOVP xi

and xj we assign a linking probability based on their angu-

lar difference1 α after applying the the camera orientation

change Dn,n+1 computed in § 3.1.

Plink(xj |xi) = (1 + e γ1·(α−γ2))−1 , (13)

where α denotes the angular difference between Dn,n+1 ·xi

in frame n and xj in frame n + 1. This sigmoid function

yields a smooth fall-off at an angular difference of α − γ2,

with decay rate controlled by γ1. We learn these parameters

on hold out sequences as γ1 = 4, and γ2 = 1. The remain-

ing probability βi is the probability of MOVP being a false

positive. We set βi to 1 minus the probability of sampling

this MOVP in RANSAC given all detected line segments.

To achieve this, we set βi to 1 minus the percentage of all

MOVP samples created in the RANSAC candidate genera-

tion step (§ 3.1) which agree with the MOVP candidate i.

To be robust against missed line detection we set the limit

Ci = min(Ci, 0).

3.3. MOVP refinement

From the data association in § 3.2 we obtain tracks Tk

which contain linked MOVP observations xi. Each xi de-

fines one MOVP as 3 × 3 orthonormal matrix ∈ SO(3)

1For all angular differences between MOVPs we follow [13], but take

care to consider that axes may be ordered differently between MOVPs.



within the local reference frame of the camera. With re-

spect to the global reference frame, all MOVP observations

xi in each track have to be constant. Using the hypotheses

for camera orientation change Dn,n+1, ∀n ∈ [1, N − 1] be-

tween all frames, we can transform all MOVPs to the global

camera reference frame.

We initialize the global camera orientation as R1 =
diag([1 1 1]) for the first frame and Rn = Dn−1 · Rn−1

for subsequent frames. We set R = {R1, . . . , RN}. For

each track Tk, starting at frame Sk, and all observations xi

we initialize a global MOVP Mk by transforming all ob-

servations to the global reference frame and averaging the

SO(3) matrices as unit quaternions:

Mk = |Tk|
−1

∑

i

Q
(

RT
i+Sk−1 · xi

)

, (14)

where Q computes the quaternions for a SO(3) matrix. We

normalize Mk to unit norm, and convert the quaternions to

an SO(3) matrix. We set M = {M1, . . . ,MK}
Because of the accumulation of errors in R, and noise in

frame-wise extracted xi the solution for global orientation

R and the discovered MOVPs M will generally not fit the

line segments in each frame perfectly. We refine the initial

solution by jointly optimizing R and M for the fitting errors

of all line segments to all associated MOVPs in all frames

in a Non-Linear Least-Squares framework:

RSS(R,M) =

K
∑

k

|Tk|
∑

i

errL(Ri+Sk−1 ·Mk, Lk,i)

The error function errL accepts a MOVP defined in a

camera-centric reference frame and line segments Lk,i as-

sociated to each vanishing direction. The line segment con-

sistency error is computed for each line segment by project-

ing the segment endpoints onto a hypothesized perfect line

through the line segment centroid and the associated VP.

Fig. 3 illustrates this. Using this projection error has the ad-

vantage of using the undistorted image-space MOVP fitting

error, treating finite and infinite VPs uniformly, and explic-

itly giving more weights to longer segments [26]. Since the

problem is very sparse the optimization is tractable even for

long sequences using a Trust-Region minimization, as of-

ten used in similar Bundle Adjustment problems [31]. Af-

ter jointly minimizing the squared endpoint errors for all

MOVPs in all frames we obtain optimal camera orientation

estimates R, and MOVPs M.

4. Experiments

We conducted two experiments. First, we evaluated our

approach on a new dataset of 6 inner-city sequences, each

100 frames long, using established Multi-Object tracking

metrics. Second, we evaluated how reliably we can extract

the global camera pose over a large dataset of street-view

videos provided by a recent video registration work [16].

Figure 4: Example frames of the new dataset used in § 4.1 for

sequences 1 to 6 (top left to bottom right)

4.1. MOVPs discovery

Benchmark. We evaluate with three metrics commonly

used in tracking: multi-object tracking accuracy (MOTA,

higher=better), multi-object tracking precision, the angular

matching error, (MOTP, lower=better) [5], and ID Switches

(ids, lower=better) [18]. The VP matching threshold was

set to an angle of 5 degrees. We collected 6 sequences, each

with 100 frames, and manually annotated sets of MOVPs in

every 10th frame. Example frames for all videos are shown

in Fig. 4. We included MOVP identity information over

time. In each sequence between 1 and 4 MOVPs are jointly

visible. The videos and annotations will be made public.

Methods. We evaluated our approach on these videos

and visualize qualitative results for several frames of one se-

quence in Fig. 7. In the quantitative evaluation we compare

four methods: 1) Our method including optimal tracking of

§ 3.2 and refinement of § 3.3, 2) our method without refine-

ment, against 3) greedy MOVP association with refinement,

and 4) greedy association without refinement.

For the greedy association we start from the same MOVP

candidates as described in § 3.1. Instead of optimal data as-

sociation using min-cost flow algorithm we greedily grow

MOVP tracks. Initially, the set of MOVP tracks is empty.

For a new frame we merge MOVP observations to exist-

ing MOVP tracks if the angular difference is smaller then

α degrees. Since the performance of the greedy tracking is

strongly dependent on α, we evaluated with multiple val-

ues for α and compared to the best result with α = 6. The

remaining MOVPs of this new frame start new tracks. We

remove MOVP tracks shorter than 5 frames. In Fig. 5 we

provide a qualitative evaluation.

Results. Adding a refinement step generally improves

the greedy as well as the optimal tracking. The benefit of

Least-Squares refinement of line endpoint errors is most
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Figure 5: ID Switches, MOTP, MOTA for MOVP discovery in 6

sequences. We compare: 1) Greedy tracking without refinement

(only mean is displayed), 2) Greedy tracking with refinement, 3)

Optimal MOVP tracking without refinement, 4) optimal MOVP

tracking with refinement. Adding refinement generally improves

greedy and optimal tracking. Our method outperforms the greedy

tracking in all metrics.

visible in sequences in which many MOVPs are visible si-

multaneously. This is because in those cases, each MOVP

may not be very strong or reliable, and the camera orienta-

tion change hypotheses Dn,n+1 may be noisy as well. Espe-

cially in these cases enforcing a joint agreement on a global

orientation and static MOVPs in the global frame improves

results. We also observe, that our optimal tracking outper-

forms the refined greedy tracking even when no refinement

is employed. Errors influencing the MOTA scores for the

greedy and optimal tracking are largely dominated by false

positive tracks, which may share strong line support with

other MOVPs, such as on the gravity direction. Since they

have partial strong line support and may move consistently

with other MOVPs sometimes they are incorrectly included

in the tracks. The greedy and optimal tracking both suffer

equally from this problem.

It is important to emphasize that MOTA, MOTP and ID

Switches are strongly interdependent, and that no singular

focus on a single metric should be placed. It is possible

to achieve good MOTP, i.e. low angular error, as for the

greedy tracking without refinement, by simply accepting the

closest tracks in each frame regardless of temporal consis-

tency, which results in many ID Switches. Conversely, sim-

ilar MOTA scores over all methods, as for sequence 3, are

only a good discriminative metric, if information about the

ID Switches on ground truth tracks is considered as well.

Runtimes. The greedy and optimal tracking, both with

refinement, run for 9.6 and 9.8 seconds per frame, respec-

tively. The runtimes are largely dominated by our unopti-

mized MATLAB implementation of MOVP candidate gen-

eration, which runs for 9.1 seconds per frame on average.

4.2. Camera orientation estimation

Benchmark. In the first experiment we evaluated how

accurate we can discover all MOVPs in the scene. For many

tasks the identification of Manhattan Frames (MOVPs) is

just the first step in discovering a more fine-grained scene

structure. Manhattan frame discovery can help in this, since

we get the camera orientation change for free when at least

two VPs are identified in two different views [6]. After the

refinement, proposed in § 3.3, we obtain a global camera

orientation estimate, which we will evaluate in this section.

The Antwerp Street-View Dataset, introduced in [16]

and used for Video Registration, provides 48 sequences of

301 frames with precisely known camera pose at all times.

Several example frames are shown in Fig. 1. In order to

make the orientation estimation more challenging we uni-

formly subsampled the sequences to 101 frames.

Methods. We track multiple MOVPs in all 48 sequences

using the greedy and optimal MOVP discovery, including

refinement for both methods. We also compared to the hy-

pothesized global orientation before refinement, as men-

tioned in § 3.3. Additionally, we extracted SIFT features,
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timation on the Antwerp Street-View dataset [16] for our opti-

mal MOVP tracking, greedy MOVP tracking, hypothesized global

orientations before refinement, and frame-to-frame SIFT features

matching with essential matrix decomposition. The dotted lines in

each color denote the 75% and 25% quantiles for each method.

computed Essential matrices between successive frames,

extracted the frame-to-frame change in camera orientation,

and transformed it into a global camera orientation estimate,

as we did in § 3.3 for the hypothesized camera orientation.

Results. The comparison of all four methods is plotted

in Fig. 6. We notice that already the hypothesized cam-

era orientation, even before refinement, has half the accu-

mulated orientation error of SIFT features. We again half

this drift error by adding greedy or optimal MOVP tracking

and refinement. The optimal tracking gains over the greedy

tracking mostly in the worst case scenarios, where fewer

mistakes result in fewer local optima in which the refine-

ment can get trapped. Overall optimal MOVP tracking and

refinement results in less than 10 degree orientation drift (on

median) against 40 degrees for SIFT features.

5. Conclusion

In this work we presented a novel method for dis-

covery of sets of mutually orthogonal vanishing points

from monocular video sequences with unknown camera

pose. We contribute an optimal way of extracting MOVPs

over time using a hypothesized global orientation from all

MOVP candidates, and a method to jointly refine MOVPs

and global camera poses. This refinement, similar in spirit

to Bundle Adjustment for Structure-from-Motion problems,

greatly improves both greedy and optimal MOVP tracking

results. Since we are the first to tackle this problem, we in-

troduce a new dataset for MOVP discovery, and will make

the videos and MOVP annotation publicly available. 2

In future work we plan to tackle current limitations of the

method: 1) false positives due to strong shared VPs and line

association ambiguity for VPs on the horizon line. 2) Our

method is generic and does not favor specific VPs. How-

ever, when considering city scenes, detecting zenith and

horizon lines could provide powerful additional constraints.
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