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Abstract

In this article we define a methodological framework for analyzing the relationship between state
sequences and covariates. Inspired by the ANOVA principles, our approach looks at how the covariates
explain the discrepancy of the sequences. We use the pairwise dissimilarities between sequences to
determine the discrepancy which makes it then possible to develop a series of statistical-significance-
based analysis tools. We introduce generalized simple and multi-factor discrepancy-based methods to
test for differences between groups, a pseudo R2 for measuring the strength of sequence–covariate
associations, a generalized Levene statistic for testing differences in the within-group discrepancies, as
well as tools and plots for studying the evolution of the differences along the timeframe and a regression
tree method for discovering the most significant discriminant covariates and their interactions. In
addition, we extend all methods to account for case weights. The scope of the proposed methodological
framework is illustrated using a real-world sequence dataset.
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1 Introduction

Optimal matching (OM) and, more generally, clustering of state sequences have become popular tools for
analyzing life trajectories since their initial introduction in the social sciences in the late 1980s (Abbott
and Forrest 1986; Abbott and Hrycak 1990). The popularity of these techniques is largely attributable to
the holistic view they provide on the life course construction process. As emphasized by Billari (2005)
such an approach considers the complete life sequence as a single unit of analysis, as opposed to event
history analysis, for instance, which focuses on specific events of the life process such as marriage or the
start of a new job.

In general, the OM approach consists of measuring the pairwise dissimilarities between sequences
and then using the obtained values in an unsupervised clustering algorithm to build a typology of the
observed sequences (i.e., to find homogeneous groups of sequences). Such analysis has proven to be an
effective exploratory tool for discovering the main characteristics of a set of sequences without formulating
any a-priori hypothesis. Further, it permits identification of typical trajectories and recurring structures
in the sequences, thus bringing out fundamental descriptive information and making the data easier to
comprehend. From a sociological point of view, groups determined by clustering techniques are useful for
characterizing typical trajectories. Even more, it is often assumed that cases in a cluster all follow more
or less an associated ideal type of trajectory. Clustering serves in this way for identifying the ideal types,
which then in turn provide nice, simplified interpretations of the clusters.

Aside the understanding of the intrinsic characteristics of the sequences, in this article, we are interested
in how the individual sequences are impacted by their context. A common practice in that perspective
is to investigate the relationship of the identified sequence types—the clusters—with covariates such as
sex and birth cohort. This is achieved, for example, by looking at the association between the cluster
membership and the covariates, or by explaining cluster membership by means of logistic regressions or
classification trees. The downside of this cluster-based approach, however, is that by representing the
diversity of trajectories with a limited number of clusters, one inevitably loses the information about the
diversity within each cluster. In the causal perspective, reducing the set of sequences to a limited number
of standard trajectories is a too-crude approximation and would lead to considering deviations from the
standard inside a cluster as non-explained error terms. Furthermore, knowledge of the cluster membership
alone does not inform about the distances and differences between clusters. As a result, wrong conclusions
may be drawn about the sequences–covariates relationships.

As a solution to this problem, we propose a set of methods—the discrepancy analysis—that allow to
direct analysis of the sequence–covariate links (i.e., without any prior clustering). Our approach focuses
on the discrepancy of the sequences, which we measure from their pairwise dissimilarities (OM distances,
for example). This trick allows then a generalization of the ANOVA principles. The basic idea behind
the ANOVA approach is to measure and test the part of the discrepancy among sequences that can be
explained by covariates. For instance, one can assess what fraction of the differences between individuals’
academic careers can be explained by sex or how the construction of one’s familial life may differ according
to social origin.

The article is organized as follows. In Section 2, we briefly review the relevant literature, and in Section 3
we describe the dataset on the transition from school to work used for illustrating the discussed methods.
In Section 4 we introduce a dissimilarity-based measure of discrepancy for a set of possibly weighted
sequences and discuss its interpretation. In Section 5 we propose methods to study the relationship
between sequences and a single categorical variable; that is, we focus on the comparison of groups of
sequences defined according to the levels of a given covariate. We derive a pseudo R2 for measuring
the share of sequence discrepancy explained by the grouping variable and introduce a pseudo F test for
assessing the significance of the association. We extend both statistics to account for case weights. We
propose also a Levene-like statistic for testing the homogeneity of within-group sequence discrepancies.
To conclude the section, we illustrate the behavior of the statistics with simulations. In Section 6, we
show how results can be further investigated and rendered to characterize the differences between groups.
Section 7 deals with the multi-factor case for which we introduce original formulas that can account for
case weights. Section 8 exploits the previous material in a tree-structured fashion to reveal the factors
that best discriminate sequences. Finally, in Section 9, we provide a brief overview on how to apply the
presented methods in R with our TraMineR package.

To avoid overloading the reader, detailed mathematical developments and discussions have been taken
out of the main text and included in Appendices A to C.
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2 Literature review

Several approaches have been used to study the association between objects described by their pairwise
dissimilarities and a categorical covariate (Gower and Krzanowski 1999; Anderson 2001; McArdle and
Anderson 2001; Mielke and Berry 2007; Cuadras 2008). Apart from the most popular ones, which generally
adopt ANOVA/MANOVA principles, Mielke and Berry (1983, 2007) have suggested using ad hoc statistics
based on sums of distances. Reiss, Stevens, Shehzad, Petkova, and Milham (2009) show that the two
approaches are equivalent under certain conditions. The statistical significance of the association is
generally assessed through permutation tests, although Mielke and Berry (2007) propose a parameterized
approximation for the empirical distribution generated by the permutations. All of these authors consider
only metric distances. In contrast, McArdle and Anderson (2001) extend the same approach to semi-metric
dissimilarities. This latter solution can also be applied in a multi-factor case. As far as weights are
concerned, an interesting contribution one finds in the literature is the paper of Delicado (2007), who
accounts for weights with a test derived from Gower and Krzanowski’s (1999) formulation for the single
factor case.

The different methods are used in various domains such as genetics (Zapala and Schork 2006), the
study of income density functions (Delicado 2007), or the study of neuroimaging data (Reiss et al. 2009).
Gower and Krzanowski (1999) deal with situations where the number of dependent (response) variables is
larger than the number of observations. In line with the work by McArdle and Anderson (2001), the main
application field is ecology and especially the analysis of ecosystems by means of semi-metrics, such as
that of Bray-Curtis. To the best of our knowledge, however, ANOVA-like tools have not yet been applied
so far to life trajectory analysis.

The methods presented in this article are inspired from the work of Mielke and Berry (2007) and
McArdle and Anderson (2001). We adapt their solutions for the study of state sequences in the social
sciences and extend them, so that we can also account for case weights. We also complement the
theoretical background of their approaches with notions such as the contribution to discrepancy derived
from Batagelj’s (1988) developments of the Ward criterion.

The analysis of differences in discrepancies between groups (i.e., the test of equality in within-group
discrepancies) has rarely been considered for dissimilarity-based discrepancies. Anderson (2006) proposes
two tests based on distances in an associated principal coordinate space. Studer, Ritschard, Gabadinho,
and Müller (2010) consider a generalization of Bartlett’s test that uses directly the original dissimilarities.
The latter approach is not suitable, however, for weighted data.

Regarding tree-structured methods, there are only few recent attempts to apply them on objects
characterized by their dissimilarities. Piccarreta and Billari (2007) propose a non-supervised dissimilarity-
based divisive tree algorithm that grows the tree independently of any covariates. They applied it on
sequence data. Similarly to the present paper, Geurts, Wehenkel, and d’Alché Buc (2006) propose the
use of a kernel-based supervised method; however, their approach is limited to Euclidean distances. A
more general dissimilarity-based method can be found in Piccarreta (2010). Unlike our proposal, her
tree-growing method is not controlled by a statistical significance and therefore requires post-pruning. The
tree algorithm considered in Section 8 is essentially the same as the one introduced by Studer, Ritschard,
Gabadinho, and Müller (2009) and Studer et al. (2010). Here, we build on it and adapt it for weighted
data.

3 Illustrative data set

Let us start with describing the application setting that will serve as an illustration throughout the
article. We use data and the research question from McVicar and Anyadike-Danes’ (2002) study of the
school-to-work transition in Northern Ireland. The aim is to “identify the ‘at-risk’ young people at age 16
years and to characterize their post-school career trajectories” using information such as qualification at
the end of compulsory schooling, family background and demographic characteristics. Table 1 presents the
list of covariates available in the dataset. In addition, the data contains a “weight” variable for adjusting
for response bias.

4 Discrepancy of a set of sequences

In this section, we define a measure of the discrepancy of a set of sequences. In a life course framework,
the discrepancy measures the between-individual variability of the life trajectories. Therefore, higher
discrepancy, for example, would reflect a greater level of uncertainty about the path followed by the
individuals. Depending on the situations, such uncertainty may be interpreted either as a form of
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Table 1. List of Covariates

Variable Description Values

sex Gender female, male
region Location of school in North Ireland Belfast, North Eastern,

South Eastern, Southern, Western
religion Religion Catholic, Protestant
funemp Father unemployed at time of survey yes, no
fmpr Father has a professional, managerial or related job yes, no
livboth Living with both parents at time of first sweep of survey yes, no
grammar Grammar school secondary eduction yes, no
gcse5eq Qualifications gained by the end of compulsory education:

5 or more GCSEs at grades A–C, or equivalent yes, no

precariousness or, on the contrary, as a reflection of the multiplicity of choices the individuals face. The
discrepancy concept considered here must be clearly distinguished from the within-individual longitudinal
state diversity that can be measured with the longitudinal entropy (Widmer and Ritschard 2009), the
turbulence (Elzinga 2010), or the complexity index (Gabadinho, Ritschard, Studer, and Müller 2010).
The latter measure the diversity of states and transitions inside sequences, while the discrepancy assesses
the diversity of the trajectories.

Aside from this diversity interpretation, the discrepancy is also the key concept for measuring the
association between sequences and covariates. Decomposing it into explained between-groups and residual
within-groups discrepancy permits measurement of the explained share of discrepancy and testing for
differences between groups. These topics will be addressed in the next sections.

Since we cannot directly observe the distance to some “mean sequence”, the discrepancy of sequences
will be defined from their pairwise dissimilarities. There are many different ways of computing such
dissimilarities, either through proximity measures counting common characteristics (Elzinga 2007) or using
edit distances (Lesnard 2010). The most popular dissimilarity measure used for sequence analysis in the
social sciences is the optimal matching (OM) edit distance, also known as generalized Levenshtein distance
in computer science. It is defined as the lowest cost of transforming one sequence into the other by means
of state insertions–deletions (indel) and state substitutions. The total transformation cost depends on
the individual cost of each used operation. Those costs can be organized into an augmented substitution
cost-matrix between states by considering each insertion–deletion as a substitution with a null element
(i.e., by defining a row and a column for this null element).1 The resulting OM distance satisfies surely
the triangle inequality as long as the elements of this augmented substitution cost matrix verify it (Yujian
and Bo 2007). When that is not the case, the resulting OM dissimilarity between two sequences x and y
could be greater than the sum of their dissimilarities with some other sequence. Though we will use the
OM distance with the costs defined in McVicar and Anyadike-Danes (2002) for our application example,
the way of measuring the discrepancy described hereafter is in no way limited to the OM distance alone.
Any other measure of dissimilarity between sequences could be used instead.

The presentation in the remainder of the section is based on the generalization of the Ward criterion
made by Batagelj (1988). The concepts introduced may also be found in Anderson (2001), Reiss et al.
(2009) and Mielke and Berry (2007), though these papers deal only with the unweighed case while we
propose here formulas that account for weights as well.

4.1 Discrepancy based on dissimilarities

In the Euclidean case, the sum of squares SS—or inertia—may be expressed in terms of the pairwise
squared Euclidean distances. Let y = (yi) be a vector of length n, wi the weight associated to case i and
W the total sum of weights. The sum of squares can be expressed as (see Appendix A):

SS =
n

∑

i=1

wi(yi − ȳ)2 =
1

W

n
∑

i=1

n
∑

j=i+1

wiwjd2
e,ij (1)

where de,ij is the Euclidean distance between i and j.
Following Mielke and Berry (2007), the concept of the sum of squares can be generalized to other

dissimilarity measures by replacing the squared Euclidean distance d2
e,ij in the right hand side of Equa-

tion (1) with dν
ij , where dij is any possibly non-Euclidean measure of dissimilarity and ν a real positive

1Though this definition permits state dependent insertion–deletion costs, unique indel costs are most often used.
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exponent, yielding:

SS =
1

W

n
∑

i=1

n
∑

j=i+1

wiwjdν
ij (2)

Although Mielke and Berry (2007) studied a wide range of values for the ν exponent, existing literature
usually considers only either ν = 1 or ν = 2. We address the choice between these two values in Appendix B
where we argue in favor of ν = 2 for Euclidean metrics and ν = 1 for non-Euclidean ones such as OM.

Applying the definition s2 = 1

W
SS of the sample variance, we get a fairly intuitive measure of the

discrepancy of the sequence objects. Since the variance is theoretically defined for Euclidean distances, we
prefer the term “discrepancy” for this more general setting. Interestingly, the discrepancy s2 is equal to
half of the weighted average of the pairwise dissimilarities; that is:

s2 =
1

2W 2

n
∑

i=1

n
∑

j=1

wiwjdν
ij (3)

4.2 Contribution to the sum of squares

Batagelj (1988) shows that the previous generalization of the sum of squares SS also implies that the
dissimilarity dν

xg̃ between a sequence x and the (possibly virtual) gravity center g̃ of a set G of sequences
is (see Equation (21) in Appendix A):

dν
xg̃ =

1

W

(

n
∑

i=1

wid
ν
xi − SS

)

(4)

According to Batagelj (1988), the notion of a gravity center holds for any kind of distances and objects,
even though it is not clearly defined for complex non-numeric objects such as sequences. It is likely that
the gravity center does not itself belong to the object space, exactly as the mean of integer values may be
a real non-integer value.

Since SS =
∑

x wxdν
xg̃, each term wxdν

xg̃ under this summation may be interpreted as the contribution
of x to the total sum of squares. Even though the gravity center may not be observable, Equation (4)
provides a comprehensive way to compute the most central sequence—the medoid—of a set using weights.
Searching the x that minimizes (4) is equivalent to minimizing the sum of the weighted distances from
x to all other sequences. The same solution was, for instance, considered in the unweighed setting by
Abbott (1990) for finding a representative sequence.

The non-negativity of this contribution automatically results when dν satisfies the triangle inequality
(see Appendix A), while negative contributions to the discrepancy can occur when the triangle inequality
does not hold. For non-Euclidean dissimilarities such as OM, it is therefore preferable to proceed with
ν = 1, which ensures the triangle inequality, rather than with squared dissimilarities (see Appendix B).

5 Comparing groups of sequences

Aside from evaluating the variability of a set of sequences, measuring discrepancy from pairwise dis-
similarities permits generalization of the analysis of variance (ANOVA) principles to any dissimilarity
measure. It allows computation of the share of discrepancy “explained” by a covariate and thus evaluation
of the strength of the association between trajectories and a covariate. Although classical tests based
on normality assumptions are not applicable in this case, the significance of the relation can be assessed
through permutation tests, as discussed in Anderson (2001).

In Section 5.3, we introduce a new test to compare group discrepancy. In some situations, it may
be of interest to test whether the discrepancies within groups differ significantly. We then discuss the
interpretation and the visualization of the difference between state sequences. In the last subsection, we
provide empirical insights on the behavior of the proposed tests with simulations.

5.1 Measuring association

When generalizing the notion of sum of squares to non-Euclidean measures of dissimilarity, the Huygens
theorem (Equation 5) that states that the total sum of squares (SST ) is the between sum of squares
(SSB) plus the residual within sum of squares (SSW ) remains valid (Batagelj 1988).

SST = SSB + SSW (5)
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Thus, we can apply the ANOVA machinery to sequence objects.
All terms in Equation (5) can be derived from formula (2). The total sum of squares (SST ) and the

within sum of squares (SSW ) are computed directly with formula (2), SSW being simply the sum of the
within sums of squares of each subgroup. The between sum of squares SSB is then obtained by taking the
difference between SST and SSW . Using Equation (5), we can assess the share of discrepancy explained
by a categorical or discretized continuous variable. In the spirit of ANOVA, this reduction of discrepancy
is due to a difference in the positioning of the gravity centers g̃k of the classes k (Batagelj 1988). Hence,
conceptually, we look for the part of the discrepancy that is explained by differences in group positioning,
and we measure it with the R2 formula (6). Alternatively, we may consider the F that compares the
explained discrepancy to the residual discrepancy. The F formula is provided in Equation (7), where m is
the number of groups.

R2 =
SSB

SST

(6)

F =
SSB/(m − 1)

SSW /(W − m)
(7)

5.2 Assessing statistical significance

The statistical significance of the association (i.e., of the explained part of the discrepancy) cannot be
assessed with Fisher’s F distribution as in classical ANOVA.2 The F statistic (7) does not follow a Fisher
distribution with sequence objects for which the normality assumption is hardly defendable. Therefore,
we consider a permutation test (Anderson 2001; Manly 2007) which works as follows. At each step we
change the group—the value of the covariates—assigned to each sequence by means of a randomly chosen
permutation of the group membership vector. We thus get an Fperm value for each permutation. Repeating
this operation R times, we obtain an empirical non-parametric distribution of F that characterizes its
distribution under independence (i.e., assuming the sequences are assigned to the cases independently
of the explanatory factors). From this distribution, we can assess the significance of the observed Fobs

statistic by means of the proportion of Fperm that are higher than Fobs. It is generally admitted that
5,000 permutations should be used to assess a significance threshold of 1% and 1,000 for a threshold of
5% (see Manly 2007, and Appendix C).

The issue is how we can or even if we should adapt such permutation tests to account for weights. We
propose three solutions:

1. Replicate cases a number of times corresponding to the weights before performing the permutation.
This approach supposes that weights are integer counts.

2. Replace at each step the simple permutation with a random assignment of covariate profiles to the
sequences using distributions defined by the weights.

3. Proceed with permutations ignoring weights and use them for computing the statistics for each
permutation.

When the weights stand for counts of aggregated cases, we should restore individual cases by replicating
the aggregated ones. By permuting aggregates only, we would miss possible permutations of cases within
aggregated groups and therefore end up with a less powerful test. The second option is more or less
equivalent but can be used with non-integer weights. Both of these techniques assume that weights reflect
an aggregation of independently drawn cases. However, when weights do not result from aggregation but
are intended to improve the sample representativeness, as it is the case in the example mvad data, it
would not be correct to replicate cases. For example, a weight of 4 would not mean that 4 cases were
drawn, and hence replicating it 4 times would incorrectly inflate the sample size.

Thus, the first and the second solutions should be used with counts reflecting aggregation. The third
one should be applied in cases where weights are aimed at improving the sample representativeness.

Figure 1 shows the empirical density curve of the Fperm statistics obtained with 5,000 permutations
of the values of the variable livboth (“living with both parents”). The observed Fobs statistic is equal to
2.49. The associated significance is 0.21 and corresponds to the red (grey) area in the plot. With 21% of
the random F ’s greater than the Fobs, we cannot conclude that the trajectory of young people differs
significantly with the values of the livboth covariate.

2We have also considered the use of the Brown-Forsythe F ∗ statistic to account for unequal group discrepancy (Brown
and Forsythe 1974b). However, in our experiments results were always almost the same as with the traditional F . For sake
of simplicity, we do not develop further this option.
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Figure 1. Empirical Distribution of the F Statistic under Independence with livboth

Table 2. Test of Association of Each Covariate with the School-to-Work Trajectories

Non-squared dissimilarity Squared dissimilarity Non-squared, Unweighted
F R2 p-value F R2 p-value F R2 p-value

gcse5eq 104.09 0.128 0.000 184.09 0.206 0.000 67.69 0.087 0.000
grammar 59.34 0.077 0.000 89.87 0.112 0.000 23.16 0.032 0.000
fmpr 13.72 0.019 0.000 23.00 0.031 0.000 8.76 0.012 0.000
funemp 11.98 0.017 0.000 24.05 0.033 0.000 9.51 0.013 0.000
sex 11.03 0.015 0.000 13.85 0.019 0.001 6.84 0.010 0.000
region 5.44 0.030 0.000 7.26 0.039 0.001 5.50 0.030 0.000
livboth 2.49 0.003 0.211 2.61 0.004 0.240 2.23 0.003 0.033
religion 2.32 0.003 0.234 1.88 0.003 0.365 2.75 0.004 0.014

Table 2 summarizes the results of the discrepancy analysis using both squared and non-squared
dissimilarities in the weighted case and non-squared dissimilarities only in the unweighted case. From the
tests using weights, the trajectories significantly differ with qualification at the end of compulsory schooling
(gcse5eq), type of compulsory schooling (Grammar), father employment status (funemp and fmpr), sex
and region. We measured the strongest association for the end of compulsory schooling qualification,
which lets us think that selection has occurred before the start of the sequences.

It is worth noting that results based on squared and non-squared dissimilarities are quite similar—both
the ranking of covariates and the significance levels are the same—although the pseudo R2 values are
higher in the case of squared dissimilarities. This is a general result. The p-values associated with the
unweighted test are lower, which may be explained by the additional variability that weights introduce in
the estimation of the null F curve.

The significant effects found here agree with the significant effects on the cluster membership found
by McVicar and Anyadike-Danes (2002), except for the livboth and religion covariates, which are not
significant in our weighted ANOVA-like model. Since only variables with a significant effect in McVicar
and Anyadike-Danes’ (2002) study were included in the data set made available by those authors, it is
not possible to find out covariates that significantly explain the sequence discrepancy while not affecting
significantly the cluster membership.
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5.3 Testing differences in within-group discrepancies

In some situations, it may be of interest to test whether the discrepancies within groups differ significantly.
For instance, Elzinga and Liefbroer (2007) are interested in testing the de-standardization hypothesis
stating that the family life trajectories of young adults become less similar over time (i.e., in testing
for an increasing within-cohort discrepancy). However, their approach, which is to compare the mean
pairwise similarities of four cohorts in 19 countries through 90% bootstrap confidence intervals, lends itself
to criticism since by bootstrapping similarities instead of individuals it does not account for the strong
correlation between similarities involving the same case. Better suited approaches are necessary to test
differences in within-group discrepancies.

Studer et al. (2010) use a generalization of the Bartlett T (Bartlett 1937; Jobson 1991) for testing
the homogeneity of the within-group discrepancies. Unfortunately, the value of the T Bartlett statistic is
known to be very sensitive to the distribution of cases across groups (Manly 2007). It is therefore unsuited
for randomizations of weighted data that modify this distribution at each draw.

We consider here an alternative approach based on the Levene test (Brown and Forsythe 1974a). The
Levene statistic is known to be powerful with randomization tests (Manly 2007). From a geometric point
of view, when testing homogeneity of discrepancy we are interested in measuring differences in the radius
of the distribution of sequences within each group. Radii may be measured from the contributions to the
within sums of squares and their general equality tested with an ANOVA procedure. Let ziℓ = dν(xi, g̃ℓ)
be the dissimilarity between case i and the gravity center of group ℓ. The generalized Levene L statistic
for testing group homogeneity is then the F statistic of this numeric variable. For the weighted case, it
reads:

L =

∑

ℓ wℓ(z̄ℓ − z̄)2/(m − 1)
∑

ℓ

∑

i wi(ziℓ − z̄ℓ)2/(W − m)
(8)

We propose again to evaluate the statistical significance of L through permutation tests. Though we
test here differences in real values, namely the dissimilarities ziℓ’s, we do not recommend comparing the
observed L with the F distribution since those values are generally not normally distributed.

Table 3. Test of Homogeneity of the Within-group Discrepancies

Non-squared dissimilarity Squared dissimilarity Non-squared, Unweighted
L p-value L p-value L p-value

grammar 25.10 0.001 7.86 0.034 1.15 0.282
gcse5eq 14.15 0.005 7.94 0.021 0.57 0.432
funemp 7.88 0.030 6.00 0.054 7.50 0.008
religion 7.87 0.034 8.15 0.031 14.92 0.001
region 4.31 0.040 4.27 0.036 5.83 0.000
fmpr 5.57 0.075 3.52 0.156 0.02 0.885
livboth 0.88 0.487 1.13 0.439 0.94 0.331
sex 0.00 0.994 0.10 0.819 4.50 0.033

Table 3 provides the results of both tests for all considered covariates. As mentioned above, the
Bartlett test is not reliable in the weighted case and is therefore shown only in the unweighted case.
Using weighted data, we found, for instance, that young people who attended a grammar school have
a discrepancy of their trajectories of 25.1, while those who did not have a discrepancy of 33.13. The
difference is significative from our generalized Levene tests. In fact, grammar school opens the door to
higher education trajectories, and most of the young Irish who attended a grammar school attempt to
follow such a path, which results in a significantly lower discrepancy. We may also note that children
of unemployed fathers show a significantly higher discrepancy and that there are significant differences
according to the religion as well as across regions.

5.4 Simulation study of the tests’ behavior

The aim of this section is to provide empirical insights on the behavior of the permutation tests of
group differences. We study the tests on differences in both the general sequence pattern and the within
discrepancy among sequences. We conducted a series of simulation studies to examine how the significance
of the statistics evolves when we progressively change the characteristic sequence pattern of one of the
groups. Three models were considered for generating artificial data sets.

8



1. Sequences with at most one transition and two possible states, with transition time—age at
transition—generated with a normal model.

2. Sequences with at most one transition and two possible states, with transition time generated
through a more realistic shifted log-logistic model.

3. Sequences with at most three transitions and eight possible states derived from the combination of
three events occurring according to log-logistic models.

The first retained model depicts a simple situation where we can easily and independently control for
the mean and variance of the age at which the transition occurs. The log-logistic model is more realistic
for describing, for instance, the time to marriage or to a first childbirth. We retained a shifted version
relevant for events that do not occur before a given age and studied the effect of varying once the start
age—a positioning parameter—and once the log-logistic intensity—inverse of the scale parameter—for
the second group. With the third set of simulations, we investigate sequences that may contain up to
four states out of the eight resulting from different combinations of three successive possible events. For
example, if we assume that the three events of interest are leaving home (L), marriage (M) and childbirth
(C), and H stands for the initial state, the eight possible states would be H, L, M, C, LM, LC, MC, and
LMC. In that example, M would mean married before leaving home and MC married with a child at
parents’ home. The occurrences of the events are each modeled with a different log-logistic distribution,
and we vary only the parameters of one of them.

The normal model, though not very realistic for describing the hazard of a transition, permits
independent examination of the effects of changes in position and in dispersion. The other models are
more realistic. The log-logistic distribution is, for instance, used in parametric approaches of event
history analysis (Blossfeld and Rohwer 2002). What makes it particularly interesting is that it allows
for non-monotone risks. It is characterized by an intensity parameter λ and a shape parameter b. The
inverse of λ is known as the scale parameter, and it is also the median of the distribution. Hence, an
increase in λ reduces discrepancy but also changes the location. To control positioning independently of
the discrepancy, we consider a start a parameter that specifies the threshold age where the log-logistic risk
starts. The retained values for its b shape and λ intensity parameter are based on estimates obtained by
Billari (2001b) in an analysis of age at first marriage in Italy. Finally, the last model considers multiple
events and states that correspond typically to situations encountered in life course analysis as described
above.

Table 4. Random Models Used for Generating the Simulated Data

Normal Log-logistic Multiple Log-logistic

Transitions t ∼ N(a, σ) t ∼ a + L(λ, b) ti ∼ ai + L(λi, bi), i = 1, 2, 3

Parameters a mean age a start age a1, a2, a3 start ages
σ age standard deviation λ intensity (inverse scale) λ1, λ2, λ3 intensities

b shape b1, b2, b3 shapes

States E1 for i < t, E1 for i < t, 8 states from the
E2 for i ≥ t E2 for i ≥ t combination of 3 events

Constant parts t1 ∼ 0 + L(0.078, 2.364)
t3 ∼ 20 + L(0.078, 2.364)

Reference models
for position change t ∼ N(20, 4) t ∼ 0 + L(0.126, 2.364) t2 ∼ 10 + L(0.126, 2.364)
for scale change t ∼ N(20, 4) t ∼ 0 + L(0.078, 2.364) t2 ∼ 10 + L(0.078, 2.364)

Variations 20 ≤ a ≤ 25 0 ≤ a ≤ 5 10 ≤ a2 ≤ 15
4 ≤ σ ≤ 7 0.078 ≤ λ ≤ 0.205 0.078 ≤ λ2 ≤ .205

The simulation design is as follows. For each of the three types of models, we start with the same
set of parameters for the two groups and increase progressively in 20 steps one of the parameters for the
second group while keeping the other parameters unchanged. At each step, we generate 1,000 artificial
sets of sequences of length 40, with each set composed of 500 θ sequences for the reference group and
500(1 − θ) for the second group, with θ being an arbitrarily chosen proportion. For each artificial set, we
compute the pairwise OM dissimilarities with a constant substitution cost of two and an indel cost of one.
We then derive from them the values of the F and L statistics and their permutation test p-values, using
once non-squared dissimilarities (ν = 1) and once squared dissimilarities (ν = 2).

The examined varying parameters are the mean age a for the normal model and the start age a for
the log-logistic model. Those are location parameters. For changes in discrepancy, we varied the standard
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Figure 2. Simulation Results

deviation of the normal model and the intensity parameter of the log-logistic model. In the more complex
case with multiple states generated from three log-logistics, we varied the parameters of one log-logistic
distribution only, namely the one generating the second event.

Figure 2 summarizes the simulation results for a balanced distribution between the two groups (i.e., for
θ = 50%).3 Results reported are the percentage of p-values smaller than .05 at each of the stepped values
of the considered varying parameter. Let us first look at the results for the F tests (blue curves). For the
location parameter a (left plots), we get better significance when we use non-squared dissimilarities ν = 1
than with ν = 2 in the log-logistic case, while there are no clear differences between ν = 1 and ν = 2 in
the normal case.

When we vary the scale parameter (i.e., the within-group discrepancy [right plots]), we observe that
the F becomes significant with ν = 1 in the normal case, which is a fallacious effect since we do not
change location in that case. With ν = 2, we get, as expected, non-significant F ’s. In the log-logistic case
the F becomes also significant when λ increases, but it is not surprising here since λ also determines the
position.

Let us now look at the L tests for the difference in within-group discrepancy. Unsurprisingly, when we
vary the location parameter while maintaining the scales at the same level, the tests remain non-significant.
When we vary the scale parameter, we observe similar significance of the L tests in the normal case while
ν = 1 dominates ν = 2 in the log-logistic case.

3We ran the same simulations with proportions θ = 10% and θ = 90%. We do not report the results here since they differ
only marginally from those obtained with θ = 50%.
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Results for the third set of simulations are similar to those of the single log-logistic, though differences
between ν = 1 and ν = 2 are somewhat smoothed. This may be attributable to higher censoring of the
concerned log-logistic that results from the occurrences of the other events.

Since data encountered in social sciences look more like those generated by the log-logistic models
than like normal data, the use of ν = 1 (i.e., non-squared dissimilarities) seems preferable in view of these
simulation results. This goes in the direction of what we advocate in Appendix B on the basis that ν = 1
guarantees the non-negativity of the contribution to the sum of squares when the dissimilarity satisfies
triangle inequality. Altogether, we promote testing differences with ν = 1 and confirming the conclusion
with the squared version when the Levene test exhibits significant differences in within discrepancies.

6 Studying and rendering group differences

From the previous results, we learn that the trajectories of grammar school students not only differ
significantly from the trajectories of students attending other schools, but also that the discrepancy of their
trajectories is significantly lower. Nevertheless, these results by themselves do not tell us anything about
how the trajectories differ among the different groups. To gain an idea of possibly existing differences, it is
useful to display them visually. For example, index-plots (Scherer 2001) can be used, where each sequence
is represented by a time line split into segments colored according to the corresponding occupational
state. To account for weights, the line width can be adjusted according to the weight of the represented
trajectory.

Figure 3 displays such weight-adjusted index-plots of grammar school and non-grammar school
trajectories. Furthermore, to improve readability, we ordered the sequences according to the first
dimension of a weighted principal coordinate analysis (PCO) (Gower 1966).4 While ordering sequences
by a principal coordinate facilitates the interpretation of the index-plot, the plots provide conversely
useful information for interpreting the PCO axis. For instance, we observe in our case that the sequences
are organized in a continuum ranging from higher education trajectories to training trajectories, while
middle values correspond to employment-dominated trajectories. Comparing both populations, it appears
that young people who attended grammar schools typically remain in the “school” state and are more
likely to proceed to higher education, while those who attended other types of schools follow more diverse
trajectories.

Figure 4 shows the evolution of the strength of association between the Grammar covariate and a
sliding six months long sub-sequence of the trajectory. We choose a window length of six months which
corresponds to a concrete horizon for most respondents. It has the effect of smoothing the curves while
still rendering the main changes along time. The OM dissimilarity matrix was calculated for each six
months windows and served for deriving the share of explained discrepancy and the value of the pseudo
Levene statistic. Observing the evolution of these two statistics helps in identifying the periods over
which the sequences differ the most. We observe that attending a grammar school has a long term effect
with the strongest association appearing near the end of the studied trajectory. The curve of the Levene
statistic indicates large differences in the discrepancy at the beginning of the sequences where most
grammar students continue in the same school state while non-grammar students experience more diverse
trajectories.

It is interesting also to look at how the within discrepancy evolves inside each group. Figure 5 depicts
these evolution patterns using the same six-month sliding windows. It shows the discrepancy for each value
of the Grammar variable and the overall discrepancy for comparison. We can see that the discrepancy of
non-grammar school students gradually declines, which may be explained by the increasing number of
youngsters who reach a final “employment” status. On the contrary, the discrepancy among grammar
school students peaks after two years when some of them switch to higher education while others enter
the labor market. We also observe that the differences of within-group discrepancies diminish over time,
which is in accordance with the evolution of the Levene statistics presented above.

Depicting the evolution of the discrepancy over time can be seen as an alternative to studying the
sequence of transversal entropies measuring state diversity at each time position (Billari 2001a; Widmer
and Ritschard 2009). The latter approach is an analysis with windows of length one. Moreover, it can be
shown that for such one-period windows the transversal Gini index—also known as quadratic entropy—is
exactly the discrepancy derived from Hamming5 distances with a unique substitution cost (Geurts et al.
2006). With lengthier windows, the solution proposed here permits accounting for discrepancies in both
the sequencing and the temporality of the states.

4In order to be consistent with the rest of our analysis, we computed the PCO from the square roots of the dissimilarities
since the PCO procedure automatically squares the provided dissimilarities. This amounts to set ν = 1.

5The Hamming distance is OM without indels.
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Figure 3. Trajectories of Grammar and Non-Grammar School Students
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Figure 4. Time Evolution of the Pseudo R2 and L, Six-months Sliding Windows

The proposed discrepancy analysis includes not only measuring the influence of a factor on the
trajectories, but also depicting their diversity, both statistically and graphically. Conceptually, it aims
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at depicting the influence of structures on the trajectory construction while assessing the ability for
auto-determination within the structure.

Such an explanatory methodological framework based on the notion of discrepancy adheres particularly
well to the life course paradigm. Indeed, in his formalization of this paradigm, Elder (1999) highlights the
importance of studying the socio-historical context of the individuals as well as their ability to make their
own choice within that context. This is precisely what discrepancy analysis does. It allows for studying
the links between individuals’ trajectories and their contexts, while at the same time preserving the notion
of between-individual variability.

7 Multi-factor discrepancy analysis

In Section 5 we examined how to measure the bivariate association between the trajectory and each of the
covariates considered independently. We consider here the generalization to the multi-factor case and,
following the work of McArdle and Anderson (2001), adopt the framework of the general multivariate
analysis of variance .

Formally, let Y be the n × q matrix with n observed values of q centered variables. In his work on
principal coordinate analysis (PCO), Gower (1966, 1982) showed that the outer product YY′, which has
the sum of squares on its diagonal, can be expressed in terms of the matrix of pairwise squared Euclidean
distances. McArdle and Anderson (2001) derived their generalized multi-factor MANOVA by combining
this result with a multivariate linear model and replacing the Euclidean distances with dissimilarities.
Here, we extend their proposition to account for weights.

Let X be the n × m matrix with the values of m predictors—contrasts for coding M factors—including
a first column consisting of ones for the constant and Ŷ the matrix of values predicted from X with the
linear model. The sum of total weighted sums of squares (SST ) may be partitioned into predicted (SSB)
and residual (SSR) weighted sums of squares.

tr
(

Y′WY
)

= tr
(

Ŷ′WŶ
)

+ tr
(

R′WR
)

(9)

where Ŷ is the matrix of the Y values predicted by X, R the matrix of residuals, and W the weight
diagonal matrix. According to the weighted linear regression model, we have W

1

2 Ŷ = HW
1

2 Y and
W

1

2 R = (I − H)W
1

2 Y, where H = W
1

2 X(X′WX)−1X′W
1

2 is the symmetric idempotent “hat” matrix
that is adapted for the weighted case here. Since W = W

1

2 W
1

2 , using the property tr
(

AB
)

= tr
(

BA
)

for conformable matrices, Equation (9) may be rewritten as:

tr
(

WYY′
)

= tr
(

W
1

2 HW
1

2 YY′
)

+ tr
[

W
1

2 (I − H)W
1

2 YY′
]

(10)

Let us now look at Gower’s result that expresses G = YY′ in terms of the pairwise squared distances.
In the formulation retained by McArdle and Anderson (2001), we have G = − 1

2

(

I − 1

n
11′

)

D
(

I − 1

n
11′

)

,
where 1 is a vector of ones of length n, I the identity matrix, and D the n × n matrix of the squared
pairwise Euclidean distances. Here, we have to adapt this definition for y variables centered on their
weighted means. In that case, it reads as follows:

G = −1

2

(

I − 1

W
11′W

)

D
(

I − 1

W
W11′

)

(11)
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The generic element of G is gij = − 1

2

(

d2
ij − d̄2

i − d̄2
j + d̄2

)

, where d̄2
i , d̄2

j and d̄2 are respectively the row i,
the column j, and the overall weighted average of the squared Euclidean distances. It can be shown that
when q = 1, each diagonal element gii of G is the contribution of the i-th individual to the sum of squares
as defined in Equation (4).6

Setting HW = W
1

2 HW
1

2 , the total SST , between SSB and within SSW sums of squares of interest
may be rewritten in terms of this adapted G matrix as:

SST = tr
(

WG
)

(12)

SSB = tr
(

HWG
)

(13)

SSW = tr
[

(W − HW)G
)]

(14)

The idea is to substitute the pairwise dissimilarities dν
ij for the squared Euclidean distances that define

D in Equation (11). Assuming such a substitution and using formulas (12–14), we can derive global
pseudo-R2 and pseudo-F statistics as defined in Equations (6–7). Instead of the number of groups, m
should be set here to the number of columns of X (i.e., to the total number of contrast and/or indicator
variables necessary for coding the M factors).

For M = 1 (i.e., in the case of a single factor), computing the SST and SSW with the formula ( 2 on
page 5) as shown in Section 5 gives exactly the same results as the matrix formulation considered here.
However, the direct computation of the sums of squares is about 10 times faster.

We may also consider the contribution of each covariate to the total discrepancy reduction. As
with multi-factor ANOVA, there are different ways of looking at these individual contributions. Shaw
and Mitchell-Olds (1993) distinguish, among others, between two methods called Type I and Type II,
respectively. The Type I method is incremental, which means that covariates are successively added to
the model and the contribution of each covariate is measured by the SSB increase that results when it is
introduced. With this method, the measured impact of each covariate depends on the order in which the
covariates are introduced. With the Type II method, known to be robust in the absence of interaction
effects, the contribution of each covariate is measured by the reduction of SSB that occurs when we drop
it out from the full model (i.e., from the model with all covariates). We retain the second method and
hence compute the following F for each covariate v

Fv =
(SSBc

− SSBv
)/p

SSWc
/(W − m − 1)

(15)

where the SSBc
and SSWc

are the explained and residual sums of squares of the full model, SSBv
the

explained sum of squares of the model after removing variable v, and p the number of indicators or
contrasts used to encode the covariate v.

As in the single discrepancy analysis, the F distribution is not relevant for the pseudo-F , and we
consider again permutation tests for assessing the significance of the F statistic. Since Fv is intended
for testing the conditional independence of v, its null distribution is obtained by permuting only the
covariate v while the global F statistic is computed by permuting the whole profiles. Thus, for a complete
multi-factor analysis with profiles defined by M factors, 1 + M permutation tests are required, which may
be quite time-consuming.

Table 5. Multi-Factor Discrepancy Analysis

Full Model Backward Model
Variable Fv ∆R2

v Sig Fv ∆R2

v Sig

gcse5eq 51.91 0.060 0.000 55.72 0.065 0.000
grammar 20.77 0.024 0.000 21.44 0.025 0.000
sex 5.47 0.006 0.002 5.30 0.006 0.003
funemp 3.59 0.004 0.039 3.83 0.004 0.028
fmpr 3.30 0.004 0.054
region 3.19 0.015 0.004 3.37 0.016 0.003
religion 2.29 0.003 0.212
livboth 1.80 0.002 0.405

Ftot R2

tot Sig Ftot R2

tot Sig

Global 14.96 0.190 0.000 19.55 0.182 0.000

6Though it is not a concern here, this result can easily be extended for q > 1.
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Let us look at what a multi-factor analysis gives for our illustrative example. Table 5 shows the results
for two models: the complete model with all variables and a model obtained after removing non-significant
covariates through a backward stepwise process. The tests were conducted using 5,000 permutations.

Both models provide overall significant information about the discrepancy of the trajectories since
both global F statistics are significant. The full model explains a slightly higher part of the discrepancy
(R2 = 0.190) than does the backward model (R2 = 0.182), but it contains non-significant covariates.

In the full model, the variable “qualification gained at the end of compulsory education” (gcse5eq) is
the most significant covariate. If we remove this variable, the R2 of the model (= 0.190) decreases by
0.060. The difference is significant since we have Fgcse5eq = 51.91, which was never attained with 5,000
permutations. As before, the variable religion is not significant. Removing it from the model reduces the
R2 by only 0.003 and results in a Freligion value of 2.29 and a p-value of 0.208. Likewise, the variable
“having a professional, managerial or related father” (fmpr) loses its significance in the multi-factor case.
In fact, the variable fmpr becomes non-significant as soon as we control for “father’s unemployment”
(funemp), as the two variables are strongly correlated and “father’s unemployment” is the most significant
one.

The multi-factor approach provides information about the proper effect of the covariates on the
occupational trajectory (i.e., about the part of the total effect that is not accounted for by factors that are
already introduced). In that sense, the multi-factor approach is complementary to the single univariate
discrepancy analysis which informs on the raw effect of each covariate. Nevertheless, while the multi-factor
approach permits us to know which effects are significant, it does not tell us much about what the effects
are (i.e., about how trajectories may change with the value of the covariates). To answer such questions,
we propose a tree approach which can be seen as an extension of the graphical display shown in Figure 3.

8 Tree-structured analysis of sequences

In this section, we complement the sequence discrepancy analysis with the regression tree method
introduced in Studer et al. (2009, 2010) which we extend to account for weighted sequences. Regression
trees work as follows (Morgan and Sonquist 1963; Breiman, Friedman, Olshen, and Stone 1984). They start
with all individuals grouped in an initial node. Then, they recursively partition each node using values of
a predictor. At each node, the predictor and the split are chosen in such a way that the resulting child
nodes differ as much as possible from one another or have, more or less equivalently, lowest within-group
discrepancy. The process is repeated on each new node until a certain stopping criterion is reached.

The recursive partitioning generated by a tree is known to provide an easily comprehensible view
of how each newly selected covariate nuances the effect of covariates introduced at earlier levels. This
requires the display of relevant information about the distribution at each node. We could represent the
medoid (i.e., the observed sequence that minimizes the dissimilarity (Equation 4) between the sequence
and the group gravity center). It would be instructive to render the within-group discrepancy as well.
Although this is not obvious for any kind of complex objects, displaying index-plots like those used in
Figure 3 provides a good solution for state sequences. For a somewhat more synthetic view, we could also
consider representative plots (Gabadinho, Ritschard, Studer, and Müller 2011b) that show the minimal
set of sequences for each node that would be necessary to ensure a given coverage of the sequences at that
node.

Beside the displayed node content, the originality of the tree-structured analysis of sequences resides in
the use of a splitting criterion derived from the pairwise dissimilarities, namely the univariate pseudo-R2

that we described in Section 5. At each node, we select thus the predictor and the binary split for which
we get the highest pseudo-R2 (i.e., the split that accounts for the greatest part of the object discrepancy).
An alternative would be to use the significance of the univariate pseudo-F . However, since this significance
must be determined through permutation tests, the time complexity would be excessive if we had to
repeat it for each predictor and possible split. Therefore, we consider the F significance only as a stopping
criterion; that is, we stop growing a branch as soon as we get a non-significant F for the selected split. In
that way, permutations need to be run only once at each node, which remains tractable. The extension of
this tree method for weighted cases is obtained by using the pseudo-R2 formula and the F testing method
that we propose in this article at each step of the tree-growing process.

Using the pseudo-R2 as the splitting criterion inevitably means that we could only build binary trees.
The R2 does not penalize for the number of groups and would hence always select the maximum number
of groups if we allowed n-ary splits. Using the R2 adjusted for the number of groups, as it is used in
multiple regressions, would not solve the problem since the adjusted R2 is known to insufficiently penalize
complexity. Using information criteria such as the BIC would also not be suitable, as such criteria are
hardly derivable in a case where the distribution of the statistics (R2, F or SSW ) under the independence
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Figure 6. Sequence Regression Tree

hypothesis is not known.
The global quality of the tree can be assessed through the association strength between the sequences

and the leaf (terminal node) membership. The global pseudo-F provides a way of testing the statistical
significance of the obtained segmentation, while the global pseudo-R2 provides a measure of the part of
the total discrepancy that is explained by the tree.

Figure 6 shows the dissimilarity tree grown using our weighed example dataset. The chosen stopping
criteria are a p-value of 5% for the F test, a minimal leaf size of 5% of the total sum of weights, and a
maximal depth of 5. In each node, we see the plot of the individual sequences as well as the node size, the
sum of weights, and the discrepancy s2 within the node. At the bottom of each parent node, we indicate
the retained split predictor with the associated R2, while the definition of the binary split may be inferred
from the indication at the top of the child nodes.

The overall R2 of the tree is 0.187, which falls between the global R2 of the full and backward models
in Table 5. However, the results are now much easier to interpret. Moreover, the tree automatically
accounts for interaction effects that were not considered in the multi-factor discrepancy analysis. We
observe, for instance, that “attending grammar school” discriminates better among students who finished
the compulsory schooling with high grades than among those who obtained lower grades. Likewise, we
can see that having an unemployed father seems to affect primarily young male Irish with low grades at
the end of compulsory schooling (gcse5eq).

9 Running sequence discrepancy analysis in R with TraMineR

We implemented the methods presented in this article into TraMineR (Gabadinho, Ritschard, Müller,
and Studer 2011a), which is a free package for the R statistical environment (R Development Core Team
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2008). Below, we briefly show how to run the discrepancy analysis features discussed here. We would also
like to refer our readers to the TraMineR User’s guide (Gabadinho, Ritschard, Studer, and Müller 2009),
which provides a detailed overview of other features offered by the package, especially of the rendering of
sequences and the computation of dissimilarities. Our readers can reproduce the results we present here,
as the mvad dataset, which we use, has been made available as part of the TraMineR package, thanks to
the authorization of McVicar and Anyadike-Danes.

To begin the analysis, we load the mvad data and create a weighted state sequence object using the
commands below. The state variables from September 1993 to June 1999 are in columns 17 to 86 of the
data frame.7

R> library(TraMineR)

R> data(mvad)

R> mvadseq <- seqdef(mvad[, 17:86], weights = mvad$weight)

Next, we compute the OM dissimilarity matrix with the indel and substitution costs used by McVicar
and Anyadike-Danes (2002).

R> subm.custom <- matrix(

+ c(0,1,1,2,1,1,

+ 1,0,1,2,1,2,

+ 1,1,0,3,1,2,

+ 2,2,3,0,3,1,

+ 1,1,1,3,0,2,

+ 1,2,2,1,2,0),

+ nrow = 6, ncol = 6, byrow = TRUE)

R> mvaddist <- seqdist(mvadseq, method = "OM", indel = 1.5, sm = subm.custom)

To perform the univariate discrepancy analysis and to test for homogeneity of discrepancy, we call
the dissassoc() function which takes four arguments: the dissimilarity matrix, the factor (group), the
number of permutations (R=1000 by default), and an optional weights argument. The results presented
in Section 5 were obtained with the following code:

R> dissassoc(mvaddist, group = mvad$gcse5eq, R = 5000,

+ weights = mvad$weight, weight.permutation="diss")

Likewise, we generated Figures 4 and 5 with seqdiff() as shown below.

R> Grammar.diff <- seqdiff(mvadseq, group = mvad$Grammar,

+ seqdist_arg = list(method = "OM", indel = 1.5, sm = subm.custom))

R> plot(Grammar.diff, stat = c("Pseudo R2", "Levene"))

R> plot(Grammar.diff, stat = "discrepancy")

The multi-factor results listed in Table 5 were obtained with the dissmfac() function. The model is
specified as a classical R formula with the dissimilarity matrix on the left-hand side. We use the data
argument to specify the data.frame containing the covariates.8

R> dissmfac(

+ mvaddist ~ gcse5eq + Grammar + funemp + catholic + male + fmpr + livboth + region,

+ data = mvad, R = 5000, weights = mvad$weight)

To carry out a tree-structured analysis of the sequences, we use the seqtree() function. The
dissimilarity matrix and the predictors are passed to the function in the same way as in dissmfac().
Stopping criteria can be set with the arguments minSize for the minimum node size, maxdepth for the
maximum tree depth and pval for the minimum required p-value. As for dissassoc(), the R argument
controls the number of permutations for computing the p-values. Notice that it is not necessary to specify
the weights since they are already attached to the state sequence mvadseq object.

R> mvadtree <- seqtree(

+ mvadseq ~ gcse5eq + Grammar + funemp + catholic + male + fmpr + livboth + region,

+ data = mvad, minSize = 30, maxdepth = 5, R = 5000, pval = 0.01, diss = mvaddist)

R> print(mvadtree)

The print() command produces a text output of the tree. The tree can also be plotted with
seqtreedisplay(). This function uses the free GraphViz software (Gansner and North 1999).9 Hence, it
must be installed and accessible for the function to work properly. The tree in Figure 6 was obtained with
the following command.

R> seqtreedisplay(mvadtree, type = "I", sortv = cmdscale(sqrt(mvaddist), k = 1))

7For details on TraMineR functions such as seqdef, seqdist, dissassoc presented here see the reference manual or
type for instance ?dissassoc in the R console to access the on-line help.

8The region factor was built from the 5 region binary dummies in the mvad data frame with coding not shown here.
9The program can be downloaded from http://www.graphviz.org/.
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10 Conclusion

In this article, we proposed a set of tools for analyzing the relationship between discrete sequences and
one or more covariates. Besides the fact that the methods we propose are of interest for the analysis of
state sequence, we believe that they also provide an innovative alternative to the traditional cluster-based
sociological analysis of life trajectories.

The starting point of the new methodology introduced hereby is the definition of the discrepancy
of the sequences in terms of their pairwise dissimilarities. Afterwards, the methods proceed with the
transposition of the ANOVA concepts to this generalized discrepancy framework. They include single and
multi-factor ANOVAs, the measure of the strength of sequence–covariate associations with pseudo R2’s, a
generalized Levene test of equality of within-group discrepancies, tools and plots for investigating the
evolution of the group differences along the timeframe, and a regression tree method for sequence data.
Since normality of sequences is not defendable, the statistical significance of the proposed statistics is
assessed through permutation tests. Up to this point, similar approaches have already been considered
in the literature, but only for non-sequence complex objects such as ecosystems. In addition to the
application on sequence data, the generalized Levene test and the procedure accounting for case weights
in the measures and tests are the main original methodological contributions of this article.

As far as sociological analysis is concerned, the proposed methodology opens new perspectives besides
the traditional cluster-based approach. In short, this cluster-based approach consists of associating each
trajectory in a given set to some related ideal type. From a descriptive standpoint, this approach has
proven to be effective in uncovering the underlying structure of a set of sequences, which makes the
data easier to understand. However, relying on clusters for studying the relationship between sequences
and their context can be criticized on the basis that reducing the set of sequences to a limited number
of standard trajectories is a rather crude approximation and would lead to considering deviations from
the standard inside a cluster as non-explained error terms. As a result of this approximation, wrong
conclusions may be drawn about relationships between the sequences and their context. On the other
hand, the approach we propose here takes into account explicitly how the individual characteristics affect
the trajectory followed by each individual.

Furthermore, in this paper we adopted an explanatory methodological framework that complies with
the life course paradigm (Elder 1999) by accounting for the individuals’ ability to make their own choices
within their socio-historical backgrounds when estimating the sequence–context relationship. By focusing
on the discrepancy of the sequences, they allow studying the link between the trajectories and their
context while preserving the notion of between-individual variability.

The choice of the measure of dissimilarity between sequences is a recurrent debate in the social
sciences (Dijkstra and Taris 1995; Wu 2000; Elzinga 2003), which is beyond the scope of the present paper.
Although we have illustrated the methods using an optimal matching edit distance, the methods considered
in this paper are by no way limited to optimal matching. They work with any dissimilarity measure.
Moreover, running the statistical tests with different dissimilarity measures provides a way of assessing
their respective discriminant power for the data at hand. Also, using, for instance, the multichannel
approach considered by Pollock (2007), the proposed methods could be applied on parallel sequences such
as those describing, for example, linked lives or joint occupational and cohabitational trajectories. The
observed differences between groups could then result from any of the channel, or from the combination
of channels.10 Even more generally, the discrepancy analysis is not limited to sequence data. If we except
the graphical rendering of the results, they apply to any objects that can be characterized by a pairwise
dissimilarity matrix.

Finally, we would like to remind our readers that all the proposed tools have been implemented in the
TraMineR library for the R statistical environment. They are thus readily and freely accessible to any
interested reader as illustrated in Section 9.
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A Proofs

In this appendix, we present the mathematical developments underlying the results presented in the
article. The presentation is largely inspired from Späth (1975) and Batagelj (1988).

We begin with a proof of Equation (1) that expresses the sum of squares in terms of pairwise Euclidean
distances. Here we demonstrate it for the more general multivariate case. Let yi be the data vector for
case i, wi its associated weight, W =

∑n

i=1
wi the sum of the weights, and ȳ = 1

W

∑n

i=1
wiyi the vector

of weighted averages. Letting ‖y‖2 denote the squared length of the vector, that is y′y =
∑

i y2
i , the

multivariate result that we want to establish is:

Theorem 1 Sum of squares in terms of pairwise distances

SS =

n
∑

i=1

wi‖yi − ȳ‖2 =
1

W

n
∑

i=1

n
∑

j=i+1

wiwj‖yi − yj‖2 (16)

Proof. We first show that the sum of squared distances to a point x is

n
∑

i=1

wi‖yi − x‖2 =

n
∑

i=1

wi‖yi − ȳ‖2 + W‖ȳ − x‖2 (17)

Since yi − x = (yi − ȳ) + (ȳ − x), its squared length is

‖yi − x‖2 = ‖yi − ȳ‖2 + 2(ȳ − x)′(yi − ȳ) + ‖ȳ − x‖2

Weighting with wi and summing over i, we get

n
∑

i=1

wi‖yi − x‖2 = 2(ȳ − x)′

n
∑

i=1

wi(yi − ȳ) +

n
∑

i=1

wi‖yi − ȳ‖2 + W‖ȳ − x‖2 (18)

Since,
∑n

i=1
wi(yi − ȳ) = 0, the middle term on the right-hand side vanishes, which yields Equation (17).

Setting x = yj , multiplying by wj and summing over j results in

n
∑

j=1

n
∑

i=1

wiwj‖yi − yj‖2 =
n

∑

j=1

wj

n
∑

i=1

wi‖yi − ȳ‖2 + W
n

∑

j=1

wj‖ȳ − yj‖2

= 2W

n
∑

i=1

wi‖yi − ȳ‖2 (19)

The left-hand side can be written as 2
∑n

i=1

∑n

j=i+1
wiwj‖yi − yj‖2. Then, dividing both sides by 2W

we get Equation 16 of Theorem 1. �

Theorem 2 Contribution to the sum of squares. It can be expressed as follows in terms of pairwise
distances.

‖ȳ − x‖2 =
1

W

(

n
∑

i=1

wi‖x − yi‖2 − SS
)

(20)

Proof. Extracting ‖x − ȳ‖2 from Equation (17), we get

‖ȳ − x‖2 =
1

W

(

n
∑

i=1

wi‖yi − x‖2 −
n

∑

i=1

wi‖yi − ȳ‖2
)

(21)

The second term in the parenthesis is just SS, which proves the Theorem. �

Replacing x with yj , we can see that ‖ȳ − yj‖2 is the contribution of yj to SS by multiplying
Equation (20) by wj and summing over j. As a result, we obtain

∑

j wj‖ȳ − yj‖2 = 2SS − SS = SS,
hence the sum of squares. What makes the formula interesting is that it expresses the contribution in
terms of pairwise distances. Formula ( 4 on page 5) is just Theorem 2 with dissimilarities dν substituted
in place of the squared Euclidean distances ‖.‖2.

We now prove the following result about the non-negativity of the contribution.
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Theorem 3 Non-negativity of the contribution to the sum of squares (sufficient condition).
Let d be a dissimilarity measure and assume the generalized sum of squares SS is calculated with dν .
Then, the contribution of x to the sum of squares SS

dν
xg̃ =

1

W

(

n
∑

i=1

wid
ν
xi − SS

)

(22)

is non-negative when dν respects the triangle inequality.

Proof. Replacing SS by its expression in terms of pairwise dissimilarities (Theorem 1), the contribution
(i.e., Equation (22)), can be re-written as

dν
xg̃ =

1

2W 2

n
∑

i=1

n
∑

j=1

wiwj

(

2dν
ix − dν

ij

)

(23)

In this form, it appears that the smallest value of the contribution dν
xg̃ is obtained when all dν

ij ’s take their
maximal possible value. Under the triangle inequality, dν

ij cannot exceed dν
xi + dν

xj . Hence, dν
xg̃ reaches its

minimum when dν
ij = dν

xi + dν
xj for all i and j. This minimum is zero, which implies dν

xg̃ ≥ 0. �

B Should dissimilarities be squared?

In this appendix, we discuss the choice of the ν exponent in Equation (2). Should we square the
dissimilarities when computing the generalized sum of squares, or is it preferable to substitute the squared
Euclidean distances with the dissimilarities themselves?

If the chosen dissimilarity between sequences can be represented univocally as a distance in an
associated Euclidean coordinate space, we would have to set ν = 2 to get a generalized SS equal to
the corresponding sum of squares in that space (Gower 1982). While dissimilarities between strings of
characters that can be expressed as kernels (Lodhi, Saunders, Shawe-Taylor, Cristianini, and Watkins
2002) have this property, most cost-minimizing distances such as OM cannot be expressed as Euclidean
distances.

There are several arguments in favor of setting ν = 1. According to Mielke and Berry (1983), this
solution leads to a strongest congruence between analysis and data space. Moreover, it should produce
more robust results when the corresponding points in the coordinate space are not normally distributed.
From our point of view, the strongest argument to set ν = 1 is related to the triangle inequality. Indeed,
when the dissimilarity d respects the triangle inequality,

√
d respects it too, while generally d2 does not.

Since the triangle inequality of dν ensures that SS cannot be greater than the sum of distances
∑

i wid
ν
xi

to any arbitrary chosen object x, we would then be sure that SS does not exceed the sum
∑

i wid
ν
xi with

ν = 1, while it would not be the case with ν = 2. The same argument can be formalized differently in terms
of the contribution (4) to the sum of squares SS. The non-negativity of this contribution automatically
results when dν

ij satisfies the triangle inequality (see Appendix A), while negative contributions to the
discrepancy can occur when the triangle inequality does not hold. Hence, ν = 1 ensures non-negative
contributions when d satisfies the triangle inequality.

A negative value of the dissimilarity dν
xg̃ between x and the center of gravity g̃ means that accounting

for the object x reduces the sum of squares. This can be the case when two objects, say y and z, become
closer when we can pass through x (i.e., when dyz > dyx + dxz). Such situations are common in social
network analysis. Consider, for instance, a network between x, y and z where the dissimilarity is equal to 1
for two people that meet often and is equal to 10 when they never meet. The dissimilarity dxg̃ would then
be negative if x often meets both y and z while y never meets z. From a social network perspective, we
would say that x plays a cohesive role in the network. Although a negative contribution to the discrepancy
is relevant in such settings, it is most often not the case. Hence, the results should be interpreted with
caution when dν

ij does not respect the triangle inequality, which may occur with ν = 2 as noted above. In
particular, in such situations one should be ready to accept and give meaning to negative contributions to
the discrepancy.

To summarize, we suggest defining SS with ν = 1, except when we can express the dissimilarity
measure as an Euclidean distance, in which case ν = 2 is best suited.

C About the number of permutations in permutation tests

It is generally admitted that 1,000 permutations are sufficient to assess a result at the 5% level, while
5,000 are necessary at the 1% level. Here, we present some figures to support this claim.
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Let p be the true p-value of Fobs and p̂ be the proportion of F ’s smaller than Fobs among R random-
izations. Table 6 shows how the probability P (p̂ < 1.2p | p) that the empirical p-value does not exceed
the true p-value by more than 20% evolves with R for p = .05 and p = .01. In the same table, we see that
1,000 randomizations ensure that this probability will be greater than 90% for p = .05, and R = 5, 000
ensures this confidence for p = .01. The table shows also 95% inconclusive intervals—that is, the interval
that should contain 95% of the permutation p-values when the true p-value is p. This interval is equal to
p ± 1.96

√

p(1 − p)/R (Manly 2007). Obtaining a permutation p-value in this interval does not permit one
to conclude since such a p-values would then not be significantly different from p.

Table 6. Probability P (p̂ < 1.2p | p) of Not Exceeding p by More Than 20% and 95% Inconclusive Interval
When the True Value is p for a Selection of R Values

p = .05 p = .01
R P (p̂ < 1.2p | p) Inconclusive interval P (p̂ < 1.2p | p) Inconclusive interval

100 0.677 0.007 0.093 0.580 0 0.030
200 0.742 0.020 0.080 0.612 0 0.024
500 0.848 0.031 0.069 0.673 0.001 0.019
1,000 0.927 0.036 0.064 0.737 0.004 0.016
1,300 0.951 0.038 0.062 0.766 0.005 0.015
5,000 0.999 0.044 0.056 0.922 0.007 0.013
7,000 1.000 0.045 0.055 0.954 0.008 0.012
10,000 1.000 0.046 0.054 0.978 0.008 0.012
50,000 1.000 0.048 0.052 1.000 0.009 0.011
100,000 1.000 0.049 0.051 1.000 0.009 0.011
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