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Tissue-specific exon discovery<p>Comprehensive exon microarrays with a simple intra-gene normalization algorithm were used to detect human tissue-specific alterna-tive splicing events, suggesting significant expression outside of known exons and well annotated genes and a high frequency of alternative splicing events.</p>

Abstract

Background: Higher eukaryotes express a diverse population of messenger RNAs generated by

alternative splicing. Large-scale methods for monitoring gene expression must adapt in order to

accurately detect the transcript variation generated by this splicing.

Results: We have designed a high-density oligonucleotide microarray with probesets for more

than one million annotated and predicted exons in the human genome. Using these arrays and a

simple algorithm that normalizes exon signal to signal from the gene as a whole, we have identified

tissue-specific exons from a panel of 16 different normal adult tissues. RT-PCR validation confirms

approximately 86% of the predicted tissue-enriched probesets. Pair-wise comparisons between the

tissues suggest that as many as 73% of detected genes are differentially alternatively spliced. We

also demonstrate how an inclusive exon microarray can be used to discover novel alternative

splicing events. As examples, 17 new tissue-specific exons from 11 genes were validated by RT-PCR

and sequencing.

Conclusion: In conjunction with a conceptually simple algorithm, comprehensive exon

microarrays can detect tissue-specific alternative splicing events. Our data suggest significant

expression outside of known exons and well annotated genes and a high frequency of alternative

splicing events. In addition, we identified and validated a number of novel exons with tissue-specific

splicing patterns. The tissue map data will likely serve as a valuable source of information on the

regulation of alternative splicing.

Background
Alternative splicing dramatically expands the protein coding

potential of higher eukaryotes. Current estimates suggest that

greater than 60% of human genes have more than one iso-

form. The expression of specific transcripts is regulated in

developmentally and tissue-specific manners (reviewed in

[1]). Alternatively spliced isoforms from the same gene can

produce proteins with different properties and distinct func-

tions. In one example, two mRNAs transcribed from the bcl-

x gene that utilize different 5' splice sites result in proteins

that have antagonistic functions. The short form of bcl-x pro-

motes apoptosis, while the long form inhibits cell death [2].

Errors in mRNA processing have been associated with cancer

and other human diseases [3]. It has been estimated that 15%
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of disease-causing point mutations in humans affect

sequences that regulate splicing [4]. In the pharmaceutical

industry, alternative splicing is often overlooked but could be

important to drug discovery programs. New targets previ-

ously missed, or additional isoforms of existing drug targets

could be discovered, thereby increasing the pool of targets for

new drug screening. Valuable information can be obtained by

studying the levels of individual transcripts. It is possible that

previously unknown or unstudied transcript variants for

genes could provide new insight into biological function or

provide new targets for mechanism of action studies and drug

development. Current large-scale methods for monitoring

expression must evolve to take into consideration the rich-

ness of transcript variation.

Much of what is currently known about the mechanism and

regulation of splicing has come from research of a relatively

small number of splicing reporter constructs and a handful of

regulated exons [1]. While this focused approach has been ini-

tially informative, it is not yet clear if it will generalize to other

splicing events or the splicing apparatus as a whole. Because

of differences in context and surrounding sequence each

splicing event is essentially unique. With so many unique

events, the ability to study the splicing of many events in par-

allel should provide valuable insight into the mechanism of

splicing and the regulation of alternative splicing.

To date, most of the studies of genome-wide alternative splic-

ing have relied on predictions of splicing events based on

expressed sequence tag (EST) or mRNA sequences [5,6].

However, using ESTs to study splicing poses several chal-

lenges, including a bias towards the ends of transcripts, poor

coverage of many tissue types, differences in library construc-

tion protocols, and poor representation of low abundance

transcripts [7]. In addition, some EST libraries also contain

poor quality sequence, genomic contamination, and mis-

spliced RNAs, which can confound the results. While efforts

have been made to estimate expression patterns and find tis-

sue-specific splicing events using EST frequency and library

source information [8-10], the examination of EST sequences

is not ideal for studying alternative splicing. Furthermore, it

is not practical to extend sequencing based approaches to

cover all tissues, disease states, and stages of development.

DNA microarrays have proven to be a powerful tool for profil-

ing the expression levels of many genes in a single experiment

[11,12]. In addition, several different approaches using micro-

arrays to monitor splicing events have been used successfully

[7,13-17]. Probes that span exon-exon junctions can discrimi-

nate between isoforms and provide useful information about

how exons are joined together. However, since these arrays

are typically designed based on observed sequences, junction

microarrays are not optimal for discovery of novel isoforms.

Several recent studies have shown that a much larger than

anticipated fraction of the human genome is transcribed [18-

21]. Therefore, it is likely that the current set of annotated

exons is incomplete.

In order to create a tool with a higher likelihood of discover-

ing previously unknown transcript variation and content, we

have designed a high density oligonucleotide microarray that

contains probes for every predicted exon in the human

genome. This design uses a combination of gene annotations,

sequence information, and gene prediction algorithms as

content sources. The design includes four probe pairs (perfect

match and single base-pair mismatch) for more than one mil-

lion predicted exon clusters (groups of overlapping exons).

More than 9.6 million unique probes were manufactured

onto a 4 chip set using a light-directed in situ DNA synthesis

approach [22,23]. In order to evaluate transcript variation

broadly across the genome and the human body, we hybrid-

ized target generated from three biological replicates of six-

teen normal adult human tissues, including six sub-regions of

the central nervous system.

Using a simple algorithm that normalizes the intensity of each

probeset by the overall expression level of the gene the

probeset maps to, we identified exons that are specifically

enriched in one tissue or a group of tissues. Since the brain is

known to be rich in alternative splicing [10,24,25], we focused

our analysis on alternatively spliced regions that had statisti-

cally different inclusion rates in the six brain tissues as com-

pared to the remaining non-brain tissues. Many of the

alternatively spliced regions identified as brain enriched were

validated by RT-PCR. In doing so, we identified several new

splicing patterns that were not represented in the publicly

available sequence data. Furthermore, we discovered several

novel exons that demonstrated tissue-specific splicing pat-

terns. The novel exons have probesets on the array due solely

to computational prediction and lack support from any cDNA

sequence data. Our results suggest that calculations of the fre-

quency of alternative splicing based on cDNA sequence infor-

mation alone are likely to be an underestimate.

Results
Array design

The arrays in the set represent a prototype human exon array

and were designed to measure the expression levels of exons

as independent objects. The goal of the design was to be as

inclusive as possible when selecting content using a combina-

tion of exons that have been identified by empirical observa-

tion as well as exons derived from computational prediction

across the entire human genome. The combination of pre-

dicted and confirmed exons will allow us to validate the exist-

ence of putative gene content. The ability to treat exons as

independent objects provides the opportunity to monitor

changes in the patterns of expression at the exon level allow-

ing for detection and quantification of alterations in exon

usage and changes in alternative splicing patterns. The design
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dramatically increases the resolution of whole genome gene

expression analysis down to the level of transcript diversity.

The design objective was to include a probeset for every

potential exon in the entire human genome. We used a wide

variety of predicted and empirically identified transcript/

exon collections as input for the probe design algorithms. The

collections include Ensembl [26], GenScan [27], Twinscan

[28], SLAM [29], as well as direct alignment of cDNA-based

content, such as RefSeq mRNAs [30], GenBank mRNAs, and

dbESTs. The various input sequences and annotations were

consolidated and projected onto the November 2002 (hg13)

assembly of the human genome and parsed into unique probe

selection regions (PSRs) as defined by the edges of the projec-

tions (Figure 1). Across the genome, more than one million

exon clusters were identified and grouped into transcript

clusters based on overlapping boundaries of input annota-

tions. During the probe selection process, the best four 25-

mer probes for expression level analysis were selected from

each probe selection region [31]. The median size of all PSRs

was 119 base-pairs (bp). Approximately 90% of all PSRs were

covered by 4 probe pairs. Any PSR of length greater than or

equal to 17 nucleotides (nt) received at least 1 probe pair. Pilot

experiments suggested that some signal intensity could be

achieved from hybridization to a contiguous perfect match of

17 or more nucleotides. Probes for PSRs that were less than 25

nt were designed with a central target sequence and sur-

rounding genomic sequences filling out the 25-mer. Each

probe pair consists of a perfect match probe and a mismatch

probe that has a one base substitution in the middle position.

The final design included 1.4 million PSRs and more than 9.6

million unique probes that were manufactured onto four 12.8

mm2 arrays with 8 micron feature pitch.

The design was also intended to take alternative 5' or 3' splice

sites into consideration. If there was sequence evidence of

overlapping exons with different edges (suggesting alterna-

tive donor or acceptor sites), then that exon was divided into

multiple PSRs. In doing so, the array should be able to detect

changes in splice site usage in addition to monitoring inclu-

sion level of the exon as a whole. The PSR size for alternative

splice sites is still constrained by the 17 bp minimum. Conse-

quently, splice sites that are shifted by less than 17 nt were not

included in the design.

For this design we intentionally omitted exon-exon junction

probes. While junction probes provide additional informa-

tion about the possible splice variants present, they require a

priori knowledge of those variants. Junction designs are typ-

ically dependent on observed junctions and we surmised that

even the best enumeration of splice variants to date is sub-

stantially incomplete and may introduce an undesired bias

into our design. A summary of the chip design details is

included in Additional data file 7.

Determination of detection above background

With only four probes per probe selection region, standard

methods for establishing if a particular sequence is present or

absent are not effective. As an alternative, we employed a

detection metric that compares the intensity from each per-

Exon microarray designFigure 1

Exon microarray design. Input sequences from a variety of sources were projected onto the November 2002 version of the human genome (hg13). Where 
possible, up to four probe pairs were selected for each PSR. Probesets that overlap Ensembl or RefSeq sequences are labeled 'Supported.' Probesets that 
fall within the genomic boundaries of a transcript cluster are labeled 'Bounded.'
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fect match probe to a distribution of background probes with

similar GC content (Figure 2a). The resulting metric provides

a probability that the signal intensity value is part of the back-

ground noise (see Materials and methods for details). Thus,

probes with low p values have signals that are distinct from

Determination of detection above backgroundFigure 2

Determination of detection above background. To determine if a given probe signal is detected above background, the PM intensity is compared to a 
distribution of background probes with the same G/C content. A p value is calculated representing the probability that the signal intensity is part of the null 
distribution. Probes with DABG p values of less than 0.05 are considered to be detected above background. For this study, the mismatch probes from 
PSRs supported solely by GenScan Suboptimal predictions were used to create the null distributions. (a) Diagram depicting the comparison of background 
signal to PM signal. PM signal intensities at the 95% of background probes with the same GC content are given a p value of 0.05. (b) ROC curve of the 
median DABG p value from all 48 samples. The area under the curve (AUC) is used as a measure of ability of the metric to differentiate between 
expressed and non-expressed sequences. The sensitivity and specificity values are shown for a DABG p value cutoff of 0.05. (c) Table of the median 
sensitivity and specificity values for each tissue using a DABG p value cutoff of 0.05.
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(a)

(b) (c)

Cerebellum 0.795 0.802

Corpus callosum 0.854 0.830

Frontal lobe 0.886 0.811

Occipital lobe 0.896 0.842

Parietal lobe 0.913 0.840

Temporal lobe 0.860 0.890

Spinal cord 0.901 0.765

Adipose 0.880 0.802

Appendix 0.809 0.834

Heart 0.886 0.827

Kidney 0.846 0.867

Liver 0.872 0.746

Ovary 0.898 0.683

Skeletal muscle 0.835 0.893

Stomach 0.854 0.863

Testis 0.925 0.685

Tissue
Median

sensitivity

Median

specificity

Median ROC plot values

for DABG P value = 0.05

DABG P value = 0.05
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background and, therefore, considered to be detected above

background (DABG).

We employed a receiver operating characteristic (ROC) curve

to evaluate the performance of the DABG algorithm. The

array design contains exon and intron probesets for a set of 71

housekeeping genes that were previously determined to have

constitutive expression across a broad range of tissue samples

(see Additional data file 11 for a list of housekeeping genes

used). For the purpose of this analysis, we assumed the exons

to be present and the introns to be absent. We then evaluated

the ability of the DABG metric to separate the control

expressed and non-expressed probesets by determining the

sensitivity (true positive rate) and specificity (false positive

rate) for various DABG p value cutoffs. The resulting curve

using the median DABG p values from all 48 samples is pre-

sented in Figure 2b. Using a cutoff p value of 0.05, we achieve

a median sensitivity of 0.88 (standard deviation (SD) = 0.05)

and specificity of 0.82 (SD = 0.07). This value is also nearly

optimal for the minimization of type I and type II errors (false

positives and false negatives). The median sensitivity and

specificity for each of the tissues is shown in Figure 2c.

Data from tissues

To gain a better understanding of the level of transcript vari-

ation among normal adult tissues, we generated labeled

cDNA target using total RNA from three biological replicates

of sixteen different human tissues (see Materials and meth-

ods for details). The tissues included cerebellum, corpus cal-

losum, frontal lobe, occipital lobe, parietal lobe, temporal

lobe, spinal cord, adipose, appendix, heart, kidney, liver,

ovary, skeletal muscle, stomach, and testis. Additional infor-

mation on the human tissue RNAs is included in Additional

data file 8. The majority of Ensembl/RefSeq supported

probesets (74.1%) are detected above background (DABG p

value < 0.05; see Materials and methods for details) in at least

one of the 16 tissues. Interestingly, Figure 3a shows that

approximately one-third of probesets outside of well anno-

tated exons (bounded) or outside of annotated genes (nei-

ther) are detected in at least one of the sixteen tissues. This

supports conclusions by others [20,21] that there is a large

amount of transcription that occurs outside of annotated

genes and also suggests that there is a significant amount of

transcript diversity that is missed in the set of curated genes.

Figure 3b shows that in an average tissue, approximately 40%

of probesets supported by mRNA sequences or the curated

Ensgene set are detected. Gene prediction algorithms that

incorporate homology to the mouse genome also have a high

rate of detected probesets. Interestingly, nearly 10% of

probesets (more than 52,000 per tissue) that are supported

only by the prediction algorithms (Genscan, Genscan Subop-

timal, Twinscan, SLAM) are detected in an average tissue.

The total fraction of probesets present in at least one of the

tissues is likely to be higher. The vast majority of probesets

(approximately 833,000 of 1,360,000) are supported by only

one type of evidence. The inclusive nature of the design

results in the majority of probesets being designed to detect

speculative content, sequences that do not overlap a well

annotated exon. As shown in Figure 3c, of these only 12% are

detected, on average. Not surprisingly, the average percent

detected number increases as you increase the number of

types of evidence per probesets to a maximum of just over

50% for 7 or more types of support evidence (Figure 3c).

There is a fair amount of variability in the total number of

probesets detected in each of the tissues. Skeletal muscle,

stomach, and heart express the smallest number of probesets,

while testis, ovary, liver, and several brain tissues express the

largest number (Figure 3d). As expected, the patterns are very

much the same when you look at number of transcript clus-

ters (genes) expressed (Figure 3e). With more than 1.36 mil-

lion probesets on the array, the total number of probesets

considered to be detected above background by chance is

large. At a p value of 0.05, the expected number of false posi-

tives with 1.36 million measurements is approximately

68,000. However, when you require the probeset to be

detected in all 3 replicates of a tissue, the chances of random

detection is dramatically reduced, with only about 170

expected false positives.

In Figure 3f, testis and brain are shown to have a large

number of probesets that are tissue-specific; probesets

expressed in that tissue and not in any other tissue. These tis-

sue-specific probesets may be from genes that are only

expressed in a single tissue, or individual exons that are

included in a tissue-specific fashion via alternative splicing.

This result is consistent with studies using EST sequences to

predict tissue-specific splicing events. Yeo and colleagues

[10] found that brain, liver, and testis had the highest number

of alternative splicing events using a method that normalizes

the number of observed alternative splicing events to the EST

coverage in each tissue. Because the various sub-regions of

the brain tend to have highly similar splicing and expression

patterns, we grouped all of the brain tissues together to iden-

tify probesets that are unique to the brain as a whole. This is

likely to be an over-simplification and we still expect differ-

ences in expression and splicing patterns of the various sub-

regions. However, grouping the brain tissues together

increases the statistical power to identify genes and individ-

ual exons that are enriched in the brain as a whole. Previous

studies have shown that the brain itself is very different from

other tissues and rich in transcript diversity [10,24,25]. It

should be pointed out that the RNA samples are extracted

from gross tissue dissections and are likely to contain a mix-

ture of distinct cell types. Expression and splicing patterns

are likely to be different between cell types and possibly from

cell to cell within the same type. All of this diversity becomes

part of the biological noise in the experiment. Our approach

should allow us to discover gross relative exon-level changes

that are significantly different between one or more tissues.



R64.6 Genome Biology 2007,     Volume 8, Issue 4, Article R64       Clark et al. http://genomebiology.com/2007/8/4/R64

Genome Biology 2007, 8:R64

Probeset and transcript cluster detectionFigure 3

Probeset and transcript cluster detection. (a) Bounded, supported, and probesets that fit into neither category are binned by the number of tissues the 
probeset is detected in. For this and all further analyses, a probeset must have a DABG p value less than 0.05 in all 3 biological replicates of a tissue to be 
considered detected. (b) Total number and number of detected probesets listed by evidence type. One probeset may fall into more than one category. 
Percent detected value is the average detection rate across the 16 tissues. (c) Total number and number of detected probesets listed by number of types 
of evidence. Percent detected value is the average detection rate across the 16 tissues. (d) Total number of probesets detected in each tissue. (e) Total 
number of transcript clusters detected in each tissue. For a transcript cluster to be considered detected, a minimum of 50% of Ensembl/RefSeq supported 
probesets must have DABG p values less than 0.05 for at least 2 of 3 replicates. (f) Probesets expressed in only one tissue. To be counted a probeset must 
be detected in all three replicates and not in all three replicates of any other tissue. The 'brain' category represents probesets detected in all three 
replicates of at least one of the six brain tissues and detected in all three replicates of any non-brain tissues (excluding spinal cord).
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Identification of tissue-specific exons using the Splicing 

Index

The array design essentially considers individual exons or

parts of exons as independent elements. In theory, this ena-

bles a finer resolution view of the transcriptome, using the

exon as the fundamental unit rather than the gene. However,

it is not possible to use probeset intensities by themselves to

find alternatively spliced exons. This is because an alteration

in the overall transcription or decay rate of a gene will cause

the intensity of all expressed probesets belonging to that gene

to change. Ultimately, the goal is to find changes in exon

inclusion level that are relative to the expression of the gene.

The concept is similar to the indexes used previously to deter-

mine splicing efficiency in yeast [13]. By dividing the intensity

value of a probeset by an estimate of the expression level of

the transcript cluster that the probeset belongs to (Figure 4a),

you create a gene-level-normalized intensity that can be com-

pared between samples. Changes in this value between tis-

sues provide a quantitative measure of exon level relative to

gene level. Alterations signify changes in exon inclusion rate

that may be due to alternative splicing. We refer to compari-

sons of gene-level-normalized exon expression values as the

'Splicing Index' [32]. A similar approach used in conjunction

with a custom exon-junction microarray successfully identi-

fied a number of splicing events implicated in breast cancer

[33].

Because a consistent gene-level estimate is important to the

Splicing Index algorithm, we tested the robustness of the

gene-level estimation method to changes in alternative splic-

ing. We simulated exon skipping events by systematically

substituting the intensity value of probesets used in the gene-

level estimate with the background intensity and re-calculat-

ing the gene-level estimate. We then determined the median

percent deviation from the original gene-level estimate for

every transcript cluster in each of the tissue samples. Using

the median intensity of all Ensembl/RefSeq supported

probesets as the gene-level estimate proved to be fairly robust

to our simulated alternative splicing. Transcript clusters with

increased numbers of probesets used in the gene-level

estimation tended to have smaller percent deviations. For

transcript clusters with 5 or more probesets, 80% of the

measurements had median deviations of 26% or less. The

median deviations were 18% and 11%, respectively, for tran-

script clusters with 10 or more and 20 or more probesets used

Splicing IndexFigure 4

Splicing Index. (a) Splicing Index equations. (b) PHLDB1: brain-specific Splicing Index values graphed for all Ensembl/RefSeq supported probesets and RT-
PCR validation using primers in flanking exons. (c) SLC9A7: graphed as in (b).
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in the gene-level estimation. These data are presented in

Additional data file 6.

Exons that are enriched or depleted in one tissue (or group of

tissues) compared to another can be identified by looking for

a divergence in the gene-level-normalized probeset intensity

values. For instance, the brain-specific Splicing Index is cal-

culated by taking the log ratio (base 2) of the median gene-

level-normalized intensity of the 18 brain samples (6 tissues,

3 replicates each) and the median gene-level-normalized

intensity of the 27 non-brain samples (9 tissues, 3 replicates

each). The equation is shown in Figure 4a. The spinal cord

samples were excluded from the analysis because previous

data had shown spinal cord to have a mixture of brain and

non-brain splicing patterns. This value can be calculated for

every probeset that maps to or within a transcript cluster.

Two examples are shown in Figure 4b,c. A brain-specific

Splicing Index value of 0 indicates that the PSR is present at

equal levels in both the brain and non-brain tissues. A posi-

tive value implies elevated exon inclusion in brain, and a

negative value suggests increased skipping of the exon in

brain. In Figure 4b, the majority of exons in the PHLDB1 gene

are present in both brain and non-brain tissues at roughly

equal levels. The spike in index value for the PSR representing

exon 24 suggests that this exon is enriched in brain, with an

average inclusion rate more than 10-fold higher in the brain

tissues. RT-PCR validates the brain-specific inclusion of exon

24 (Figure 4b). The opposite is true for the SLC9A7 gene in

Figure 4c. Inclusion of the region representing exon 13 is sig-

nificantly lower in the brain tissues relative to non-brain

while most other PSRs have approximately equivalent inclu-

sion levels. Again, RT-PCR verifies that skipping of exon 13 is

prevalent in the six brain tissues (Figure 4c).

We used the Splicing Index to identify PSRs that are enriched

in the brain. To find statistically significant probesets we car-

ried out a Student t-test using the gene-level-normalized

probeset intensities comparing the brain tissues as a group to

the non-brain tissues. Genes or probesets that have low

expression level and, therefore, signal intensities that are in

the noise can have a confounding effect on any large-scale

automated analysis. Thus, we filtered our results to exclude

genes and/or probesets that are not expressed. In order for a

transcript cluster to be included in the analysis, we required

that at least 50% of the well annotated exons (Ensembl/Ref-

Seq supported probesets) were detected above background

(DABG p value < 0.05) in more than half of the samples in

RT-PCR validation of brain-enriched exons identified by the Splicing Index algorithmFigure 5

RT-PCR validation of brain-enriched exons identified by the Splicing Index algorithm. Approximately 15 µl of PCR product were separated on a 2.5% 
agarose gel stained with ethidium bromide. Primers are designed to well annotated exons that flank the PSR identified as brain enriched by the Splicing 
Index. Primer sequences are available in Additional data file 9.
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each group. In addition, we required that any single probeset

be detected (DABG p value < 0.05) in more than one half of

the samples in at least one of the two groups. We used the

Benjamini-Hochberg method of multiple testing correction

[34,35]. Utilizing a false discovery rate of 0.05 resulted in a p

value cut-off of 0.012.

While critical for discovery of novel splicing events, the large

number of speculative probesets on the array necessitates

careful filtering to reduce potential false positives. In the

interest of enriching the dataset for true positives, the Splic-

ing Index results were further filtered to remove probesets

with the highest likelihood of introducing false positives.

Probesets that mapped to multiple genomic locations were

discarded (approximately 6.8% of probesets). Probesets with

intensity values that were highly discordant with the gene

expression level (probesets with intensities greater than ten-

fold higher than the median intensity of Ensembl/RefSeq

supported probesets) were likewise rejected. In addition,

genes with greater than ten-fold changes in average expres-

sion level between the brain and non-brain tissue groups were

also removed. Despite the fact that the Splicing Index

approach is designed to mitigate differences in gene expres-

sion level, previous experience has shown that very large dif-

ferences in gene expression level can amplify the noise

leading to potential false positives. After filtering, 10,148

probesets with statistically significant differences in gene-

level normalized intensities between the brain and non-brain

tissues remained. Of these, 2,161 are indicated as being

enriched in the brain tissues relative to non-brain tissues.

These 2,161 probesets from 1,097 transcript clusters (genes)

represent potential differentially alternatively spliced

regions.

Experimental validation of predicted brain-enriched 

exons

RT-PCR validation of the increased inclusion in the brain tis-

sues of several of the identified probesets is shown in Figure

5. In order to evaluate the performance of the Splicing Index

algorithm for identifying differentially regulated, tissue-spe-

cific splicing events from the exon array data, we systemati-

cally tested the top hits sorted either by t-test p value or

magnitude of change. For simplicity, we focused our valida-

tion efforts on internal alternative splicing events that could

be tested using primers in constitutive exons flanking the

identified probeset. Therefore, probesets at the extreme edges

of transcript clusters and probesets mapping to annotated

alternative transcriptional start sites, alternative 3' terminal

exons, or alternative polyadenylation regions were not tested.

Finally, the Splicing Index results were manually filtered by

BLATing [36] the probeset sequence to the UCSC Genome

Browser [37]. By observing the probeset location in genomic

context we were able to remove probesets with ambiguous

transcript cluster assignment and probesets within regions of

overlapping transcription units.

After filtering, the 32 probesets with the most significant p

values were tested by RT-PCR. Of the 32 probesets, 27

(84.4%) showed clear enrichment in the brain tissues by RT-

PCR using primers in flanking exons. The higher molecular

weight band present in the six brain tissues indicates inclu-

sion of additional sequence in the mRNAs expressed in those

tissues via alternative splicing. In nearly all cases, the size dif-

ference between the skip and include products is identical to

the size of the exon that the identified probeset was designed

to detect. A commonly observed artifact for RT-PCR products

of alternatively spliced regions is visible on several of the gels.

This intermediately sized band typically migrating just below

the larger of the two isoforms represents a heteroduplex of

the two alternatively spliced forms [38,39]. All RT-PCR gels

not present in Figure 5 are shown in Additional data file 4. We

also carried out RT-PCR on the probesets with the largest

magnitude change of gene-level normalized intensity. Of the

top 23, 21 (91.3%) probesets demonstrated clear patterns of

brain-specific alternative splicing. Altogether, a total of 84

predicted tissue-enriched probesets identified by the Splicing

Index have been evaluated in the course of this project with a

86% (72/84) validation rate.

Discovery of novel brain-enriched exons

Among the 2,161 probesets identified as brain-enriched by

the Splicing Index, 287 of them were supported only by exon

predictions (Genscan, Genscan Suboptimal, Twinscan,

SLAM). Inclusion of these exons in transcripts produced in

the brain would represent novel splicing events since neither

the exons themselves nor the splicing events involving the

exons have been observed in publicly available cDNA

sequences. Several potential novel brain-enriched exons were

selected and inclusion of these exons in the brain was verified

by cloning and sequencing RT-PCR products from one or

more brain tissues. RT-PCR using primers in known exons

that surround the predicted exons for several of these genes is

shown in Figure 5.

In Figure 6, the sequences of RT-PCR products for the WNK1

gene shows the inclusion of two novel exons in the brain tis-

sues. The sequences were BLATed [36] to the human genome

and displayed in the UCSC Human Genome Browser [37].

The newly identified exons do not overlap any mRNA or EST

sequences. Probesets were designed because the exons were

predicted from one of the in silico gene finding algorithms. As

can been seen near the bottom of Figure 6b in the conserva-

tion tract, the sequences of the exons themselves are well con-

served in a variety of other organisms. As has been seen for

many regulated alternatively spliced exons, the sequence sim-

ilarity extends into the surrounding intron, suggesting possi-

ble conservation of a shared regulatory element [40-42]. This

also highlights the value of sequence conservation in

identifying exons and regulatory motifs using sequence infor-

mation alone.
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Discovery of novel exonsFigure 6

Discovery of novel exons. (a) RT-PCR validation of predicted brain-enriched exons. (b) Sequences of RT-PCR products from parietal lobe RNA aligned 
to the human genome using the BLAT tool [36] available on the UCSC Genome Browser website [53].

C
e
re

b
e
llu

m

F
ro

n
ta

l 
lo

b
e

O
c
c
ip

it
a
l 
lo

b
e

T
e
m

p
o
ra

l 
lo

b
e

A
d
ip

o
s
e

A
p
p
e
n
d
ix

H
e
a
rt

K
id

n
e
y

L
iv

e
r

O
va

ry

S
k
e
le

ta
l 
m

u
s
c
le

S
p
in

a
l 
c
o
rd

S
to

m
a
c
h

T
e
s
ti
s

C
o
rp

u
s
 c

a
llo

s
u
m

P
a
ri

e
ta

l 
lo

b
e

WNK1

(a)

(b)



http://genomebiology.com/2007/8/4/R64 Genome Biology 2007,     Volume 8, Issue 4, Article R64       Clark et al. R64.11

c
o

m
m

e
n

t
re

v
ie

w
s

re
p

o
rts

re
fe

re
e
d

 re
se

a
rc

h
d

e
p

o
site

d
 re

se
a
rc

h
in

te
ra

c
tio

n
s

in
fo

rm
a
tio

n

Genome Biology 2007, 8:R64

Altogether, our initial, exploratory analysis revealed 17 novel

exons in 11 genes. In addition, six new alternative splicing

patterns involving annotated exons were discovered during

the RT-PCR validation process. These six new splicing events

include four instances of novel arrangements of annotated

exons, one new alternative 5' splice site and one new alterna-

tive 3' splice site (see Additional data file 9 for details). The

sequences of the novel exons and new alternative splicing

events have been deposited in GenBank (Gen-

Bank:DQ925667-DQ925693 and GenBank:EF139845-

EF139860). Information on the novel exons, including RT-

PCR primer sequences can be found in Additional data file 9.

In addition, RT-PCR gels for all other novel exons not

included in Figure 5 are included in Additional data files 1 and

4. These data demonstrate the ability of an inclusive exon

array design to discover novel exons and novel alternative

splicing events. It also suggests that the catalog of splicing

events in publicly available sequences is far from complete.

Estimates of the frequency of alternative splicing

To estimate the frequency of alternative splicing among our

set of normal adult human tissues, we compared each tissue

to every other tissue. In all, 120 pair-wise comparisons were

carried out among the 16 tissues. Gene-level normalized

intensities were calculated for each probeset that fell within

the bounds of a transcript cluster. The values from three bio-

logical replicates of one tissue were compared to the three

biological replicates of another tissue using a Student t-test.

To reduce the number of false positives, we filtered out non-

expressed genes by requiring that a given transcript cluster be

'detected' in at least two of the three replicates in each tissue.

A gene is considered present if more than half of the Refseq/

Ensembl supported probesets were detected above back-

ground with a p value of 0.05 or less. In addition, each

probeset must be detected above background (DABG p value

≤ 0.05) to be included in that particular pair-wise compari-

son. Filtering steps similar to those used in the selection of

brain-enriched PSRs were also employed to remove potential

cross-hybridizing probesets and genes with greater than ten-

fold differences in gene-expression level. It should be noted

that for alternative splicing to be detected by the Splicing

Index algorithm, the splicing pattern must change between

tissues. For example, a gene that expresses multiple isoforms

in the same proportion in each tissue tested will not be

detected as differential alternative splicing.

A total of 19,221 transcript clusters ('genes') were used as

input to the analysis. Of these, 12,139 were detected in a min-

imum of two tissues. There were 8,837 transcript clusters that

had at least one probeset with a Splicing Index t-test p value

of less than 0.001 and minimum magnitude of change greater

than 0.5, suggesting differential exon usage in at least one

comparison. This means that 72.8% (8,837/12,139) of

detected genes displayed evidence of differential alternative

splicing among the 16 normal adult human tissues. Addi-

tional data file 2 contains details on the number of probesets

identified as differentially expressed in each of the pair-wise

tissue comparisons.

In an effort to demonstrate the validity of the pair-wise com-

parison approach, we calculated the frequency that the RT-

PCR validated brain-enriched probesets were identified in

comparisons of a single brain tissue (three biological repli-

cates) with a single non-brain tissue (three biological repli-

cates). For each probeset, there were a total of 54 possible

'brain versus non-brain' comparisons, 36 possible 'non-brain

versus non-brain' comparisons and 15 possible 'brain versus

brain' comparisons considered in this analysis (comparisons

involving spinal cord were excluded from the analysis). Using

the same criteria as above, if the gene was not detected in both

tissues, that particular comparison was excluded from con-

sideration. Employing a minimum fold change of 0.5 and t-

test p value of less than 0.01, the median frequency of identi-

fication in single brain tissues versus one non-brain tissue

was 62.7%. This is relative to a median frequency of 11.1% of

single non-brain tissues compared to another single non-

brain tissue and a median frequency of 0% of a single brain

tissue compared to another single brain tissue. Because many

of the identified brain-enriched exons are not completely

unique to the brain, we did not expect to identify our vali-

dated brain-enriched probesets in 100% of the 'brain versus

non-brain' comparisons. These results demonstrate that the

single tissue pair-wise comparison approach can detect the

majority of validated brain-enriched probesets. In addition,

the data verifies the brain-enrichment of these probesets and

suggests that the set of splicing patterns of these identified

exons is fairly consistent across multiple sub-regions of the

central nervous system.

The RT-PCR validation focused primarily on cassette exons,

but the exon microarray is also designed to detect the usage of

alternative 5' and 3' splice sites. Thus, to get a sense of the fre-

quency of alternative splice site usage we calculated the Pear-

son correlation coefficient of signal intensities across the 16

tissues for probesets belonging to the same exon cluster. A

total of 277,838 (26.9%) exon clusters have more than one

probeset. For simplicity, our analysis considered only

Ensembl/RefSeq supported probesets that were expressed in

more than 50% of the tissues. Probesets from the same exon

cluster generally had very high correlation with a median of

0.83. This is relative to a median correlation of -0.01 for

probesets selected randomly from 2 different exon clusters

(Additional data file 5). Approximately 21% of exon clusters

had correlation values less than 0.5. While this is not a direct

measure of the frequency of alternative 5' and 3' splice site

usage, it does provide a sense of how often probesets from the

same exon cluster are divergent, which may be due to alterna-

tive splice site usage.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ925667
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ925693
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF139845
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF139860
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Discussion
Due to the inclusive nature of our genome-wide exon micro-

arrays, we are able to discover novel alternative splicing pat-

terns in addition to monitoring known splicing events. As

technology allows for smaller feature sizes, it will be possible

to include larger numbers of probes per array, thereby

increasing the feasibility of large-scale non-biased designs.

Microarray designs that are more inclusive and less depend-

ent on current genome annotations will ultimately aid in the

development of tools that are designed to annotate, rather

than the other way around. For example, recent work using a

similar design concept based on the mouse genome was able

to refine gene boundaries using co-regulation of exons across

many different tissue types [43]. However, our data suggest

that there is a large amount of expression outside of well

annotated exons. Reliance on any one single exon prediction

algorithm or sequence content source will likely result in

incomplete coverage.

Exon microarrays represent a huge step forward in the reso-

lution level of gene study. The tool makes it possible to use the

entire genome as a splicing reporter. Future studies using this

technology should aid in the discovery of splicing regulatory

mechanisms and expand our knowledge of how alternative

splicing is controlled. In addition to splicing information, the

exon array format provides excellent coverage at the gene

level. With more than 40 individual probes for the average

gene, robust gene-level expression estimates are likely to be

more sensitive than array designs with fewer probes per gene.

We have demonstrated the use of a simple and easy to imple-

ment algorithm for finding changes in alternative splicing

patterns from exon array data. While there are more sophis-

ticated techniques for finding splicing patterns from microar-

ray data [16,44,45], the Splicing Index [32] was intended to

be a straightforward example of a method for identifying

tissue-specific exons. The method combined with standard

statistical tests is robust and was able to identify known

brain-specific splicing patterns. In addition, we discovered

novel exons involved in alternative splicing events regulated

in a brain-specific pattern. Our data suggest that a significant

proportion of isoforms is yet to be discovered and may indi-

cate that the frequency of alternative splicing based on cDNA

sequences is an underestimate. In fact, pair-wise compari-

sons of the 16 tissues suggest that nearly three-quarters of

genes are differentially alternatively spliced. This value is very

close to other estimates of the frequency of alternative splic-

ing based on microarray experiments [7]. However, our esti-

mation is potentially an underestimate of the total amount of

alternative splicing since our tissue set is limited and did not

include any samples from fetal or diseased tissues.

By using a strict set of filtering criteria and by employing a

manual filter by which the data for potential validation tar-

gets were observed in a genomic context, we were able to limit

the number of false positives. The RT-PCR validation rate for

all splicing events examined in this study was approximately

86%. Many of the validation targets mapped to exons that

were previously known to be alternatively spliced based on

sequence information from the UCSC Genome Browser and

validation rates for probesets mapping to these events was the

highest. Approximately 98% (46/47) of annotated alternative

splicing events highlighted by the Splicing Index showed clear

enrichment of the queried exon by RT-PCR. This situation is

a more appropriate comparison to many exon-junction arrays

since the designs are already filtered for known splicing

events [14,33,45-47]. The validation rate for the purely novel

exons was considerably lower, with 11 of 16 targets (69%) val-

idated by RT-PCR. A negative RT-PCR result, however, does

not necessarily mean that the identified probeset is a false

positive. It only signifies that the exon is not included in a

transcript that contains the exons to which the primers were

designed. The sequence may still be expressed as an inde-

pendent transcript or in a splice variant that does not include

the flanking primer exons. This may be more likely in the case

of potential novel exons that are only predictions or have min-

imal sequence support since designing primers for these

sequences is problematic. Probesets with splicing index t-test

p values as high as 2.5 × 10-4 and splicing index values as low

as 0.6 still gave positive validation results by RT-PCR. In

many cases, the exons overlapping those probesets had less

dramatic splicing pattern changes or identified exons that

were not completely unique to brain. The high validation rate

clearly demonstrates the ability of the Splicing Index algo-

rithm to identify exons that are significantly enriched in one

tissue or a group of tissues relative to another.

While microarray designs that include exon-exon junctions

do provide an additional bit of information about how exons

are joined together, the design is not optimal for discovery of

new splicing events. Johnson and colleagues [7] were able to

detect new exon skipping events by utilizing a human exon

junction microarray. However, their approach is not capable

of detecting new splicing events involving novel exons since

their microarray was designed solely on observed junctions in

RefSeq mRNA sequences, which do not comprise a complete

enumeration of splice variants. Exon and junction type array

designs each have their pros and cons. A combination of both

approaches may provide additional power in the study of

alternative splicing. Even our set of predicted exons is likely

to be incomplete. Small exons that are less than 17 bp, for

example, are not included in our design. It is also possible for

an exon to be missed if it was not predicted by any of the

design inputs or if the PSR sequence itself was not amenable

to designing an acceptable probe. The design was, however,

intended to be as inclusive as possible. It represents an

improvement of more than an order of magnitude in genome

coverage over currently available tools.

To date, most microarray-based target discovery programs in

the pharmaceutical industry have been limited to looking at a

single version of a transcript. We did a cursory analysis of the
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number of potential drug targets that exhibit potential tissue-

specific alternative splicing patterns. Nearly all small-mole-

cule drug targets fall into 130 InterPro domain protein fami-

lies [48]; 3,365 genes (transcript clusters) containing one of

these protein domains were identified. These 3,365 genes

nominally represent the 'drugable genome.' Approximately

77% of detected genes from this group show evidence of alter-

native splicing in our pair-wise comparison of 16 normal

adult human tissues. Additional data file 3 shows that differ-

ent classes of drugable genes display variable amounts of dif-

ferential alternative splicing. For example, the data suggest

that nearly 85% of detected serine/threonine protein kinase

genes may be differentially alternatively spliced. The largest

class of genes is the Rhodopsin-like GPCR with more than

600 members. Likely due to their low expression levels, only

about 150 of these genes are detected among the 16 tissues.

And of those, only about a third present evidence of differen-

tial alternative splicing (Additional data file 3). Overall, the

high percentage of drugable genes with potential tissue-spe-

cific isoforms may represent an untapped source of informa-

tion that could benefit drug discovery programs.

Using the exon microarray technology, we will be able to

measure changes in the splicing patterns of thousands of

genes at once and discover new patterns of alternative splic-

ing. Given the diversity of transcripts likely to be created from

genes, and the importance of detecting and differentiating

these transcripts for the correct interpretation of biological

systems, we believe our arrays are a useful, enabling tool for

further study. 'Gene expression' is properly becoming 'tran-

script expression.'

Conclusion
In this work we analyzed the expression of more than one mil-

lion individual annotated and predicted exons across three

biological replicates of sixteen normal adult human tissues

using a prototype exon microarray. Our data suggest signifi-

cant expression from regions outside of well annotated exons

and well annotated genes, with nearly one-third of probesets

in these regions detected above background in the average tis-

sue. Using a conceptually simple algorithm called the Splicing

Index that normalizes exon intensity by expression level of

the gene, we identified and validated a number of exons that

were enriched in samples from six sub-regions of the brain

relative to nine non-brain tissues. After rational filtering of

the Splicing Index results, systematic RT-PCR examination of

the top scoring hits resulted in a validation rate of around

86%. Pair-wise comparisons of each of the 16 tissues suggests

that approximately 73% of expressed genes are potentially

differentially alternatively spliced. In addition, we demon-

strate how the inclusive nature of the exon array can identify

novel exons that display tissue-specific splicing patterns. Our

cursory examination validated 17 such novel exons in 11

genes. An additional six examples of new alternative splicing

patterns involving annotated exons were also discovered. The

analysis methods presented here are applicable to a wide

range of microarray designs including exon, junction, and til-

ing arrays. The exon level data generated from the 16 tissues

will likely be a rich source of information for the study of the

regulation of alternative splicing.

Materials and methods
Target preparation and hybridization

Total RNA was purchased from Biochain (Hayward, CA,

USA). RNA samples came from age matched normal human

males (excluding female-specific organs) with three biologi-

cal replicates for each of the 16 tissues. Total RNA (100-200

ng) was reverse transcribed using a random hexamer/T7-pro-

moter oligonucleotide (5'-GAATTGTAATACGACTCACTAT-

AGGGNNNNNN-3') for initial strand priming. Second strand

cDNA was generated using Klenow Fragment (NEB; Ipswich,

MA, USA) and amplified into cRNA by T7 RNA Polymerase-

based IVT (MEGAscript T7, Ambion; Austin, TX, USA).

Resulting cRNA was cleaned up on an RNeasy column (Qia-

gen; Valencia, CA, USA). cRNA was converted back into

cDNA via reverse transcription with random hexamers. The

second strand was generated and cDNA was cleaned up on a

QIAquick PCR Purification column (Qiagen). Double-

stranded cDNA was fragmented with 0.6 U DNaseI

(Promega; Madison, WI, USA) at 37°C for 10 minutes. Frag-

ment size was checked using a Bioanalyzer (Agilent; Santa

Clara, CA, USA) with optimal fragment size in the 50-200 bp

range. Fragmented cDNA was end labeled with a biotin-con-

jugated nucleotide analog (DLR-1a; Affymetrix, Inc.) using

terminal transferase (Roche; Nutley, NJ, USA). Fragmented

and labeled cDNA was hybridized for 16 hours at 50°C in a

hybridization solution containing 7% DMSO. A constant mass

of 20 µg of double-stranded cDNA was hybridized to each

array. One hybridization mixture per sample was hybridized

serially to the four chip set over four consecutive days. After

hybridization, arrays were stained and washed on a GeneChip

Fluidics Station (Affymetrix, Inc.) using standard protocols

for eukaryotic arrays. Additional information on the perform-

ance of the assay can be found online [49].

Data acquisition and analysis

Following staining and washing, the arrays were scanned

using a GeneChip Scanner 3000 (Affymetrix, Inc.). The 8

micron pitch features on the array were scanned at 1.09

micron pixel resolution and probe intensity is reported after

image alignment and gridding using GeneChip Operating

System software (Affymetrix, Inc.). Arrays were normalized

using individual probes from 675 probesets from 71 empiri-

cally derived housekeeping genes shown to be consistently

expressed across many tissues. The median perfect match

(PM) value for this collection of normalization controls is set

to 700 and is used to calculate a scaling factor which is then

applied to all PM and mismatch (MM) probes. These probes

are present on all four chips in the array set. Probeset intensi-

ties were generated from individual PM and single base MM
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probes using the simplified expression analysis (SEA)

method. In short, PM intensities are attenuated to reflect the

background as measured by the MM probes. The SEA

probeset value is the median probe intensity using the follow-

ing formula:

U(i,j) = ((pm - mm) + sqrt((pm - mm)^2 + 4 × L × pm × 

mm))/2

We used a value of 0.005 for L, the attenuation term. Addi-

tional information about the SEA algorithm can be found

online [50]. Microarray design information and array data

are available through the NCBI Gene Expression Omnibus

(series accession number GSE5791) [51].

Determination of detection above background

To determine if the signal intensity for a given probe is above

the expected level of background noise, we compared the sig-

nal for each probe to a distribution of signals from probes

with the same GC content that are not expected to detect real

target. For this study, we used the single base mismatch

probes from PSRs that were supported only by Genscan Sub-

optimal predictions. This represented a large group of probes

that were the least likely to detect real target and, therefore,

likely to reflect background signal. We generated a p value

representing the probability that the signal intensity of a

given probe is part of the background distribution (Additional

data file 4). The p value is determined by comparing the PM

intensity for a given probe to the intensity for the group of

background probes with the same GC content. The probes are

ranked by intensity and the p value is calculated by dividing

the rank of the probe by the total number of background

probes in that GC bin. Thus, a probe p value of 0.05 indicates

that the PM intensity is larger than the 95% percentile of the

background probes with the same GC content. Probes with

small p values had signal that was separable from noise and,

therefore, considered to be DABG. The individual p values

from all probes in a probeset were combined using Fisher's

Exact test to generate a p value for the probeset. A probeset

that had a DABG p value of 0.05 or less was considered to be

detected (above background).

RT-PCR and sequence validation

Approximately 2 µg of total RNA was reverse transcribed

using the TaqMan Reverse Transcription Reagents kit per the

manufacturer's instructions (Applied Biosystems; Foster

City, CA, USA). A combination of oligo dT and random hex-

amers were used to prime reverse transcription. PCR primers

were designed in constitutive exons flanking the target

sequence. PCR was carried out using Taq Polymerase

(Promega) per the manufacturer's instructions using approx-

imately 50-100 ng of cDNA as template. PCR products were

separated on 2.5% agarose gels and stained with ethidium

bromide for visualization. Selected RT-PCR products were gel

purified and cloned into a TA Cloning vector (Invitrogen;

Carlsbad, CA, USA) for sequencing. All RT-PCR primer

sequences are included in Additional data file 9.

Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 provides RT-PCR

results of novel tissue-specific exons. Approximately 15 µl of

PCR product were separated on a 2.5% agarose gel stained

with ethidium bromide. Primers were designed to well anno-

tated exons that flank the PSR identified as a potential novel

tissue-specific exon by the Splicing Index. Primer sequences

are available in Additional data file 9. Additional data file 2

includes pair-wise tissue Splicing Index results. The three

biological replicates of each individual tissue were compared

to each of the other tissues using the Splicing Index algo-

rithm. The Splicing Index compares gene-level normalized

probeset intensities using a Student t-test. (a) The number of

probesets that have significantly different inclusion rates

between the two tissues. Probesets with p values less than

0.05 were considered significant. (b) The number of signifi-

cantly different probesets normalized by the number of genes

used in that comparison. In order for a gene to be included in

each of the pair-wise comparisons, 50% of the Ensembl/Ref-

Seq supported exons were required to have DABG p values

less than 0.05 in a minimum of two out of the three biological

replicates of each tissue in that comparison. In all, 9085 of

12,139 genes (74.8%) showed evidence of differential alterna-

tive splicing in at least one tissue comparison. Additional data

file 3 shows alternative splicing in the drugable genome. The

number of genes, number of detected genes, and number of

genes displaying differential exon expression is graphed for

several of the largest classes of drugable genes. Gene classes

are sorted from left to right by the percentage of genes

exhibiting differential alternative splicing. Additional data

file 4 shows additional RT-PCR of predicted brain-enriched

exons. See Additional data file 1 for details. Sequences of the

primers used in the RT-PCR are available in Additional data

file 10. Additional data file 5 shows the correlation of exon

cluster probeset intensities. (a) A histogram of the Pearson

correlation coefficient of signal intensity across the 16 tissues

for probesets belonging to the same exon cluster and

probesets randomly selected from different exon clusters. (b)

A table showing the median and average correlation and the

total number and percent of exon clusters with correlations

less than different values. Additional data file 6 shows the

robustness analysis of gene-level estimation. The robustness

of the gene-level estimation method to alternative splicing

was analyzed by simulating exon skipping events. The inten-

sity of each probeset that was used in the gene-level estimate

was systematically substituted for the background level and

the gene-level estimate was re-computed. The deviation of the

altered gene-level estimate from the original gene-level esti-

mate was determined for every transcript cluster in each tis-

sue sample. (a) The median percent deviation was calculated

by taking the median of the difference of the altered and the
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original gene-level estimates divided by the original gene-

level estimate all multiplied by 100. (b) A graph illustrating

the median percent deviation of gene-level estimates for tran-

script clusters with 5 or more, 10 or more, and 20 or more

probesets used in the calculation of the gene-level estimate.

Additional data file 7 lists the chip design information. Addi-

tional data file 8 contains RNA sample information. Addi-

tional data file 9 lists the RT-PCR primer sequences.

Additional data file 10 lists additional RT-PCR primers. Addi-

tional data file 11 lists the normalization control genes.

Additional data file 1RT-PCR results of novel tissue-specific exonsApproximately 15 µl of PCR product were separated on a 2.5% aga-rose gel stained with ethidium bromide. Primers were designed to well annotated exons that flank the PSR identified as a potential novel tissue-specific exon by the Splicing Index. Primer sequences are available in Additional data file 9.Click here for fileAdditional data file 2Pair-wise tissue Splicing Index resultsThe three biological replicates of each individual tissue were com-pared to each of the other tissues using the Splicing Index algo-rithm. The Splicing Index compares gene-level normalized probeset intensities using a Student t-test. (a) The number of probesets that have significantly different inclusion rates between the two tissues. Probesets with p values less than 0.05 were consid-ered significant. (b) The number of significantly different probesets normalized by the number of genes used in that compar-ison. In order for a gene to be included in each of the pair-wise com-parisons, 50% of the Ensembl/RefSeq supported exons were required to have DABG p values less than 0.05 in a minimum of two out of the three biological replicates of each tissue in that compari-son. In all, 9085 of 12,139 genes (74.8%) showed evidence of differ-ential alternative splicing in at least one tissue comparison.Click here for fileAdditional data file 3Alternative splicing in the drugable genomeThe number of genes, number of detected genes, and number of genes displaying differential exon expression is graphed for several of the largest classes of drugable genes. Gene classes are sorted from left to right by the percentage of genes exhibiting differential alternative splicing.Click here for fileAdditional data file 4Additional RT-PCR of predicted brain-enriched exonsSee Additional data file 1 for details. Sequences of the primers used in the RT-PCR are available in Additional data file 10.Click here for fileAdditional data file 5Correlation of exon cluster probeset intensities(a) A histogram of the Pearson correlation coefficient of signal intensity across the 16 tissues for probesets belonging to the same exon cluster and probesets randomly selected from different exon clusters. (b) A table showing the median and average correlation and the total number and percent of exon clusters with correlations less than different values.Click here for fileAdditional data file 6Robustness analysis of gene-level estimationThe robustness of the gene-level estimation method to alternative splicing was analyzed by simulating exon skipping events. The intensity of each probeset that was used in the gene-level estimate was systematically substituted for the background level and the gene-level estimate was re-computed. The deviation of the altered gene-level estimate from the original gene-level estimate was determined for every transcript cluster in each tissue sample. (a) The median percent deviation was calculated by taking the median of the difference of the altered and the original gene-level estimates divided by the original gene-level estimate all multiplied by 100. (b) A graph illustrating the median percent deviation of gene-level estimates for transcript clusters with 5 or more, 10 or more, and 20 or more probesets used in the calculation of the gene-level estimate.Click here for fileAdditional data file 7Chip design informationChip design information.Click here for fileAdditional data file 8RNA sample informationRNA sample information.Click here for fileAdditional data file 9RT-PCR primer sequencesRT-PCR primer sequences.Click here for fileAdditional data file 10Additional RT-PCR primersAdditional RT-PCR primers.Click here for fileAdditional data file 11Normalization control genesNormalization control genes.Click here for file
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