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1 Introduction

This Technical Note outlines an adjoint complement to a critical building block of pressure-based Finite-Volume
(FV) flow solvers that employ a collocated variable arrangement to simulate virtually incompressible fluids, cf.
Ferziger and Peric (2012). The focal point is to strengthen the adjoint pressure-velocity coupling by using an
adjoint Momentum-Weighted Interpolation (MWI) strategy. To this end, analogies of established primal MWI
techniques are derived and investigated. The study reveals the merits of an adjoint MWI but also highlights
the importance of its careful implementation.

The interplay between the pressure and momentum sources is frequently addressed by MWI methods, which
support the prediction of mass fluxes through control volume faces in combination with pressure-based FV
methods and collocated variable arrangements, cf. Mencinger and Žun (2007); Choi et al. (2003). MWI aims at
stabilizing the algorithm by suppressing an odd-even decoupling between the pressure and the velocities. Based
on the seminal work of Rhie and Chow (1983), such methods typically gather under the umbrella of Rhie-
Chow Interpolation (RCI) schemes and represent a standard in FV solvers dedicated to industrial problems,
cf. Yu et al. (2002); Pascau (2011); Bartholomew et al. (2018). The technique is of discrete nature, disappears
in a continuous framework, and can thus form a bridge between continuous derivation and discrete adjoint
implementation, cf. Stück and Rung (2013); Kröger et al. (2018); Kühl et al. (2021a).

When attention is drawn to an adjoint optimization framework, the interest in an adjoint MWI follows from
the increased number of source terms of the adjoint momentum equation compared to its primal companion.
Any variation of the primal fluid velocity – which is not linked to the adjoint velocity – results in an adjoint
source term, which is mostly treated explicitly. Examples include velocity depending volume cost functional or
the convective transport of auxiliary variables, e.g., turbulence parameters. Consistent and numerically robust
treatment of the many explicit source terms is desirable and will be assessed in this note. In the following, vectors
and tensors are defined with reference to Cartesian coordinates and denoted by Latin subscripts. Einstein’s
summation is used for Latin subscripts.

2 Primal Flow and Starting Point

The governing flow equations for the primal velocity vi and pressure p of an incompressible viscous (µ) fluid
with density ρ yield the following residual r(·) form

rvi

i = 0 = vkρ
∂vi

∂xk
− ∂

∂xk

[
µ

(
∂vi

∂xk
+
∂vk

∂xi

)]
+
∂p

∂xi
− qi , (1)

rp = 0 = − ∂vk

∂xk
. (2)

Here qi refers to a general differentiable momentum source, e.g., qi = ρgi in case of an acceleration by gi. Since
the note is devoted to the numerical treatment of adjoint momentum sources, which often follow from transport
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equations of auxiliary variables, we define a generic stationary transport equation for the auxiliary quantity ϕ
by the following residual form

rϕ = 0 = vk
∂ϕ

∂xk
− ∂

∂xk

[
µϕ ∂ϕ

∂xk

]
− sϕ . (3)

Here, µϕ and sϕ refer to a ϕ-specific diffusivity and source term, respectively. Typical auxiliary equations
address the statistical modeling of turbulence, e.g. ϕ → k and ϕ → ε in case of the classical k − ε turbulence
model, cf. Jones and Launder (1972), or the transport of a volume fraction ϕ→ c to model two-phase flow, e.g.
along the route of the Volume of Fluid (VoF) method proposed by Hirt and Nichols (1981).

2.1 Starting Point of the Momentum-Weighted Interpolation

In a situation at rest (vi → 0) the momentum balance equation (1) simplifies to a ”hydrostatic” relation, viz.

C1 :
∂p

∂xi
= qi or C2 :

∂p

∂xi
=
∂ qkxk

∂xi
− ∂qk

∂xi
xk . (4)

Equation (4) distinguishes two – continuously speaking identical – formulation concepts (C1,C2) for the momen-
tum source qi, which provide access to a – discretely speaking – robust approximation, cf. Bartholomew et al.
(2018). Using a cell-centered storage approach and a conventional second-order accurate mid-point integration
rule, a FV approximation of the spatial integral over the two alternatives reads

C1 :

∫
∆Ω(P )

qidΩ ≈ [qi∆Ω]
P
, C2 :

∫
∆Ω(P )

qidΩ ≈
∮

Γ(P )

qkxkdΓi − xP
k

∮
Γ(P )

qkdΓi ≈
∑

∆Γ(P )

[
xF

k − xP
k

]
qF
k ∆ΓF

i .

(5)

Here P denotes the center of the control volume (CV), ∆Ω refers to its size, and F marks the face center
locations of the discrete, outward-pointing face segment vectors ∆Γi enclosing the CV, cf. Fig 1. Later on,
MWI strategies employ volume averaged quantities that read

QC1

i =
1

∆Ω(P )

∫
∆Ω(P )

qidΩ ≈ qP
i and QC2

i =
1

∆Ω(P )

∑
∆Γ(P )

[
xF

k − xP
k

]
qF
k ∆ΓF

i . (6)

A crucial aspect refers to the interpolation of qF
i to the face centers, as seen in Sec. 5.

P

F

∆ΓF
i

dFi

d̃Fi
d̄Fi

NB
F̃
·

Figure 1: Schematic representation of a cell-centered Finite-Volume arrangement for the cell around a focal
center P, a neighbor cell around the center location NB, and their shared face ∆ΓF

i .

3 Adjoint Flow

Adjoint procedures are an efficient approach to identify objective functional sensitivities with respect to (w.r.t.)
a large number of optimization parameters, cf. Jameson (1995). A general integral objective functional J
which consists of boundary (jΓ) and volume (jΩ) contributions along the objective surface ΓO and the objective
volume ΩO reads

J =

∫
ΓO

jΓdΓ +

∫
ΩO

jΩdΩ . (7)
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This is supplemented by the primal residuals (1), (2) and (3) to form an augmented objective functional, often
referred to as a Lagrange functional

L = J +

∫
Ω

(v̂i r
vi

i + p̂ rp + ϕ̂ rϕ) dΩ . (8)

Quantities in front of the residual expressions denote the adjoint velocity v̂i, the adjoint pressure p̂, and the
adjoint auxiliary quantity ϕ̂. The differentiation the Lagrangian in the direction of the primal state is introduced

based on first-order optimality conditions, i.e. δviL · δvi
!
= 0∀ δvi, δpL · δp !

= 0∀ δp, δϕL · δϕ !
= 0∀ δϕ, to derive

the governing adjoint equations, cf. Löhner et al. (2003); Othmer (2008); Giannakoglou and Papadimitriou
(2008); Stück and Rung (2013); Kröger et al. (2018); Kühl et al. (2019, 2021a,b,c), viz.

rv̂i

i = 0 = −vkρ
∂v̂i

∂xk
− ∂

∂xk

[
µ

(
∂v̂i

∂xk
+
∂v̂k

∂xi

)]
+
∂p̂

∂xi
− v̂i

∂qk

∂vk
− ϕ̂∂s

ϕ

∂vi
+ v̂kρ

∂vk

∂xi
+ ϕ̂

∂ϕ

∂xi
+
∂jΩ

∂vi
, (9)

rp̂ = 0 = − ∂v̂k

∂xk
− v̂i

∂qi

∂p
− ϕ̂∂s

ϕ

∂p
+
∂jΩ

∂p
, (10)

rϕ̂ = 0 = −vk
∂ϕ̂

∂xk
− ∂

∂xk

[
µϕ̂ ∂ϕ̂

∂xk

]
− v̂i

∂qi

∂ϕ
− ϕ̂∂s

ϕ

∂ϕ
+
∂jΩ

∂ϕ
. (11)

The adjoint equations (9)-(11) display significantly more source terms than their primal companions (1)-(3).
Depending on the source term magnitude, this might be obstructive for the adjoint pressure-velocity coupling.
Remaining optimality criteria and a correct approximation of the primal and adjoint equations allow for a
sensitivity (Othmer (2008); Stück and Rung (2013); Kühl et al. (2021b)) rule along the controlled design wall

δuJ =

∫
ΓD

sdΓ with s = −µ∂vi

∂n

∂v̂i

∂n
. (12)

Note that the locations of the control (ΓD) and the objective (ΓO) do not necessarily coincide, cf. Kühl et al.
(2019). Analogous to the primal relation (4), the adjoint momentum balance simplifies for a vanishing adjoint
velocity (v̂i → 0) towards an ”adjoint hydrostatic” pressure balance, viz.

C1 :
∂p̂

∂xi
= q̂i or C2 :

∂̂p

∂xi
=
∂ q̂kxk

∂xi
− ∂q̂k

∂xi
xk , with q̂k = ϕ̂

∂sϕ

∂vi
+ ϕ̂

∂ϕ

∂xi
+
∂jΩ

∂vi
. (13)

Again two alternative formulation concepts (C1, C2) exist, which might help to improve the adjoint coupling.
Compared to the primal system, the adjoint momentum sources tend to be much more volatile with potentially
more significant local gradients, e.g., in free surface models that feature a ”jump” of the mixture fraction c
across the compressive interface (∇iϕ → ∇ic). Hence, a robust and, at the same time, consistent adjoint
pressure-velocity coupling is of significance and will be addressed in the following section.

4 Discrete Adjoint Momentum-Weighted Interpolation

The discrete implementation of primal pressure-velocity coupling strategies has been the subject of various
research efforts and will not be revisited here. A recent overview of modern MWI methods and their implemen-
tation is given in Bartholomew et al. (2018). Aiming to adopt these concepts in an adjoint context, we start
from the semi-discrete version of the adjoint momentum balance (9) for a CV around P based on a cell-centered
FV discretization, cf. Fig. 1

APv̂P
i +

∑
NB(P )

aNBv̂NB
i =

[
q̂i −

∂p̂

∂xi

]P

∆ΩP . (14)

Here AP and aNB denote the main and off diagonal coefficients, respectively. A similar expression is obtained
for each neighboring cell center velocity v̂NB

i . Similar to the discretized primal continuity equation (2), the
discretized adjoint continuity equation (10) requires face-based velocities v̂F

i to compute fluxes, viz.

∑
∆Γ(P )

v̂F
i ∆ΓF

i = −
[
v̂k
∂qk

∂p
+ ϕ̂

∂sϕ

∂p
− ∂jΩ

∂p

]P

∆ΩP (15)
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The derivation follows analogously to primal RCI strategies (Rhie and Chow (1983); Pascau (2011); Bartholomew
et al. (2018)) and yields the following adjoint MWI rule

v̂F
i = v̂F

i +
∂v̂i

∂xk

∣∣∣∣F (xF
k − xF̃

k

)
− βF

[(
∂p̂

∂xi
− Q̂i

)C1

−
(
∂p̂

∂xi
− Q̂i

)C2
]F

, (16)

where over-lined expressions (·)F = λF(·)NB + (1 − λF)(·)P follow from a simple linear interpolation into the
perpendicular location F̃ using the geometric weight λF = (xF

k − xP
k )dF

k/(d
F
md

F
m). The second right-hand side

(r.h.s.) term refers to an optional non-orthogonality correction, cf. Fig. 1. The four remaining contributions

on the r.h.s. comprise the adjoint MWI rule. The coefficient reads βF reads (dk∆ΓF
k )/AF. The pressure

contributions are computed from

∂p̂

∂xi

∣∣∣∣F,C1

=
p̂NB − p̂P

||dF
k ||

dF
i

||dF
k ||

and
∂p̂

∂xi

∣∣∣∣F,C2

=
∂p̂

∂xi

∣∣∣∣F = λF ∂p̂

∂xi

∣∣∣∣P +
(
1− λF

) ∂p̂
∂xi

∣∣∣∣NB

, (17)

and essentially correspond to their classical RCI companion (Rhie and Chow (1983)), cf. Bartholomew et al.
(2018). The source term expressions Q̂C1

i and Q̂C2
i follow from (6, 13) and are reconstructed at the face F using

Q̂C1,F
i = Q̂C1,F

i =
(
1− λF

)
Q̂C1,P

i + λFQ̂C1,NB
i and Q̂C2,F

i = Q̂C2,F
i = λFQ̂P,C2

i +
(
1− λF

)
Q̂NB,C2

i .
(18)

The cell-centered evaluation of Q̂i adheres to different approximations, cf. (6), viz.

Q̂C1,P
i ≈ q̂P

i and Q̂C2,P
i ≈ 1

∆ΩP

∑
F (P )

[
xF

k − xP
k

]
q̂F
k ∆ΓF

i . (19)

A crucial aspect refers to the face reconstructions of adjoint momentum source contributions with reversed

levers (·)F = (1 − λF)(·)NB + λF(·)P. This follows from primal MWI strategies and stems from the fact that
the influence of volume forces increases with greater leverage (Bartholomew et al. (2018); Mencinger and Žun
(2007)).

5 Application

This section assesses the credibility of different adjoint MWI approaches. The investigations refer to the laminar
two-phase flow around a two-dimensional submerged circular cylinder at rest and involves a surface-based drag
cost functional, i.e. jΓ = (pδik − µ(∇kvi + ∇ivk))nkδi1 – where nk and δik denote the local boundary normal
and the Kronecker-Delta.

As illustrated in Fig. 2 (a), the origin of the cylinder is positioned two and a half diameters D underneath an
initial calm-water free surface. The employed two-dimensional domain features a length and height of 60D and
30D, where the inlet and bottom boundaries are located 20,5 diameters away from the cylinder’s origin. At the
inlet, a homogeneous unidirectional (horizontal) bulk flow vi = v1δi1 is imposed for both phases in conjunction
with a calm water concentration distribution. Slip walls are used along the top and bottom boundaries, and
a hydrostatic pressure boundary is employed along with the outlet. The grid is stretched in the longitudinal
direction (x1) towards the outlet to suppress the outlet wave field and comply with the outlet condition. The
study is performed at ReD = v1D/ν

b = 20 and Fn = v1/
√
G 2D = 0.75, based on the gravitational acceleration

G, the inflow velocity v1 and the kinematic viscosity of the water νb. The expected dimensionless wave length
reads λ/D = 2π Fn2 = 3.534. To ensure the independence of the objective functional value w.r.t. spatial
discretization, a grid study was conducted prior to the optimization study. Part of the utilized structured
numerical grid is displayed in Fig. 2 (b). It consists of approximately 215 000 control volumes where the
cylinder shape is discretized with 500 surface elements along the circumference. The non-dimensional wall-
normal distance of the first grid layer reads y+ ≈ 0.01 and the refined grid in the free surface region employs
isotropic spacing with ∆x1 = ∆x2 ≈ λ/100.

A pressure-based, second-order accurate FV scheme using a cell-centered, co-located variable arrangement
is employed to approximate the partial differential equations of the primal and adjoint systems, cf. Rung et al.
(2009); Stück (2012); Kröger (2016); Kühl (2021). The sequential procedure employs a SIMPLE-type pressure
correction method, cf. Yakubov et al. (2015), and the solution is iterated to convergence until all – or only
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x1

x2

60D

30D

20D

20D

2D

D

gi

ui

ΩO

(a) (b)

Figure 2: Submerged cylinder case (ReD = 20, Fn = 0.75); (a) Schematic of the initial configuration around
the controlled cylinder shape ui (red) and (b) portion of the structured numerical grid around the cylinder.

a selected subset of equations – are converged below a prescribed global tolerance Rϕ,min. Convective primal
[adjoint] momentum fluxes are approximated using the QUICK [QDICK] scheme, cf. Stück and Rung (2013).
The approximation of the concentration equation has been outlined in Kühl et al. (2021a), where the traditional
VoF approach follows from a compressive primal/hybridized continuous-discrete adjoint HRIC scheme. Using
an Euler implicit approach, the simulations are advanced to a steady state in pseudo time.

Emphasis is put on the predictive agreement of the adjoint sensitivities with results of a Finite Difference
(FD) approach and the iterative convergence behavior. Mind that the adjoint momentum balance experiences
an additional source that follows from the primal convective concentration transport which in turn features huge
local gradients, i.e. q̂i ← ĉ∇ic, cf. (13). Three numerical experiments E1-E3 are compared, which differently
include the adjoint momentum source into the adjoint MWI procedure (16):

E1: The first experiment neglects all adjoint momentum sources Q̂i within the adjoint MWI (16) and considers
only the adjoint pressure gradients in line with (17).

E2: A second experiment includes the adjoint volume forces Q̂i within the adjoint MWI (16), but invariably

uses a classical linear interpolation, i.e. (·)F → (·)F in Eqns. (18)-(19).

E3: Only the third approach employs twisted levers for (·)F and computes the adjoint face velocities v̂F
i as

described in (16)-(19).

The comparison between adjoint sensitivities and Finite-Differences (FD) is depicted in Fig. 3. The credibility
of the FD results is ensured by verifying the linearity of the FD-analysis using three perturbation magnitudes
ε/D ∈ [10−4, 10−5, 10−6]. The control is restricted to the upper half of the cylinder (cf. Fig 2a), for which
FD results are extracted at 21 discrete positions. To this end, 42 additional simulations were performed to
obtain second-order accurate central differences. An exemplary documentation of the systems linear answer is
displayed in the right graph of Fig. 3, which refers to an exemplary surface location x1/D = 1/4.

All adjoint sensitivities E1-E3 essentially agree fairly with the FD results. However, a closer inspection
of the maximum sensitivities (center) reveals that the adjoint sensitivities do not coincide and feature minor
deviations. The most significant deviations are observed in conjunction with the wrong levers (E2). The
prediction improves if adjoint momentum sources are completely neglected (E1), but a superior agreement with
FD results is returned from the adjoint MWI with twisted levers (E3). The relevance of the correct levers is
underlined by the iterative convergence behavior that is measured via the discrete global residual to the outer
iteration m =̂mouter based on the L1 norm of the respective local companion, i.e. Eqns. (9)-(11), viz.

Rϕ,m =
1

N

N∑
i=1

|rϕ,m
i | with rϕ,m

i = am,ϕ
ik ϕm−1,ϕ

k − bm,ϕ
i . (20)
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u
jΓ
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R
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−

6
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]

ε/D = 10−4

ε/D = 10−5

ε/D = 10−6

Figure 3: Submerged cylinder case (ReD = 20, Fn = 0.75); Adjoint and Finite-Difference (FD) based sensitivity
derivative for a drag functional along the upper cylinder (left) and magnification of the area of greatest sensitivity
(center), supplemented by three exemplary finite system answers at x1/D = 1/4 (right).

Here, aik and bk denote the system matrix and r.h.s. vector of the equation system belonging to (14). The
residuals are depicted in Fig. 4 over the outer iterations m. An adjoint simulation was assumed to converge
once the residual of the adjoint velocity – which controls the shape sensitivity, cf. Eqn. (12) – reaches a value
of Rv̂ ≤ 10−8. The residual of the adjoint velocity (left) – summed up for both spatial directions –, adjoint
pressure (center) and adjoint concentration equation (right) are displayed for all MWI configurations E1-E3.
In case of E2, the adjoint system converges much slower towards potentially less good sensitivity predictions,
cf. Fig. 3. A comparison of E3 and E1 suggests that considering the adjoint momentum sources within an
adjoint MWI can lead to a convergence acceleration. For the investigated force functional, the iterative process
terminates about (mv̂,E3−mv̂,E1)/mv̂,E1 · 100% = (20671− 22281)/22281 · 100% ≈ 7.2% earlier, cf. Fig. 4 left.

0 1 2 3
10−08

10−07

10−06

10−05

10−04

10−03

mouter/104 [-]

R
v̂
[-
]

E1

E2

E3

0 1 2 3
10−14

10−13

10−12

10−11

10−10

10−09

mouter/104 [-]

R
p̂
[-
]

0 1 2 3
10−06

10−05

10−04

10−03

10−02

mouter/104 [-]

R
ĉ
[-
]

Figure 4: Submerged cylinder case (ReD = 20, Fn = 0.75); Global adjoint residuals (20) over the outer
iterations of (left) the adjoint velocity – summed up for both spatial directions –, (center) adjoint pressure, and
(right) adjoint concentration equation for the investigated adjoint MWI configurations E1-E3. All simulations
terminated after an adjoint velocity residual value of Rv̂ ≤ 10−08.

6 Conclusion

This note discusses the necessity and implementation of adjoint Momentum-Weighted Interpolation (MWI)
strategies. It is outlined that a variety of adjoint momentum sources occur even for simple flows. These sources
might feature significant volatile local gradients, which could hamper the convergence. To this end, MWI
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strategies can be adopted from the primal algorithms and seem viable to improve the robustness of the adjoint
solution process. It has been demonstrated that correctly applied face reconstruction methods yield improved
sensitivity derivatives and an increased convergence speed. However, the merits of the MWI turn into the
opposite and become surprisingly detrimental if the face reconstructions are not carefully implemented.
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