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Abstract: The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes viral en-
cephalitis leading to neural damage, is a major threat in most Asian countries. The RNA-dependent
RNA polymerase (RdRp) present in the viral genome is the key component for genome replication,
making it an attractive target for antiviral drug development. In this study, the natural products
from Echinacea angustifolia were retrieved for structure-based virtual screening against JEV–RdRp.
The top six compounds (Echinacoside, Echinacin, Rutin, Cynaroside, Quercetagetin 7-glucoside,
and Kaempferol-3-glucoside) were obtained based on the highest negative docking score, ADMET
(absorption, distribution, metabolism, excretion, and toxicity), and molecular interaction. The com-
putational analysis of these selected compounds against the co-crystallized ligands, i.e., ATP and
GTP, were performed. Further, 100 ns molecular dynamic simulation and post-free binding energy
calculation of all the selected compounds complexed with JEV–RdRP were performed to check the
stability of the complexes. The obtained results showed considerable stability and intermolecular
interaction with native ligand-binding site residues of JEV–RdRp. Hence, selected natural com-
pounds are admissible inhibitors of JEV–RdRp protein and can be considered for future antiviral
drug development studies.

Keywords: Japanese encephalitis virus; Echinacea angustifolia; Echinacoside; Echinacin; Rutin; Cynaroside;
Quercetagetin 7-glucoside; Kaempferol-3-glucoside; docking; MD simulation

1. Introduction

Japanese encephalitis (JE) is the most commonly diagnosed epidemic encephalitis—a
vector-borne acute central nervous system infection, caused by the Japanese encephalitis
virus (JEV) that belongs to the genus Flavivirus of the family Flaviviridae and comprises five
genotypes (GI–GV) [1–3]. JEV is transmitted to humans by the bite of infected mosquitoes
(Culex spp.) and causes severe neurological manifestations [4,5]. JEV is an endemic in
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eastern and southern Asia countries and Australia, with fatality rates of 20–30% and life-
long neurological impairments and sequelae among one-half of the survivors [6–10]. Nearly
68,000 clinical cases of JEV infection and approximately 20,000 deaths are reported annually
in many Asian countries, and its transmission is endemic in 24 countries of Southeast Asia
and Western Pacific regions [11–13]. According to World Health Organization (WHO),
more than 3 billion people are at risk of JEV infection globally [11–13].

JEV is characterized as a positive-sense single-stranded RNA (+ssRNA) genome
encapsulated by an icosahedral-shaped viral capsid. The RNA genome of JEV (≈11 kb)
is modified at the 5′ end cap with an m7GpppAm structure and mimics cellular mRNAs,
except for lacking the polyadenylated tail [14]. The viral genome encodes a single 370 kDa
polyprotein, which is subsequently cleaved by a combination of viral and host proteases to
yield three structural (capsid, membrane, and envelope) and seven nonstructural (NS: NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins [14,15]. Among the seven NS proteins,
NS5 is the largest (~105 kDa) and conserved viral protein—housing a C-terminal RNA-
dependent RNA polymerase (RdRp) and an N-terminal guanylyltransferase (GTase) and
methyltransferase (MTase) activity—and is associated with other viral proteins, host factors,
and viral RNA to form the replication complex (RCs) [16,17]. The JEV NS5–RdRp domain
(JEV–RdRp) replicates the genomic RNA into the uncapped minus-strand RNA, which
is subsequently used as a template to produce a large excess of the positive-sense viral
RNA genome [18]. The JEV NS5 MTase (JEVMTase) domain then performs both guanine
N-7 and ribose 2′-OH methylations for the capping of the newly synthesized positive-
sense RNAs [19,20]. Moreover, the JEV–RdRp domain is involved in the synthesis of both
negative- and positive-strand RNAs during viral genome replication and translation [21].
As the JEV–RdRp domain is required for RNA synthesis in viral replication and lacks a
similar protein in host cells, it has been demonstrated as a promising target for antiviral
drug development against the JEV infection [14,22].

To tackle the JEV infection, both inactivated and live-attenuated vaccines have been
progressively designed and utilized to prevent the JEV infection [23,24]. Unfortunately,
regardless of a licensed vaccine to prevent JEV infection, infections strike annually due to a
denial of complete coverage and access [25–29]. Several other efforts were also made in
laboratories globally to identify an effective and safe therapeutic agent demonstrating an
anti-JEV activity, including N-nonyl-deoxynojirimycin [30], dehydroepiandrosterone [31],
N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) [32], indirubin [33], manidip-
ine [34], chlorpromazine [35], etanercept [36], minocycline [37], ouabain, and digoxin [38],
but none of them is yet approved as antiviral against JEV infection treatment. The lack of
efficient and approved antiviral agents in the prevention and treatment of the JEV infection,
therefore, demands a potential antiviral to reduce JEV-infection-associated morbidity and
mortality rates and continue to increase in global distribution.

In drug discovery pipelines, medicinal plants have become the popular source of natu-
ral compounds with high structural diversity against viral infections [39–43]. Several medic-
inal plants or natural compounds have shown promising effects against JEV [33,44–47].
Echinacea angustifolia (E. angustifolia) is one of the most well-known medicinal plants in
its genus, which has been studied for medicinal properties, including antibacterial, anti-
inflammatory, and antiviral activity properties [48–53]. However, to the best of our knowl-
edge, the phytoconstituents of E. angustifolia are not yet demonstrated for the antiviral
activity against JEV. Therefore, the present study was designed to explore the potential of
natural compounds as therapeutic against the JEV infection via inhibition of the JEV–RdRp
domain using molecular simulations, including structure-based virtual screening, molecu-
lar docking, and molecular dynamics (MD) simulations, as well as free energy calculations.

2. Methodology
2.1. Receptor and Ligand Collection

The three-dimensional (3D) crystal structure of the JEV–RdRp complexed with guanosine-
5′-triphosphate (GTP) (PDB ID: 4HDG) [22] as a receptor was downloaded from the PDB
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database (https://www.rcsb.org/) [54]. Additionally, a total of 53 natural compounds,
reported in Echinacea angustifolia, were collected from the literature, and their 3D atomic
coordinates were retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/) [55] to form the ligand library for further computational analysis.

2.2. Virtual Screening, Redocking Analysis, and ADME

For the structure-based virtual screening, the JEV–RdRp domain was processed and
minimized using the Dock Prep tool in UCSF Chimera [56], with default parameters.
Here, the receptor molecule was prepared by removing the native ligand, water molecules,
heteroatoms, and non-polar hydrogen atoms, along with the addition of Gasteiger charges
and polar hydrogen atoms, followed by structure minimization, using 100 and 50 steps
of steepest descent and conjugate gradient methods, respectively. Furthermore, for the
ligand library preparation, i.e., the collected natural compounds of Echinacea angustifolia and
structure-based virtual screening, PyRx0.8 (Virtual Screening Tool) [57] was used, under
default parameters. Herein, each ligand was initially added for Gasteiger partial charge,
and energy was minimized under MMFF94 force field using default steepest descent
and conjugate gradient with 1000 steps, followed by the addition of polar hydrogens, as
reported earlier [58]. The prepared ligands were docked in the binding pocket of JEV–RdRp
covering essential residues (Lys463, Lys471, Arg474, Asp541, Ser604, Asp668, Arg734, Arg742,
Ser799, Try800, and Ser801) in the docking grid 39.3513 Å× 29.2100 Å× 28.2521 Å and center
at −37.5873 Å, −5.1747 Å, −35.1844 Å along the X, Y, and Z axes.

Subsequently, the top 10 ranked ligands based on binding scores were selected for
redocking analysis by comparison to the ATP and GTP as reference molecules using the
Chimera-AutoDock Vina Plugin setup [56,59]. Herein, the processed protein structure
was docked with the selected compounds in the same docking pocket as considered
for virtual screening (center coordinates: −37.5873 Å, −5.1747 Å, −35.1844 Å; grid size:
39.3513 Å × 29.2100 Å × 28.2521 Å) under default parameters. Then, at least 10 docked
poses were generated for each ligand, and the docked conformations with the highest
negative docking scores and least root-mean-square deviation (RMSD) values (by default 0
in AutoDock Vina) were extracted for binding pose and intermolecular interaction analysis,
under default parameters, in Maestro tool of Schrödinger suite 2018-4 [60]. All 3D and 2D
figures were generated in Maestro tool of Schrödinger suite2018-4 [60].

SwissADME online server (http://www.swissadme.ch) was used to understand the
properties related to the pharmacokinetics and drug likeliness of the selected compounds
such as absorption, distribution, metabolism, and excretion (ADME) [61]. The bioavail-
ability is another important parameter that makes any drug a promising therapeutic, and
therefore, several parameters were observed during the ADME analysis such as blood–brain
barrier (BBB), permeability, and cytochrome inhibition activities.

2.3. Molecular Dynamics Simulation

The molecular dynamics (MD) simulations for the selected best poses of the top six
protein–ligand complexes were performed using with academic Maestro-Desmond v5.6
suite [62,63]. Initially, the docked complex was placed in the center of the orthorhombic box
(10 Å × 10 Å × 10 Å) and amended with an explicit TIP4Pwater model using the system
builder module. Thereafter, the complete system was neutralized using the counter sodium
and chloride ions, while being aced at a distance of 20 Å around the docked ligand in the
binding pocket of protein, and then minimized under default parameters using the mini-
mization tool. Next, the whole system was simulated using an NPT ensemble, maintained
by the Nose–Hoover thermostat and the Martyna–Tobias–Klein barostat method [64], with
the temperature set at 300 K and pressure set at 1.013 bar under default parameters. For
the simulations, the cutoff radius in Coulomb interactions was set at 9.0 Å, and the long-
range electrostatic interactions were computed via the particle mesh Ewald method [65].
Each complex was simulated for 100 ns under optimized potentials for liquid simulations
(OPLS)-2005 force-field parameters, and a total of 5000 frames were saved for analysis. The
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generated JEV–RdRp trajectories with selected ligands were analyzed for statistical param-
eters, including root-mean-square deviation (RMSD) and root-mean-square fluctuation
(RMSF) analysis, and intermolecular interactions (protein–ligand contact mapping) as a
function of 100 ns using the Simulation Interaction Diagram (SID) tool implemented in free
academic Desmond module with Maestro-Schrödinger suite 2018–4 interface [62,63].

2.4. Post-Simulation Analysis
2.4.1. Essential Dynamics

The essential dynamics, defined in terms of principal component analysis (PCA), to
study the dynamic motion of the protein was assessed in the presence of docked ligands
from the respective MD simulation trajectories using the Bio3d package [66]. For this pur-
pose, a total of 5000 frames of the Cα atoms from the respective MD simulation trajectories
were superimposed on the initial pose to reduce the root-mean-square variations between
similar residues by utilizing the fit.xyz function. These superimposed poses were then
analyzed to generate respective plots of PCA components from each simulation trajectory
using the pca.xyz function of the plot (pc) in the Bio3d package [66].

2.4.2. Prime MM/GBSA Binding Free Energy Calculations

To calculate the binding free energy and ligand strain energy for the docked poses,
the endpoint MMGBSA calculation was applied to the complete 100 ns MD simulation
trajectories using the thermal_mmgbsa.py python script in the Prime MMGBSA module of
the Schrödinger suite (Schrödinger Release 2020-4: Prime, Schrödinger, LLC, New York,
NY, USA, 2020), where each snapshot was treated for the removal of solvent and ions, as
well as split into individual protein and ligand conformation for the free energy calculation.
The net free binding energy (∆G) was calculated using the following equation:

∆GBind = ∆Gcomplex(minimized) − (∆Greceptor(minimized) + ∆Gligand(minimized)) (1)

where ∆GBind denotes the binding free energy; ∆Gcomplex indicates the binding free energy
of the complex; ∆GReceptor and ∆GLigand exhibit the energy for receptor and ligand, respec-
tively. Finally, the computed binding free energy, along with energy dissociation compo-
nents, was provided as average with the standard deviation for each simulation trajectory.

3. Results and Discussion
3.1. Structure-Based Virtual Screening and ADME

The natural products reported in the E. angustifolia were collected from the reported
literature, and the respective 3D structures were collected retrieved from the PubChem
database. The collected compounds were used as ligand libraries for the structure-based
virtual screening against the nucleotide GTP-binding pocket in the crystal structure of
JEV–RdRp (PDB ID: 4HDG). The top conformations of the screened ligands exhibited
binding affinity ranging from −11.1 to −1.9 kcal/mol, targeting the binding pocket
of the selected JEV–RdRp protein (Table S1). Thus, the top docked poses of the first
six compounds—namely, Echinacoside, Echinacin, Rutin, Cynaroside, Quercetagetin 7-
glucoside, and Kaempferol-3-glucoside—with significant binding scores (>−9 kcal/mol)
were considered for the ADME/Tox and redocking analysis to find drug-likeness properties
and the most ideal docking conformation, respectively, in the selected binding pocket of
the viral protein.

Drug likeness and pharmacological characters are considered to be important factors
for understanding the medicinal application of the compounds. Therefore, the ADME
analysis of the top six compounds, i.e., Echinacoside, Echinacin, Rutin, Cynaroside, Querc-
etagetin 7-glucoside, and Kaempferol-3-glucoside, were predicted using SwissADME,
resulting in the properties related to the pharmacokinetics and toxicity (Table S2). All
of the selected compounds were found to be non-inhibitors of Cytochrome P450 2D6
(CYP2D6), as the inhibition of CYP2D6 leads to drug–drug interactions. Additionally, each
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of these natural compounds was found to be impermeable to the Blood–brain barrier (BBB)
(Table S2). Based on these findings, as well as other properties such as pharmacokinetics
and drug-likeness, the selected compounds have considerable medicinal properties.

3.2. Redocking and Molecular Contact Analysis

From the virtual screening, six potential natural compounds—Echinacoside, Echi-
nacin, Rutin, Cynaroside, Quercetagetin 7-glucoside, and Kaempferol-3-glucoside—were
selected for redocking in the selected binding pocket of JEV–RdRp against ATP and GTP as
reference compounds using AutoDock Vina. Afterward, the docked poses with the high-
est negative docking energy values corresponding to zero RMSD values for each natural
compound were considered for further computational analysis (Figure 1). In this study,
among the selected natural compounds, Echinacoside docked with JEV–RdRp showed
maximum docking energy (−11.1 kcal/mol), while JEV–RdRp–Kaempferol-3-glucoside
docked complex was noted for lowest docking scores (10 kcal/mol) by comparison to refer-
ence compounds ATP (8.6 kcal/mol) and GTP (−9.0 kcal/mol). Additionally, a substantial
number of intermolecular interactions, including hydrogen bond formation, π–π stacking,
π–cation, hydrophobic, polar, negative, positive, glycine, and salt bridge interactions were
also noted in the docked complexes by comparison to the reference docked complexes
(Table 1, Figure S1). Therefore, the calculated docking scores and intermolecular contact
profiling between the docked natural compounds and JEV–RdRp indicates the stability of
the respective docked complexes.
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Figure 1. Molecular redocked poses of the selected natural compounds: (a) Echinacoside, (b) Echi-
nacin, (c) Rutin, (d) Cynaroside, (e) Quercetagetin 7-glucoside, and (f) Kaempferol-3-glucoside, with
comparison to the reference compounds (g) ATP and (h) GTP in the selected binding pocket of JEV–
RdRp showing intermolecular interactions with residues extracted at 4 Å around the docked ligand.
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Table 1. Redocking scores and intermolecular interaction analysis for the potent natural compounds
against JEV–RdRp extracted at 4 Å around the docked ligand.

S. No. Compound
Docking

Score
(kcal/mol)

H-Bond
π–π/π–
Cation

Stacking
Hydrophobic Polar Negative Positive Glycine Salt Bridge

a. Echinacoside −11.1

Arg460(2),
Glu461,

Ser604(2),
Ser666,
Asp669

Arg474

Ile476,
Val509,
Tyr610,
Phe713,
Cys714,
Trp800,
Ile802

Ser473,
Ser604,
Thr609,

Asn613,
Ser666,
Ser801,
His803

Glu461,
Asp668,
Asp669

Arg460,
Lys462,
Lys463,
Lys471,
Arg474,
Arg742

Gly412,
Gly472,
Gly605,
Gly667

-

b. Echinacin −10.4

Leu411,
Tyr610,
Cys714,
Ser715,
Arg734,
Arg742,
Ser801

-

Leu411,
Ala413,
Ile476,
Val607,
Tyr610,
Cys714,
Trp800,
Ile802

Ser604,
Gln606,
Thr609,
Ser715,
Asn716,
Ser799

Ser801,
His803

Glu738

Arg460,
Arg474,
Arg734,
Arg742,

Gly412 -

c. Rutin −10.4

Lyn463,
Ala475,
Ser604,
Gln606,
Ser666,
Asp668

Tyr610

Ala413,
Val414,
Ala475,
Ile476,
Trp477,
Val607,
Tyr610,
Cys714,
Trp800,
Ile802

Ser604,
Gln606,
Thr609,
Ser666,
Ser715,
Ser801,
His803

Asp668,
Asp669

Arg460,
Lys471,
Arg474,
Arg742

Gly412,
Gly605,
Gly667

-

d. Cynaroside −10.0

Ser666,
Asp668,
Asp669,
His803

-

Leu411,
Ala413,
Val607,
Tyr610,
Ala611,
Cys714,
Ile802

Asn495,
Ser604,
Gln606,
Thr609,
Asn613,
Ser666,
Ser801,
His803

Glu510,
Asp668,
Asp669

Lys404,
Lys471,
Hip498

Gly412,
Gly605,
Gly667

-

e. Quercetagetin
7-glucoside −10.0

Ser666,
Asp668,
Ser801

-

Leu411,
Ala413,
Val607,
Tyr610,
Ala611,
Cys714,
Ile802

Asn495,
Ser604,
Gln606,
Thr609,
Asn613,
Ser666,
Ser801,
His803

Glu510,
Asp668,
Asp669

Lys404,
Lys471,
Arg474

Gly412,
Gly605,
Gly667

-

f. Kaempferol-
3-glucoside −10.0

Asp541,
Ser604,
Ser801

-

Leu411,
Ala413,
Trp540,
Val607,
Tyr610,
Trp800,
Ile802

Asn495,
Ser604,
Gln605,
Thr609,
Asn613,
Ser666,
Ser801

Asp541,
Asp668 Arg474 Gly412,

Gly667, -

G
Adenosine

triphos-
phate

−8.6

Ser604,
Gln606,
Ser715,
Arg742,
Trp800,
Ile802

–

Leu411,
Ala413,
Val607,
Tyr610,
Trp800,
Ile802

Ser604,
Gln606,
Thr609,
Ser715,
Ser799,
Ser801

-

Arg460,
Lys463,
Lys471,
Arg474,
Arg734,
Arg742

Gly412,
Gly605

Lys463,
Arg474,
Arg734,
Arg742

h
Guanosine-

5′-
triphosphate

−9.0

Asp541,
Asn613,
Asp668,
Ser801,
Ile802

Tyr610

Trp540,
Tyr610,
Trp800,
Ile802

Ser604,
Asn613,
Thr609,
Ser666,
Ser801,
His803

Asp541,
Asp668,
Asp669

Arg460,
Lys463,
Arg474,
Arg742

Gly667

Arg460,
Lys463,
Arg474,
Arg742

3.3. Molecular Dynamics Simulation Analysis

A molecular dynamics simulation is used to predict the stability of protein–ligand
complexes with respect to simulation intervals. In this study, the molecular dynamics
simulation was analyzed in terms of the last pose from the simulation trajectory, protein
and protein-fit-ligand root-mean-square deviation (RMSD), protein and protein-fit-ligand
root-mean-square fluctuation (RMSF), and protein–ligand contact mapping as a function
of 100 ns interval. Figure 2 shows the last poses of the MD trajectory were extracted
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and compared with the initially docked poses to monitor the relative occupation of the
docked ligands in the protein structure. Notably, all of the docked natural compounds
showed relatively substantial residence in the selective pocket of the JEV–RdRp as a
function of 100 ns MD simulation interval, except for an acceptable deviation in the ligand
conformations, which was noted against reference compounds (Figure S2). These results
suggested the docked natural compounds as substantial inhibitors by comparison to the
reference compounds, i.e., ATP and GTP.Life 2022, 12, x FOR PEER REVIEW 8 of 19 

 

 

 

Figure 2. Representation of docked natural compounds: (a) Echinacoside, (b) Echinacin, (c) Rutin,
(d) Cynaroside, (e) Quercetagetin 7-glucoside, and (f) Kaempferol-3-glucoside, in the selective bind-
ing pocket of JEV–RdRp before and after the 100 ns MD simulation.

Furthermore, the calculated RMSD for the protein in all of the docked complexes
with natural compounds indicated acceptable deviations (<2 Å) with respect to 100 ns MD
simulation by comparison to reference compounds (Figure 3). These observations were also
supported by the calculated RMSF values (Figure S3) for the protein structures docked with
respective compounds, except for occasional residual higher fluctuations (<5 Å) that were
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also noted in the terminal regions and residues forming direct contact or adjacent residues to
the interacting residues with the docked ligands. Moreover, the calculated protein-fit-ligand
RMSD values showed considerable deviations (<4.5 Å) (Figure 3) throughout the 100 ns
simulation interval against reference compounds, i.e., ATP (<4.0 Å) (Figure 3g) and GTP
(<4.0 Å) (Figure 3h). Notably, among the selected natural compounds, Rutin, Cynaroside,
and Kaempferol-3-glucoside showed the most substantial stability and equilibrium in
protein-fit-ligand values as a function of 100 ns against reference compounds, i.e., ATP and
GTP. Moreover, the calculated RMSF values also showed variation within 2 Å (Figure S4)
during the 100 ns, supporting the observed stability of the docked ligands with the JEV–
RdRp during MD simulation.
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Figure 3. RMSD plots for the docked complexes of JEV–RdRP with selected natural compounds:
(a) Echinacoside, (b) Echinacin, (c) Rutin, (d) Cynaroside, (e) Quercetagetin 7-glucoside, and
(f) Kaempferol-3-glucoside, with comparison to the reference compounds (g) ATP and (h) GTP.

Moreover, the protein–ligand contacts were also extracted from the 100 ns MD simula-
tion trajectories for all of the docked complexes. Specifically, each type of intermolecular
interaction, hydrogen bonding, hydrophobic interactions, water bridge formation, and
ionic interaction was extracted and plotted as a fraction of the total molecular contact
formed during the 100 ns interval for all the simulated complexes.
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In the case of the Echinacoside–JEV–RdRp docked complex, it exhibited hydrogen
bond formation for more than 100% of simulation time in Ser666 and Asp669 residues, while
Trp800 and Ile802 residues showed 50% and 35% of total simulation time for the hydropho-
bic interaction with the docked ligand; Gly472, Cys714, and Arg474 residues participated
in water bridges formation, in which Arg474 residue showed more than 100% of water
bridge formation during the simulation time in addition to a significant H-bond. Addi-
tionally, Arg734 and Arg742 residues formed an ionic bond for more than 20% simulation
time (Figure 4a). Likewise, the Echinacin–JEV–RdRp complex exhibited hydrogen bond
interaction in Asp541 and Lys463 residue for 90% and 70% of total simulation time; Trp800

and Arg474 residues were also noted to form hydrophobic interaction for 100% of simu-
lation time. Gly605 and Arg460 residues showed more than 80% of the total interaction
fraction in water bridge formation during the simulation period (Figure 4b). Addition-
ally, protein–ligand contact analysis of Rutin–JEV–RdRp showed a high contribution of
Asp668, Asp669, and Ser604 in hydrogen bond formation (100%) during the total simulation
interval. Tyr610 residue participated in hydrophobic interaction for more than 50% of the
simulation time. A water bridge was formed by Gly412, Trp477, and Arg484 for more than
50% of simulation time and by Gly412 for 100% of simulation time (Figure 4c). Furthermore,
the Cynaroside–JEV–RdRp complex exhibited a hydrogen bond with Glu510 and Asp668

residues for 100% of the simulation time. Tyr610 also showed the hydrophobic interaction
with the docked ligand at a 100% of simulation interval. Asp541 and Asp669 residues
were involved in water bridge formation for more than 50%, along with the hydrogen
bond (Figure 4d). In comparison, in the Quercetagetin 7-glucoside–JEV–RdRp complex,
Glu510 residue showed more than 100% of the total interaction fraction in hydrogen bond
formation during the simulation interval, and Gly605 and Asp668 residues participated in
hydrogen bond formation for more than 50% of simulation time; Asp668 also participated
in water bridge formation (50%) during the simulation interval. Ile802 residue was noted
for hydrophobic interaction with the docked ligand for more than 50% of the simulation
time (Figure 4e). In the protein contact mapping analysis of the Kaempferol-3-glucoside–
JEV–RdRp complex, Asp541 exhibited more than 100% of hydrogen bond formation during
the 100 ns simulation time, whereas Tyr610, Trp800, and Ile802 residues showed 50% of hy-
drophobic interaction during the total simulation period. Notably, Asp668 residue showed
more than 50% of the water bridge interaction along with the hydrogen bond (Figure 4f). In
contrast, the protein–ligand mapping of the JEV–RdRp with its native ligand ATP exhibited
more hydrogen bond formation for 100% of simulation time with Arg460, Lys463, Lys471,
Arg474, and Arg734 residues, along with water bridge formation (50% of the interaction
fraction). Ile802 and Lys471 residues participated in hydrophobic (50%) and ionic interaction
(30%) during the 100 ns simulation period (Figure 4g). When the protein–ligand mapping
of the JEV–RdRp with its native ligand GTP was analyzed, Arg460, Arg474, and Arg742

participated in hydrogen bond formation for more than 100%, in addition to the water
bridge interaction of the total simulation time. Additionally, Lys463 and Arg734 exhibited
hydrophobic and ionic bonds for more than 90% and more than 50% of the total interaction
fraction (Figure 4h). The solvent accessible surface area (SASA) of the selected natural
compound and the reference molecules were also studied to track the protein’s flexibility,
stability, and folding in the presence and absence of ligands (Figure S5) [43].

Collectively, the analysis of the MD simulations supported the selected natural com-
pounds as inhibitors of JEV–RdRp against the reference compounds, i.e., ATP and GTP.
Hence, based on the statistical analysis and intermolecular interaction profiling of the
docked natural compounds in the selected pocket of JEV–RdRp, the potential ligands
can be placed in the order of Rutin, Cynaroside, Kaempferol-3-glucoside, Echinacoside,
Quercetagetin 7-glucoside, and Echinacin, exhibiting the most stability with the JEV–
RdRp protein.
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3.4. Post-Simulation Analysis
3.4.1. Principal Component Analysis

Studying the essential dynamics based on principal component analysis provides
a method to collect the domain dynamics and displacement of atoms in the protein, re-
quired for biological function. Figure 5 shows the percentage of variance (%) for the
calculated mean square position variations in the covariance matrix as a function of ex-
tracted 20 eigenmodes from the respective MD simulation trajectories of the docked com-
plexes. Notably, all of the JEV–RdRp structures docked with natural compounds relatively
showed similar drops in eigen fraction values by comparison to the protein structures
docked with reference compounds GTP but not ATP (Figure 5 and Figure S6). How-
ever, no significant changes in the eigen fraction were observed from 6 to 20 eigenvalues.
These results indicated the significant conformational changes in the viral protein struc-
ture docked with natural compounds to attain the most stable complex formation against
reference compounds.
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Figure 5. Principal component analysis for the generated molecular dynamics trajectories of
JEV–RdRp docked with selected natural compounds: (a) Echinacoside, (b) Echinacin, (c) Rutin,
(d) Cynaroside, (e) Quercetagetin 7-glucoside, and (f) Kaempferol-3-glucoside. The percentage of
total mean square displacement of residual positional variations recorded in each dimension is
categorized by equivalent eigenvalues or PCs.

Furthermore, the first three principal components were extracted and plotted to an-
alyze the cluster motion in the protein structure as a function of 100 ns MD simulation.
Notably, all of the complexes of JEV–RdRp docked with natural compounds showed higher
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cluster distributions of −40 and 40 along the direction of PC1, −30 and 30 along the direc-
tion of PC2, and−30 and 30 along PC3 by comparison to reference protein docked with ATP
and GTP, which showed reduced and overlapped clusters along −30 and 20 and −40 and
20 coordinates for all three PCs (Figure 5 and Figure S6). These observations suggested that
the docked natural compounds have the potential to induce conformational fluctuations in
JEV–RdRp to distribute its biological function for the replication of the JE virus.

3.4.2. Binding Free Energy Calculation

All of the generated MD simulation trajectories created as a function of 100 ns in-
terval were treated for free binding energy calculation using MM/GBSA method against
reference complexes. Figure 6 shows high and low binding energy values for all the
docked complexes with respect to time. Notably, Echinacoside, Echinacin, and Rutin were
found to exhibit the highest binding energy values (>−100 kcal/mol) for some poses, with
net binding free energy values of −80 ± 8.04, 81.67 ± 8.31, and 80.33 ± 5.54 kcal/mol,
respectively. In comparison, the other three natural compounds showed mean bind-
ing free energy between 66 to 57 kcal/mol. Interestingly, the calculated binding free
energy values were relatively higher than those of the reference complexes, i.e., ATP
(69.62 ± 8.62 kcal/mol) and GTP (47.98 ± 11.41 kcal/mol) (Figure 6). Additionally, net
energy dissociation components—namely, ∆GBind Coulomb, ∆GBind Covalent, ∆GBind Hbond,
∆GBind Lipo, ∆GBind Packing, ∆GBindSolvGB, and ∆GBind vdW—were determined using the Prime
MM/GBSA method and were also studied on the complete 100 ns MD trajectories of each
complex. Interestingly, substantial contributions of ∆GBind Coulomb, ∆GBind Lipo, and ∆GBind vdW
interactions were noted for favorable energy, while ∆GBind Covalent and ∆GBindSolvGB exhibited
unfavorable energy to the net binding free energy for all of the protein–ligand complexes
during the 100 ns MD simulation (Table 2). Altogether, the natural compounds were noted
for higher binding free energy, except Cynaroside, in the selective pocket of JEV–RdRp
against reference compounds as a function of 100 ns interval.

Table 2. Calculated net binding free energy for the selected docked poses of JEV–RdRp natural
compounds snapshots from the last 10 ns interval of 100 ns MD simulation.

Energy
(kcal/mol)

JEV–RdRP Poses with Natural Compounds from Echinacea angustifolia

Echinacoside Echinacin Rutin Cynaroside Quercetagetin
7-Glucoside

Kaempferol-3-
Glucoside

Adenosine
Triphosphate

Guanosine-5′-
Triphosphate

∆GBind −80.15 ± 8.04 −81.67 ± 8.31 −80.33 ± 5.54 −57.26 ± 4.13 −66.24 ± 5.6 −62.13 ± 5.97 −69.62 ± 8.62 −47.98 ± 11.41
∆GBindCoulomb −57.04 ± 8.1 −32.93 ± 8.82 −41.87 ± 5.69 −28.94 ± 6.36 −30.43 ± 6.17 −28.68 ± 5.86 −242.97 ± 54.21 −242.62 ± 52.45
∆GBindCovalent 4.62 ± 2.38 4.17 ± 2.11 5.19 ± 2.51 6.06 ± 2.1 4.29 ± 1.87 3.94 ± 1.67 7.83 ± 4.45 5.13 ± 2.45
∆GBindHbond −7.11 ± 1 −3.95 ± 0.55 −6.11 ± 0.69 −3.68 ± 0.79 −4.56 ± 0.92 −3.46 ± 0.63 −15.77 ± 2.08 −10.65 ± 2.24
∆GBindLipo −18.26 ± 2.1 −16.1 ± 1.22 −17.43 ± 1.37 −13.59 ± 1.49 −16.4 ± 1.04 −16.22 ± 1.34 −5.09 ± 0.58 −3.56 ± 0.61

∆GBindPacking −2.04 ± 0.63 −7.16 ± 1.27 −0.71 ± 0.17 −3.35 ± 0.62 −2.07 ± 0.35 −2.38 ± 0.76 −0.15 ± 0.28 −1.48 ± 0.61
∆GBindSolvGB 66.69 ± 6.11 41.52 ± 3.6 46.21 ± 3.44 42.08 ± 3.18 42.84 ± 4.72 39.37 ± 3.82 224.6 ± 49.37 236.56 ± 49.6
∆GBindvdW −67 ± 4.05 −67.22 ± 3.38 −65.54 ± 3.71 −55.81 ± 3.28 −59.9 ± 3.17 −54.7 ± 3.41 −38.07 ± 4.69 −31.35 ± 4.63

Ligand
Strain

Energy
11.92 ± 3.73 7.91 ± 2.37 10.64 ± 3.46 6.0 ±2.13 5.2 ± 2.19 5.57 ± 2.51 7.55 ± 4.06 3.99 ± 2.95
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Figure 6. Binding free energy calculated on the 5000 poses generated during 100 ns MD simu-
lation of the selected natural compounds: (a) Echinacoside, (b) Echinacin, (c) Rutin, (d) Cynaro-
side, (e) Quercetagetin 7-glucoside, and (f) Kaempferol-3-glucoside, (g) Adenosine Triphosphate,
(h) Guanosine-5′-Triphosphate, docked with JEV–RdRp protein.

4. Conclusions

Japanese encephalitis virus–RNA-dependent RNA polymerase (JEV–RdRp) is a po-
tential target for antiviral drugs, as they are responsible for viral genome replication. The
purpose of this study was to identify potent antiviral compounds from E. angustifolia by
inhibiting JEV–RdRp using in silico approach. Based on the substantial docking energy
(>−10 kcal/Mol) and pharmacokinetics analysis, six compounds—Echinacoside, Echinacin,
Rutin, Cynaroside, Quercetagetin 7-glucoside, and Kaempferol-3-glucoside—were selected.
Based on the hydrogen, hydrophobic, and other molecular interaction analyses, the sta-
bility of the respective compounds with JEV–RdRp’s binding site was studied. The final
confirmation of the stability of the protein–ligand complex was made with the analysis
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of the MD simulation and post-simulation analysis. In conclusion, the results revealed
that the selected compounds from E. angustifolia are acceptable inhibitors of the JEV–RdRp
protein and can be utilized for further studies for developing a potential antiviral drug
against Japanese encephalitis.
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