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DISCRETE ANALYTIC FUNCTIONS OF
EXPONENTIAL GROWTH

BY

DORON ZEILBERGER

Abstract. Analogues of classical representation formulas for entire func-

tions of exponential type are proved in the class of discrete analytic
functions.

1. Introduction. Let Z be the group of integers, and consider the class of

functions/: Z X Z -> C for which

Lf(m,n) =f(m,n) + if(m + l,n)

(U) -f(m + l,n + l)-if(m,n+ 1) = 0

for every (m, n) E Z X Z.

Such functions, termed discrete entire, were first considered by Ferrand-

Lelong [1] and their theory was developed by Duffin [2] and others.

In this paper we shall prove theorems on discrete analytic functions of

exponential growth which are analogous to certain classical theorems about

entire functions of exponential type (Boas [3] is the standard reference for the

latter). Perhaps the main result of this paper is a proof of the discrete analogue

of the (two-sided) Paley-Wiener theorem (Theorem 3.4). Our methods, which

are completely different from the ones used in the classical theory, use duality

arguments on certain Banach spaces of analytic functions of two complex

variables. In essence the trick is to translate into discrete language a

"continuous" idea due to Ehrenpreis [4] (see the preface of the latter).

Ehrenpreis deals with the solutions of partial differential equations, whereas

present interest focuses on solutions of the simple partial difference equation

Lf = 0, based upon the Duffin operator L introduced in (1.1). Since the

discrete case is, by its nature, simpler than the continuous one, no explicit

reference need be made to Ehrenpreis [4].
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The key idea of this paper is to associate with each discrete function

/: Z x Z -* C a linear functional Tj defined on the algebra

£ = {   2      2   am/1zmwn;aWfl6C,A/,iVintegers)

of polynomials in z, z-1, w, w-1 which is given by

(M    N \ M    N
2  2 amnzmw") - 2 2^ amfl/(m,«),

and using the fact that (1.1) holds iff

7/((l + ii -zw- iw)zmwm) = 0      V(m,n) EZXZ,

we get that/(w,n) is discrete entire iff 1} annihilates (1 + iz - zw - iw)â, the

ideal.

We shall first consider, in §2, discrete analytic functions of exponential

growth defined only on the upper right quarter lattice Z+ XZ+ = {(m,n);m

> 0.« > 0).

2. Discrete analytic functions of exponential growth on the upper right quarter

lattice. Let &+ be the algebra of polynomials

f 2   2 amnzmwn;amn 6 C,M,Nintegers).

Any discrete function/: Z+ x Z+ -* C induces a linear functional 1} on fi+

given by

(M     N \        m     N

2n 2am„z"V)=   2n 2 amnf(m,n),
m=0/i=0 /       m-0 n-0

and for any linear functional Fon <2+, F = 72 where g(m,/i) = F(zwh'").

Let r, s be any positive numbers and consider the polydisc {\z\ < r)

x{\w\ < s) in C2. Let H(r,s) be the class of functions holomorphic on this

polydisc and continuous on its closure. This is a reflexive Banach space with

norm

ll«L=    sup   M*>w)\
\z\<r,\w\<s

(see Rudin [5, p. 3]).

Evidently â+ C H(r,s) and, in fact, fc?+ is dense in H(r,s). We now make

the following

Definition. A discrete function/: Z+XZ+-*Cis said to be of exponen-

tial   growth   (R,S)  if   there   exists  a  constant   C  such   that   \f(m,n)\
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DISCRETE ANALYTIC FUNCTIONS OF EXPONENTIAL GROWTH 183

< CRmS" for every (m,n) E Z+XZ+.

Later we shall need the following

Lemma 2.1. Let F: Z+ X Z+ -> C be of exponential growth (R,S) and let

r > R, s > 5; then Tp defined on &+ by (2.1), can be extended continuously to

the Banach space H(r, s).

Proof.

F{z,w) =   i    i f(m,n)z-{m+x)w-{n+x)
m=0 n=0

is defined and holomorphic in {\z\ > /?} x {|w| > 5}. Let u(z,w) E &+; then

TM = TTT^/r F(z,w)u(z,w)dzdw
(2tti )    l

for some polycontour T in the polyannulus {/? < \z\ < r) X {5 < |w| < s).

Thus

\Tj(u)\ < C(F)\\u\\oa

for some constant C(F) depending only on F (and hence on f). Since â+ is

dense in H(r,s), the lemma is proved.

The "typical" discrete function of exponential growth (R,S) is f(m,n)

= ZqWq for some complex constants z0, w0 for which |z0| = R, |w0| = 5 and

the induced linear functional T¡ is the "point evaluator" at (zQ,w0),J,z w j,

Tj(u) = u(zn,wü) = Jtz¡¡tWo)(u). If we require that zmw% be discrete analytic

then vv0 = (1 + izQ)/(z0 + i) and so the "typical" discrete analytic function

of exponential growth is

e(z;m + in) = zm((l + iz)/(z + i)f

which is of exponential growth (\z\, \(z - i)/(z + i)\).

The next theorem tells us that every discrete analytic function of exponen-

tial growth is in some sense a "linear combination" of (discrete) exponentials

e(z; m + in).

Theorem 2.2. Letf be discrete analytic in the quarter lattice Z+ XZ+ and let

it be of exponential growth (R, S ) there. Then there exists a plane measure ddz)

supported in the region

ARiS = {z E C; |*| < R,\(z - i)/(z + 01 < 5},

for which
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(2.2) f(m, n) = je(z;m + in) dp.(z).

Proof. We proceed by steps.

Step 1. Tf annihilates the principal ideal (1 + iz - zw - iw)&+.

Proof. Since f(m,n) is discrete analytic in Z+ X Z+,

7y((l + iz -zw- iw)zmw") =f(m,n) + if(m + l.n)

-f(m + l,n + 1) - if(m,n + 1)

■ Lf(m,n) = 0

for every (m,n) E Z+ XZ+.

Step 2. Tf extended to 77(r,j) as in Lemma 2.1, annihilates the ideal

(1 + iz — zw - iw)H(r,s).

Proof. This follows immediately from Step 1 and the fact that &+ is dense in

H(r,s).

Step 3. Let

Vrs = {(z, w); \z\ < r, \w\ < s, 1 + iz - zw - iw = 0};

then

(1 + iz - zw- iw)H(r,s) = {u E H(r,s);u\Vr¡ ■ 0}.

Proof. This is the famous Hubert semilocal nullstellensatz for a very special

case. Suppose u\Vr¡ = 0; then v(z, w) — u(z, w)/(l + iz — zw - iw) is holomor-

phic in {|z| < r} x {|>v| < s) ~ Vrs and locally bounded in {|z| < r) x {|w|

< s) (Gunning and Rossi [9, p. 19]). By the Riemann Removable Singularity

Theorem, v(z,w) can be extended to be holomorphic in {|z| < r) X {\w\ < s)

and is evidently continuous on its closure, i.e., v(z,w) E H(r,s). Thus

u(z,w) = (1 + iz - zw — iw)v(z,w) E (1 + iz - zw - iw)H(r,s).

The opposite inclusion is trivial.

Step 4. There exists a measure dp(z, w) on C2 supported in Vrs such that

Tj(u) = f   u(z,w)dp(z,w),       u E H(r,s).

Proof. Let (z,w) E {\z\ <r}x{\w\ < s} and denote by J^ the point

évalua tor at (z, w):

J(z,w)(u) ■ u(z>w)-

By Steps 3 and 2
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W>-°  vMg vrtS-%p)-o.

Thus the annihilator of span{J,2wy,(z,w) E Vrs) is contained in the annihi-

lator of I}. Since H(r,s) is a reflexive Banach space, it follows (cf. Taylor [6,

pp. 225-226]) that T¡ is contained in the closed linear span of {Ji2 w\ ; (z, w)

£ Vrs). Consequently there exists a sequence of atomic measures {dpn),

supported in Vrs such that for every u E H(r,s), f u(z, w) d\in(z, w) -* Tj(u). By

Helly's selection principle there is a measure dji(z, w), supported in Vrs such

that

f u(z, w) d¡in -* } u(z, w) d¡í       Vu £ H(r, s),

and we have

TÂu) = f   u(z,w)dp(z,w).

Step 5. This completes the proof of the theorem. Let dp(z) be the "projec-

tion" of dp(z, w) on C:

fc v(z) dfi(z) = f v(z) d¡i(z, w).

dp(z) is supported in

A°r<s = {z £ C; |z|< r, |(* - /)/(* + i)|< *}

for every r > R, s > 5 and, hence, in

ARS = {z EC; |*| < R,|(z - i)/(z + i)\ < 5},

and finally

f(m,n) - Tj(zmwn) = i zmw"dji(z,w)

- L '"(tït)"**2' - L *; m+•*•**

Obviously, the knowledge of {/(w,0)}*=0 and {/(0,/»)}"=0 uniquely deter-

mines the discrete analytic function f(m,n) on the whole of Z+ XZ+. The

next theorem shows that if/satisfies an appropriate growth condition then the

knowledge of/just on the m-axis, i.e., the sequence {/(/«, 0)}™=0, determines

/on all Z+XZ+.

Theorem 2.3. If fis discrete analytic on Z+ x Z+ and of exponential growth

(R,S) where R > 1, 5 < |(7? + 1)/(R - 1)|, then the values {/(w,0)}"=0

uniquely determine f.
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Proof. By drawing a diagram it is easily seen that if

S < \(R + l)/(R - 1)|,

then ARS = {z é= C; \z\ < R, \(z - i)/(z + i)\ < 5} is simply connected.

Let r > R, s > ¿ be such that

Al = {zEC;\z\<r,\(z-i)/(z + i)\<s)

is still simply connected. Then by Runge's theorem (Rudin [7, p. 258]) each

holomorphic function in A°ri can be approximated, uniformly on compact sets,

by polynomials. For every m > 0, fA zmdp(z) — f(m,0) is known and,

hence, dp. is determined on the polynomials. Since AR s is a compact subset of

AQrs, dp is uniquely determined by its restriction to the polynomials and,

hence,/is uniquely determined by {/(w,0)}", the theorem is proved.

3. Discrete entire functions of exponential growth. In this section we deal

with discrete entire functions, that is functions /: Z x Z -* C such that

L/sOonZxZ.

Let â be the algebra generated by z, z~l, w, w~l :

r M    N >.

S = [2_2 amnzmwn;M,Nintegers, flm/I G CJ;

then as already mentioned in §1, each discrete function/: Z X Z -» C induces

a linear functional 1} on

(3.1) Tf(% <Wm»'') = 2 a^/K«),

Moreover, if F is a linear functional on & and f(m,n) = T(zmw"), then

T= Tj.

It follows much as in §2 that f(m, n) is discrete entire iff T, annihilates the

ideal (1 + iz - zw - iw)&.

We state

Definition. A discrete function /: Z x Z -» C is of exponential growth

(R,S) if there exists a constant C such that

(3.2) \f(m,n)\ < CRMS^

for every (m,n) E ZxZ.

Let R > 1, S > 1 and f/ÄS = 0/7* < |z| < R} x {l/S < \w\ < S). The
class of functions continuous on URS and holomorphic in URS is a reflexive

Banach space with sup norm which we shall denote by Ñ(R,S), and instead

of Lemma (2.1) we have
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Lemma 3.1. Iff(m,n) is of exponential growth (R,S) and r > R, s > 5, then

7} defined on â by (3.1) can be extended to be a continuous linear functional on

the Banach space B(r,s).

There is an analogue to Theorem 2.2 also, which can be proved in much the

same way.

Theorem 3.2. Let f(m,n) be discrete entire and of exponential growth

(R,S) (R > 1,5 > 1). Then there exists aplane measure dp(z) supported in

Âr,s = fr e C> V* < U\ < R, 1/5 < \(z - i)/(z + 01 < 5}

such that

f(m,n) = f     e(z;m + in)d\¡.(z)
jArj¡

for every (m, n) E Z x Z.

The measure d\i(z) in the above theorem is a continuous linear functional

on the algebra of bounded holomorphic functions on the region AQrs. At this

point(') the following theorem due to Havin [8] is useful.

Theorem (Havin). Let G be an open set in C and let 0(G) be the space of

analytic functions on G. Put F = C ~ C7 and assume oo £ F. Then for every

continuous linear functional <b on ß(G ) there exists a unique locally analytic

function gç such that if gk is analytic on some Gk D F such that gk\F = g, then

¥,f) = ^Svf{z)gk(z)dz

where T is a contour in G n Gk.

Applying this theorem to our functional d\i(z) on the space of bounded

holomorphic functions on the region Är s we have

Theorem 3.3. Letf(m,n) be discrete entire and of exponential growth (R,S);

let r> R,s> 5. Put Brs = C2 — A~°rs; then there exists a unique locally

analytic function g such that if gk is analytic on some Gk D Brs such that

8k\Bn = i>'hen

1   c
(3.3) f(m,n) = ^ Jr e(z; m + in)gk(z)dz

where Y C A°rs D Gk.

(' ) The impatient reader may skip immediately to the Paley-Wiener theorem (Theorem 3.4), the

proof of which is independent of the present circle of ideas.
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The above theorem can be viewed as the discrete analogue of the represen-

tation theorem for entire functions of exponential type (cf. Boas [3, p. 74]): "If

f(z) is an entire function of exponential type, D is its conjugate indicator

diagram and C is a contour containing D in its interior, then

where F(w) is the so-called Borel transform oif(z)."

Imitating continuous usage, we may call the support of dp the "conjugate

indicator diagram" and the function g of Theorem 3.3 the "Borel transform".

Notice that the support of dp (the "conjugate indicator diagram") is not, in

general, simply connected.

We shall finish this paper with a discrete analogue to the celebrated two-

sided Paley-Wiener theorem (Boas [3, p. 103]):

Theorem (Paley-Wiener). The entire junction f(z) is of exponential type t

and belongs to L on the real axis iff

where <f>(0 E L2(-t,t).

In the following F will denote the unit circle {\z\ = 1}.

Theorem 3.4. Let f(m, n) be discrete entire and of exponential growth (R,S)

where S < \(R + l)/(R — 1)| and suppose it belongs to L on the discrete real

line 2m=-oo l/(ffl«0)l < °°; tnen tnere exists a function <¡> G Û(T) whose

support is a compact subset of T ~ {/,— /} = {z E C; \z\ = l,z ¥= ±i) such

that

1   C
f(m,n) = 2¿jT<t>(z)e(z;m + in) dz

-¿/>W(L£t>

Proof. By Theorem 3.2, f(m, n) = fe(z;m + in) dp(z) for some measure dp

supported in ARS = {z E C; l/R < |*| < R, 1/5 < \(z - i)/(z + i)\ < S).

Since S < \(R + l)/(R — 1)| the complement of ÄRS is connected (ÄRS

consists of two simply connected components, one containing z = 1 and the

other z ■» — 1).
Let r > R, s > S be sufficiently close to R, S (respectively) to make the

complement of A°rs = {z E C; l/r < \z\ < r, l/s < \(z - i)/(z + i)\< s)

connected. Then by Runge's theorem (Rudin [7, p. 258]) every bounded
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holomorphic function on Ars can be approximated uniformly on compact sets

by polynomials. It follows that the values / zmdn(z), m = 0, ±1, ±2, ...,

determine dp. Also for every polynomial u(z) — 25M omzm,

fu(z)dp(z) - E amf(m,Q)

Since 2-00 I/O"» 0)1 < °°» dp can be extended to be a linear functional on

Û (T n ^i/}^), and by Riesz' representation theorem there exists a function

<b(z) £ L (TRS) (where TRS = T n A~RS), such that for every bounded holo-

morphic function u(z) on Â?r>s (which automatically then belongs to L2(TRS)):

f     u(z)dii(z)=±-f   <b(z)u(z)dz.
JJ*.s ¿TJTRS

In particular,

1   /*
f(m, n) = jItJt   e^z'm + in)$(z) dz.

RJS

TRS = T n ÄRS is a compact subset of T ~ {/, -/} and, evidently,

feW)- 2/(m,o)rim'
-co

vanishes, a.e., outside 7¿s.
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