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DISCRETE AND CONFORMING SMOOTH DE RHAM

COMPLEXES IN THREE DIMENSIONS

MICHAEL NEILAN

Abstract. Conforming discrete de Rham complexes consisting of finite ele-

ment spaces with extra smoothness are constructed. In particular, we develop
H2, H1(curl), H1 and L2 conforming finite element spaces and show that an
exactness property is satisfied. These results naturally lead to discretizations
for Stokes and Brinkman type problems as well as conforming approximations
to fourth order curl problems. In addition, we reduce the question of stabil-
ity of the three-dimensional Scott-Vogelius finite element to a simply stated
conjecture.

1. Introduction

The construction of finite element spaces that form a discrete de Rham complex
is now a standard tool in the study of mixed finite element methods [1,2,11,12,21].
We recall that the de Rham complex in three dimensions with minimal smoothness
measured in L2 is given by

(1.1) R−→H1(Ω)
grad

−→ H(curl ; Ω)
curl
−→ H(div ; Ω)

div
−→ L2(Ω) −→ 0,

whereH(curl ; Ω) (resp., H(div ; Ω)) is the space of square-integrable vector-valued
functions whose curls (resp., divergence) are in L2(Ω) (resp., L2(Ω)). The precise
definition of the notation used throughout the paper is given in the subsequent
section. The statement that (1.1) is a complex simply means that the composition
of two consecutive maps is zero. If the domain Ω is contractible and Lipschitz
then the complex (1.1) is exact, that is, the range of each map is the kernel of the
succeeding map. It is well known that many popular H1, H(curl), H(div) and
L2 conforming finite element spaces form a discrete sub-complex of (1.1) [1, 2, 21].
Similar to the continuous setting, an exactness property of the sub-complex is
satisfied.

In this paper, we develop and study discrete de Rham sub-complexes with ad-
ditional smoothness. In particular, we derive conforming finite element spaces that
mirror the complex [7, 26]

(1.2) R−−→H2(Ω)
grad

−−→ H1(curl ; Ω)
curl
−−→ H1(Ω)

div
−−→ L2(Ω) −−→ 0.

This sequence is also exact (cf. Lemma 2.4 below). Our goal is to construct con-
forming finite element spaces Σh ⊂ H2(Ω), Υh ⊂ H1(curl ; Ω), Vh ⊂ H1(Ω) and
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Qh ⊂ L2(Ω) with respect to a simplicial triangulation such that

R
⊂

−−→ Σh

grad

−−→ Υh

curl
−−→ Vh

div
−−→ Qh −−→ 0(1.3)

is an exact sub-complex of (1.2).
The construction of such finite element spaces naturally leads to discretizations

for velocity-pressure formulations of Stokes and Brinkman-type problems [19,20,28],
where Vh and Qh are taken to be the finite element spaces for the velocity and pres-
sure, respectively. The exactness property ensures that the divergence operator is
surjective from Vh to Qh. Along with a stability estimate, this result shows that
the inf-sup/LBB condition is satisfied, and therefore the finite element pair Vh×Qh

forms a stable pair [3, 6]. In addition, the diagram (1.3) implies divVh ⊆ Qh and
therefore the resulting discretization produces exactly divergence-free velocity ap-
proximations. As far as we are aware, this is the first stable and conforming finite
element pair consisting of polynomial basis functions that yield divergence-free ve-
locities on general shape-regular triangulations in three dimensions (see [30,31,33]
for partial results on specific uniform triangulations, and the recent paper [17] where
rational functions are used to obtain exactly divergence-free approximations). We
remark that conforming finite spaces of the complex (1.1) with extra smoothness
have been constructed in [26] leading to non-conforming approximations of the
spaces appearing in (1.2). Their construction leads to non-conforming approxima-
tions for Stokes and Brinkman-type problems. Divergence-free velocity approxima-
tions have also been proposed by [9, 10] and [13] using discontinuous Galerkin and
isogeometric methods, respectively.

The spaces Υh can be utilized to compute conforming finite element approxi-
mations of magnetohydrodynamic equations with fourth-order terms [25,34]. Non-
conforming finite element spaces of H1(curl; Ω) have been proposed in [26, 33],
and a Ciarlet-type mixed finite element for fourth order curl problems was stud-
ied in [25]. Our construction appears to be the first appearance of H1(curl ; Ω)-
conforming finite elements on tetrahedral meshes in the literature.

This work is motivated by the recent results in [15], where Falk and the author
constructed analogous two-dimensional finite element spaces based on the complex

R
⊂

−−→ H2(Ω)
curl
−−→ H1(Ω)

div
−−→ L2(Ω) −−→ 0.(1.4)

Here, the generalized Argyris space of degree k + 1 (k ≥ 4) is taken to be the
H2(Ω)-conforming finite element space appearing in the sequence (1.4). This con-
struction naturally leads to conforming and divergence-free Stokes elements with
extra smoothness at vertices of the triangulation. In particular, the velocity and
pressure elements constructed in [15] are C1 and C0, respectively, at vertices of the
triangulation.

Similarly, we use the three-dimensional analogue of the Argyris element intro-
duced by Zeńı̌sek and Zhang [29,32] as our H2(Ω)-conforming element. This space
consists of globally C1 piecewise polynomials of degree k + 2 (with k ≥ 7) that
are C4 at vertices and C2 at edges of the triangulation (cf. Section 3). The corre-
sponding spaces Υh, Vh and Qh consist of piecewise polynomials of degree k + 1,
k and k − 1 (k ≥ 6), respectively. In addition to the global regularity properties
Υh ⊂ H1(curl ; Ω), Vh ⊂ H1(Ω) and Qh ⊂ L2(Ω), the spaces also have enhanced
regularity at sub-simplexes of the triangulation. For example, functions in Vh are
C2 at vertices and C1 at edges of the triangulation (but only C0 globally). Due
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to their relative high polynomial degree and complexity, the practical importance
of these elements may be limited. Nonetheless, we believe that the framework and
theory may shed new light into developing simpler methods (cf. Section 7).

The rest of the paper is organized as follows. In Section 2 we set the notation
and state some preliminary results. In Section 3 we precisely state the definition
of the finite element spaces. We then show that the discrete complex (1.3) is exact
in Section 4 by a direct construction of Fortin operators. In Section 5, we derive
the approximation properties of the finite element spaces. In Section 6 we discuss
the construction of the analogous spaces with homogeneous boundary conditions
and its relation with the three-dimensional Scott-Vogelius element. Finally, we
summarize our results and discuss possible extensions in Section 7.

2. Preliminaries

2.1. Notation. Throughout the paper we assume that the domain Ω is contractible
with Lipschitz boundary ∂Ω. For a set D ⊂ Rd, we denote by Hm(D) the Hilbert
space consisting of square integrable functions whose distributional derivatives up
to order m are also square integrable. In the case m = 0, we set L2(D) = H0(D).
The space Hm

0 (D) consists of all functions in Hm(D) whose traces vanish up to
order m−1, and the space of functions in Hm(D) which have zero mean is denoted

by H̊m(D). The corresponding vector-valued spaces are given by Hm(D), L2(D),
and Hm

0 (D). We also define (with d = 3)

H(curl ;D) =
{
v ∈ L2(D) : curl v ∈ L2(D)

}
,

H0(curl ;D) =
{
v ∈ H(curl ;D) : v × nD|∂D = 0

}
,

H1(curl ;D) =
{
v ∈ H1(D) : curl v ∈ H1(D)

}
,

H1
0 (curl ;D) =

{
v ∈ H1(curl ;D) ∩H1

0 (D) : v × nD|∂D = 0
}
,

H(div ;D) =
{
v ∈ L2(D) : div v ∈ L2(D)

}
,

H0(div ;D) =
{
v ∈ H(div ;D) : v · nD|∂D = 0

}
.

Here, nD is the outward unit normal of the boundary ∂D. When the context
is clear we shall simply write n. The space of polynomials of degree less than
or equal to k on D is given by Pk(D), and the analogous vector-valued space is
Pk(D) := [Pk(D)]d.

Let Th be a shape-regular triangulation of the domain Ω [4,8] with hT = diam(T )
for all T ∈ Th and h = maxT∈Th

hT . We denote by Fh the set of faces in Th, and
by FB

h the set of boundary faces; that is, those faces satisfying F ⊂ ∂Ω. The set of
edges in the triangulation Th is denoted by Eh, and the set of vertices is denoted by
Vh. We define hF = diam(F ) and he = diam(e) for all F ∈ Fh and e ∈ Eh. For a
given tetrahedron T ∈ Th, let Fh(T ), Eh(T ) and Vh(T ) be, respectively, the set of
four faces, six edges, and four vertices of T . We also set ω(T ) =

∑
T ′∈Th∂T∩∂T ′ �=∅ T

′

to denote the “patch” of the element T .
Given T ∈ Th, we denote by {λF }F∈Fh(T ) the four barycentric coordinates of

T labeled such that λF |F = 0 for all F ∈ Fh(T ). The quartic volume bubble
function on the simplex T is defined as bT :=

∏
F∈Fh(T ) λF , and the cubic face

bubble function associated to the face F is defined as bF :=
∏

G∈Fh(T )\{F} bG. It
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is then straight-forward to verify the identity

grad bT |F = (gradλF )bF = −|gradλF |nF bF .(2.1)

Finally, the letter C will denote a generic positive, h-independent constant that
may take on different values at different occurrences in the paper.

2.2. Preliminary Results. With the notation set, we now state some preliminary
results that will be used extensively in the analysis below. First, we state some
standard trace inequalities and inverse estimates on a simplex.

Lemma 2.1. Let T ∈ Th be a given simplex in the triangulation.

• For any w ∈ H1(T ), there holds∑
F∈Fh(T )

‖w‖2L2(F ) ≤ C
(
h−1
T ‖w‖2L2(T ) + hT ‖w‖2H1(T )

)
.(2.2)

• If w ∈ H2(T ), there holds∑
e∈Eh(T )

‖w‖2L2(e) ≤ C
(
h−2
T ‖w‖2L2(T ) + ‖w‖2H1(T ) + h2

T ‖w‖2H2(T )

)
.(2.3)

Proof. The first trace inequality (2.2) can be found in [4, 8]. To obtain the second
inequality, we observe that∑

e∈Eh(T )

‖v‖2L2(e) ≤ C
∑

e∈Eh(T )

∑
F∈Fh(T )

e⊂∂F

(
h−1
F ‖v‖2L2(F ) + hF ‖v‖2H1(F )

)
≤ C

∑
F∈Fh(T )

(
h−1
T ‖v‖2L2(F ) + hT ‖v‖2H1(F )

)
.

Combining this last estimate with (2.2), we obtain (2.3). �

Lemma 2.2 ([4,8]). For any w ∈ Pk(T ) and integers m,n with m ≥ n, there holds

‖w‖Hm(T ) ≤ Chn−m
T ‖w‖Hn(T ),(2.4)

where the constant C > 0 depends on the shape regularity of T , m, n, and k, but is
independent of hT .

Lemma 2.3 ([24]). For an integer k, let Pk denote the Lagrange finite element
space consisting of globally continuous piecewise polynomials of degree ≤ k. Then
there exists an interpolation operator Ih : H1(Ω) → Pk such that if w ∈ Hm(Ω)
with 1 ≤ m ≤ k + 1,

‖w − Ihw‖Hs(T ) ≤ Chm−s
T ‖w‖Hm(ω(T )) 0 ≤ s ≤ m, ∀T ∈ Th.(2.5)

Lemma 2.4. The complex (1.2) is exact.

Proof. We first recall that (1.1) is an exact complex. Suppose z ∈ H1(curl ; Ω) ⊂
H(curl ; Ω) satisfies curl z = 0. Then by (1.1) there exists p ∈ H1(Ω) with z =
grad p. Since z ∈ H1(Ω), we have grad p ∈ H1(Ω) and therefore p ∈ H2(Ω).
Now if v ∈ H1(Ω) satisfies div v = 0, then by [16, Corollary 3.3] there exists
w ∈ H2(Ω) ⊂ H1(curl ; Ω) with v = curlw. Finally, for any q ∈ L2(Ω) there
exists r ∈ H1(Ω) such that div r = q [16]. It then follows that (1.2) is exact. �
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Next, we state an analogous result incorporating homogeneous boundary condi-
tions. The proof can be found in [16, 26].

Lemma 2.5. If D is convex, then the complex

(2.6) 0 −−→ H2
0 (D)

grad

−−→ H1
0 (curl ;D)

curl
−→ H1

0 (D)
div
−−→ L̊2(D) −−→ 0

is exact.

3. The finite element spaces

In this section, we define the finite element spaces Σh⊂H2(Ω),Υh⊂H1(curl ; Ω),
Vh ⊂ H1(Ω) and Qh ⊂ L2(Ω) appearing in the sub-complex (1.3). Following Cia-
rlet’s convention [8], the definition of a finite space consists of three components:
the triangulation Th, the local space of shape-functions, and the set of degrees of
freedom (often abbreviated DOFs).

H2-conforming finite element spaces. We take Σh to be the H2-conforming
finite element space first proposed by A. Žeńı̌sek [29] and later generalized by
S. Zhang [32]. This space consists of globally C1 piecewise polynomials of degree
k + 2 with k ≥ 7 that are C4 at the vertices and C2 at edges of the triangulation.
A unisolvent set of degrees of freedom of this space is given locally by (cf. [32])

Dαz(a) ∀a ∈ Vh(T ), ∀|α| ≤ 4, (140 DOFs),(3.1a) ∫
e

zσ ∀σ ∈ Pk−8(e), ∀e ∈ Eh(T ), (6(k − 7) DOFs),(3.1b) ∫
e

∂z

∂ne±

σ ∀σ ∈ Pk−7(e), ∀e ∈ Eh(T ), (12(k − 6) DOFs),(3.1c) ∫
e

∂2z

∂ne±∂ne±

σ ∀σ ∈ Pk−6(e), ∀e ∈ Eh(T ), (18(k − 5) DOFs),(3.1d) ∫
F

zσ ∀σ ∈ Pk−7(F ), ∀F ∈ Fh(T ), (2(k − 5)(k − 6) DOFs),(3.1e) ∫
F

∂z

∂nF
σ ∀σ ∈ Pk−5(F ), ∀F ∈ Fh(T ), (2(k − 3)(k − 4) DOFs),(3.1f) ∫

T

zσ ∀σ ∈ Pk−6(T ), (
1

6
(k − 3)(k − 4)(k − 5) DOFs).(3.1g)

Here, ne± are two unit orthogonal normal vectors that are orthogonal to the edge
e. In the case k = 7, the set of DOFs listed in (3.1b) is omitted.

H1-conforming (velocity) finite element spaces. The H1-conforming finite
element space, denoted by Vh, consists of vector-valued, globally continuous piece-
wise polynomials of degree k ≥ 6 that are C2 on the vertices and C1 on the edges
of the triangulation. A unisolvent set of degrees of freedom of this space is given
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Figure 1. H1(Ω) finite element (left) and L2(Ω) finite element
(right) degrees of freedom with k = 6.

by (cf. Figure 1)

Dαv(a) ∀|α| ≤ 2, ∀a ∈ Vh(T ), (120 DOFs),(3.2a) ∫
e

v · κ ∀κ ∈ Pk−6(e), ∀e ∈ Eh(T ), (18(k − 5) DOFs),(3.2b) ∫
e

∂v

∂ne±

· σ ∀σ ∈ Pk−5(e), ∀e ∈ Eh(T ), (36(k − 4) DOFs),(3.2c) ∫
F

v ·ψ ∀ψ ∈ Pk−6(F ), ∀F ∈ Fh(T ), (6(k − 4)(k − 5) DOFs),(3.2d) ∫
T

v ·ϕ ∀ϕ ∈ Pk−4(T ), (
1

2
(k − 1)(k − 2)(k − 3) DOFs).(3.2e)

It is simple to see that these degrees of freedom uniquely determine a function
in Vh on each tetrehedron T ∈ Th. We sketch the main argument.

First note that there are 1
2 (k + 3)(k + 2)(k + 1) degrees of freedom given in

(3.2), which is exactly the dimension of Pk(T ). Therefore to show unisolvency, it
suffices to show that if v ∈ Pk(T ) vanishes at the degrees of freedom (3.2), then
v is identically zero. In this case, it is clear that v and Dv vanish on all edges.
Therefore, we may write v|F = b2F pF for some pF ∈ Pk−6(T ) for all F ∈ Fh(T ).
It then follows from the fourth set of DOFs, that v|∂T = 0 (this also shows the
conforming property Vh ⊂ H1(Ω)). Therefore v = bTp for some p ∈ Pk−4(T ).
By the last set of DOFs, we deduce v ≡ 0. Thus, the DOFs listed in (3.2) form a
unisolvent set.

Remark 3.1. The degrees of freedom (3.2) with k = 5 still form a unisolvent set for
the space P5(T ). However, we require the degrees of freedom (3.2d) in the proof of
Lemma 4.5 below; hence, the restriction k ≥ 6.

L2-conforming (pressure) finite element spaces. Next, we set Qh to be the
space of piecewise polynomials of degree k − 1 that are C1 on the vertices and C0

on the edges of the triangulation. It is easy to see that such functions are uniquely
determined by the following values:

Dαq(a) ∀|α| ≤ 1, ∀a ∈ Vh(T ),

∫
e

qξ ∀ξ ∈ Pk−5(e), ∀e ∈ Eh(T ),(3.3a) ∫
T

qζ ∀ζ ∈ Pk−1(T ) such that ζ|e = 0, ∀e ∈ Eh(T ).(3.3b)
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H1(curl ; Ω)-conforming finite element spaces. Finally, we consider the con-
struction of the H1(curl ; Ω)-conforming finite element space Υh in the sequence
(1.3). We can infer properties of Υh from those of the already constructed spaces.
For example, since we wish the inclusion gradΣh ⊂ Υh to hold, we expect Υh to
consist of functions that are C3 at vertices and C1 at edges of the triangulation.
Moreover, if curlΥh ⊂ Vh then the curls of functions in Υh will be C1 on edges
of the triangulation.

The number of degrees of freedom for each vertex, edge and face can also be
deduced by (1.3) and a counting argument. The degrees of freedom of Σh given in
(3.1) show that the (global) dimension of Σh is 35V+(6k−34)E+(k2−9k+21)F+
1
6 (k − 3)(k − 4)(k − 5)T, where V, E, F and T denote, respectively, the number of
vertices, edges, faces and tetrahedra in the triangulation. Likewise the degrees of
freedom (3.2) and (3.3) give us dimVh = 30V + (9k − 39)E + 3

2 (k − 4)(k − 5)F +
1
2 (k− 1)(k− 2)(k− 3)T, and dimQh = 4V+(k− 4)E+

(
1
6k

3 + 1
2k

2 − 17
3 k+8

)
T. In

order for the sequence (1.3) to be exact, the global dimension of Υh must equal:

dimΥh = dimVh + dimΣh − dimQh − 1

= 61V+ (14k − 69)E+
(5
2
k2 − 45

2
k + 51

)
F+

(1
2
k3 − 11

2
k2 + 19k − 21

)
T− 1.

Using the relation V+ F− T− E = 1 (cf. [18, Theorem 16.14]), we find

dimΥh = 60V+ (14k − 68)E+
5

2
(k − 4)(k − 5)F+

1

2
(k − 2)(k − 5)(k − 4)T.

Furthermore, we see that the dimension of the local space, denoted by Υ(T ), will
be

dimΥ(T ) = 60(4) + (14k − 68)(6) +
5

2
(k − 4)(k − 5)(4) +

1

2
(k − 2)(k − 5)(k − 4)

=
1

2
(k + 4)(k + 3)(k + 2) = dimPk+1(T ).

We now precisely state the H1(curl ; Ω)-conforming finite element space Υh.
This space consists of vector-valued piecewise polynomials of degree k + 1 (k ≥ 6)
that are C3 at vertices of the triangulation, C1 at edges in the triangulation and
whose curls are C1 at edges in the triangulation. The first set of degrees of freedom
which determine a function z ∈ Υh is given locally by

Dαz(a) ∀|α| ≤ 3, ∀a ∈ Vh(T ), (240 DOFs),(3.4a) ∫
e

z · σ ∀σ ∈ Pk−7(e), ∀e ∈ Eh(T ), (18(k − 6) DOFs),(3.4b) ∫
e

∂z

∂ne±

· μ ∀μ ∈ Pk−6(e), ∀e ∈ Eh(T ), (36(k − 5) DOFs),(3.4c) ∫
F

(z · nF )ϕ ∀ϕ ∈ Pk−5(F ), ∀F ∈ Fh(T ), (2(k − 3)(k − 4) DOFs),(3.4d) ∫
F

(z × nF ) · ρ ∀ρ ∈ Dk−6(F ),(3.4e)

∀F ∈ Fh(T ), (4(k − 4)(k − 6) DOFs),
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F

(curl z × nF ) ·ψ ∀ψ ∈ Pk−6(F ),(3.4f)

∀F ∈ Fh(T ), (4(k − 4)(k − 5) DOFs),∫
T

z · ζ ∀ζ ∈ Dk−5(T ), (
1

2
(k − 2)(k − 4)(k − 5) DOFs),(3.4g)

where Dm(T ) = Pm−1(T ) + xPm−1(T ) is the (local) Nedelec space [22]. In the
case k = 6, the degrees of freedom (3.4b) and (3.4e) are omitted.

The description of the remaining DOFs require additional notation. Let te be
a unit vector, tangent to the edge e, and let ne± be unit vectors chosen such that
{te,ne±} is an orthonormal basis of R3. We assume, without loss of generality,
that the unitary matrix Be := (te ne+ ne−) ∈ R3×3 satisfies det(Be) = 1. The
additional degrees of freedom are then given by∫

e

∂(curl z)

∂ne+

· κ ∀κ ∈ Pk−5(e), ∀e ∈ Eh(T ), (18(k − 4) DOFs),(3.4h) ∫
e

(I3×3 − ne−n
t
e−)

∂(curl z)

∂ne−

· σ ∀σ ∈ Pk−5(e),(3.4i)

∀e ∈ Eh(T ), (12(k − 4) DOFs).

Notice that the number of degrees of freedom listed in (3.4) is exactly the dimen-
sion of Pk+1(T ). The standard unisolvency proof then proceeds by showing that
if z vanishes at the values listed in (3.4), then z ≡ 0. We break up this argument
into several steps. First, we establish the following result.

Lemma 3.2. Suppose z ∈ Pk+1(T ) vanishes at the degrees of freedom (3.4a)–
(3.4c),(3.4h)–(3.4i). Then z, Dz and D(curl z) vanish on all edges of T .

Proof. The assertion z|e = 0 and Dz|e = 0 trivially follows from (3.4a)–(3.4c). We
also see from (3.4h)–(3.4i) that ∂(curl z)/∂ne+ = 0, te · ∂(curl z)/∂ne− = 0 and
ne+ · ∂(curl z)/∂ne− = 0 on all edges. Furthermore, by Lemma A.2 we have

ne− · ∂(curl z)
∂ne−

= −te ·
∂(curl z)

∂te
− ne+ · ∂(curl z)

∂ne+

= 0.

Therefore, D(curl z)|e = 0. �

Lemma 3.3. Suppose z ∈ Pk+1(T ) vanishes at the degrees of freedom (3.4a)–
(3.4f),(3.4h)–(3.4i) restricted to a single face F ⊂ ∂T . Then z = curl z = 0 on
F .

Remark 3.4. This result establishes the conforming property Υh ⊂ H1(curl ; Ω).

Proof. By Lemma 3.2, z, Dz and D(curl z) all vanish on ∂F . It then follows
from (3.4d) that z · n|F = 0. Furthermore, we may write curl z|F = b2Fp for some
p ∈ Pk−6(F ). Therefore by (3.4f), curl z × n|F = 0.

Next, Stokes Theorem gives∫
F

(
zF · curlF q − (curlFzF )q

)
=

∫
∂F

z · tq = 0.(3.5)

Consequently, by (3.4e) we have∫
F

(curlFzF )q = 0 ∀q ∈ Pk−6(F ).(3.6)
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With the correct orientation, we have curlFzF = (curl z) · nF = b2Fp · nF . Since
p ∈ Pk−6(F ), we deduce from (3.6) that p ·nF = 0 and therefore (curl z) ·nF = 0.
Hence, curl z vanishes on ∂T . Moreover, curlFzF = 0 implies zF = grad Fφ for
some φ ∈ Pk+2(F ). Since z and Dz vanish on ∂F , we may assume that φ vanishes
up to second order on ∂F . Consequently, φ = b3F r for some r ∈ Pk−7(F ). We then
have

0 =

∫
F

zF · q = −
∫
F

b3F rdivFq ∀q ∈ Dk−6(F ).

Since the image of Dk−6(F ) under the divergence operator is Pk−7(F ) [22], we
deduce that r ≡ 0 and therefore zF = 0. Since z · n vanishes on F , z|F = 0. �

Theorem 3.5. The degrees of freedom (3.4) are unisolvent on Υh.

Proof. Suppose z ∈ Pk+1(T ) vanishes at the values listed in (3.4). It suffices to
show z ≡ 0.

By Lemma 3.3 we have z ∈ H1
0 (curl ;T ) and∫

T

z · ρ = 0 ∀ρ ∈ Dk−5(T ).(3.7)

Denote by T̂ the reference tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and

(0, 0, 1). Let FT : T̂ → T with FT (x̂) = Ax̂ + b (A ∈ R3×3, b ∈ R3) be an
affine transformation, mapping the reference tetrahedron onto T . For given z ∈
Pk+1(T ) ∩ H1

0 (curl ;T ), define the transformation z(x) = A−T ẑ(x̂) with x =

FT (x̂). We then have curl z = A(ĉurl ẑ)/ det(A), where ĉurl denotes the curl
operator with respect to the x̂-variables; see [21] for details. Consequently, ẑ ∈
Pk+1(T̂ ) ∩H1

0 (curl ; T̂ ) and by (3.7),∫
T̂

(ĉurl ẑ) · ρ̂ =

∫
T

(curl z) · ρ =

∫
T

z · (curl ρ) = 0 ∀ρ ∈ Pk−5(T ),(3.8)

where ρ̂ ∈ Pk−5(T̂ ) satisfies ρ̂(x̂) = ρ(x) with x = FT (x̂). Next, since ĉurl ẑ × n̂

and ẑ both vanish on ∂T̂ , then ĉurl ẑ vanishes on the boundary of T̂ as well.

Therefore we may write ĉurl ẑ = bT̂ q̂ for some q̂ ∈ Pk−4(T̂ ). Restricting the
identity

0 = d̂iv (bT̂ q̂) = bT̂ d̂iv q̂ + ĝrad bT̂ · q̂

to an arbitrary face F̂ ⊂ ∂T̂ , we deduce ĝrad bT̂ · q̂|F̂ = 0. By (2.1), ĝrad bT̂ =

bF̂ ĝradλF̂ on F , and gradλF̂ is parallel to the normal nF̂ . Since the face bubble

bF is strictly positive on F we have q̂ · n̂ = 0 on ∂T̂ . Therefore we may write

q̂j = x̂jψ̂j for some ψ̂ ∈ Pk−5(T̂ ). Setting ρ = ψ in (3.8) we deduce that q̂ ≡ 0,
and therefore curl z ≡ 0.

Since z is curl-free, we may write z = grad p for some p ∈ Pk+2(T ) ∩ H2
0 (T ).

By (3.7) and integrating by parts we obtain

0 =

∫
T

z · ρ = −
∫
T

p(divρ) = 0 ∀ρ ∈ Dk−5(T ).

Since the divergence operator is surjective from Dk−5(T ) to Pk−6(T ) [22], there
holds

∫
T
pr = 0 for all r ∈ Pk−6(T ). Since p ∈ Pk+2(T )∩H2

0 (T ), this implies p ≡ 0,
and therefore z ≡ 0. �
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4. The discrete de Rham complex

In light of the definitions of the finite element spaces, the inclusions gradΣh ⊂
Υh, curlΥh ⊂ Vh and divVh ⊂ Qh hold. Therefore the sequence (1.3) is a
complex. This section is devoted to showing that the complex is exact. In addition,
we derive some useful stability properties.

4.1. A local smooth de Rham complex. We first focus our attention to a local
de Rham complex consisting of polynomial spaces. For an element T ∈ Th and
positive integer k, define the spaces Σk+2,0(T ) = Pk+2(T ) ∩H2

0 (Ω), Υk+1,0(T ) :=
Pk+1(T ) ∩H1

0 (curl ;T ), Vk,0 := Pk(T ) ∩H1
0 (T ) and

Qk−1,0(T ) :=
{
q ∈ Pk−1(T ) : q|e = 0,

∫
T

q = 0
}
.(4.1)

In this section, we consider the local sequence given by

(4.2) 0 −−→ Σk+2,0(T )
grad

−−→ Υk+1,0(T )
curl
−−→ Vk,0(T )

div
−−→ Qk−1,0(T ) −−→ 0.

It is clear from the definitions of the spaces that (4.2) is a complex. In fact we show
that the complex (4.2) is exact.

Using the definitions of the spacesΥk+1,0(T ) and Σk+2,0(T ), it is easy to see that
if z ∈ Υk+1,0(T ) satisfies curl z = 0, then z = gradw for some w ∈ Σk+2,0(T ).
Thus, to prove that (4.2) is exact we must show that (i) if v ∈ Vk,0(T ) is solenoidal,
then v = curl z for some z ∈ Υk+1,0(T ) and (ii) the divergence operator div :
Vk,0(T ) → Qk−1,0(T ) is surjective. We address the first issue in the next lemma.

Lemma 4.1. Suppose v ∈ Vk,0(T ) satisfies div v = 0. Then there exists a function
z ∈ Υk+1,0(T ) such that v = curl z.

Proof. By Lemma 2.5 there exists w ∈ H1
0 (curl ;T ) satisfying curlw = v. Let

z ∈ Pk+1(T ) be the unique function that vanishes at the the degrees of freedom
(3.4a)–(3.4f), (3.4h)–(3.4i) and satisfies∫

T

z · ρ =

∫
T

w · ρ ∀ρ ∈ Dk−5(T ).

By Lemma 3.3, there holds z ∈ Υk+1,0(T ). Moreover, integration by parts gives us∫
T

curl z · ρ =

∫
T

z · curl ρ =

∫
T

w · curl ρ =

∫
T

curlw · ρ =

∫
T

v · ρ(4.3)

for all ρ ∈ Pk−5(T ).
Since curl z vanishes on ∂T , there exists q ∈ Pk−4(T ) such that curl z = bTq.

By Theorem 3.5, the function q satisfies q · n = 0 on ∂T . By similar arguments,
there holds v = bTp with p ∈ Pk−4(T ) and p · n|∂T = 0. Making a change of

variables to the reference tetrahedron, we have q̂j = x̂jψ̂j and p̂j = x̂jϕ̂j for some

ψ̂, ϕ̂ ∈ Pk−5(T̂ ). By (4.3) we have ψ̂ = ϕ̂, and therefore curl z = v. �

Theorem 4.2. The complex (4.2) is exact.

Proof. In light of the previous discussion, it suffices to show div : Vk,0(T ) →
Qk−1,0(T ) is surjective to complete the proof. This is achieved by a simple counting
argument. We assume that k ≥ 4, as the result is trivial in the case k ≤ 3.
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First we note that

dim (curlΥk+1,0(T )) = dimΥk+1,0(T )− dim
(
gradΣk+2,0(T )

)
= dimΥk+1,0(T )− dimPk−6(T ).

Therefore by Lemma 4.1 we have

dim (divVk,0) = dimVk,0 − dim (curlΥk+1,0)

= dimPk−4(T ) + dimPk−6(T )− dimΥk+1,0(T ).

By Lemma 3.3 and Theorem 3.5, we have dimΥk+1,0(T ) ≤ dimDk−5(T ). There-
fore,

dim (divVk,0) ≥ dimPk−4(T ) + dimPk−6(T )− dimDk−5(T )

=
1

2
(k − 1)(k − 2)(k − 3) +

1

6
(k − 3)(k − 4)(k − 5)− 1

2
(k − 2)(k − 4)(k − 5)

=
1

6
k3 +

1

2
k2 − 17

3
k + 7.

Next, it is easy to see that 6k − 7 linearly independent constraints are imposed in
the space Qk−1,0(T ). Thus,

dimQk−1,0(T ) = dimPk−1(T )− 6k + 7 =
1

6
k3 +

1

2
k2 − 17

3
k + 7.

Therefore, dim (divVk,0) ≥ dimQk−1,0(T ). But since divVk,0 ⊆ Qk−1,0(T ), we
must have divVk,0 = Qk−1,0(T ), i.e., div : Vk,0(T ) → Qk−1,0(T ) is surjective. �

Remark 4.3. For the two-dimensional version of Theorem 4.2, see [23, Proposition
3.1] and [27, Lemma 2.5].

Remark 4.4. Combining Theorem 4.2 with a simple scaling argument, we conclude
that for any q ∈ Qk−1,0(T ), there exists v ∈ Vk,0(T ) such that div v = q and
‖v‖H1(T ) ≤ C‖q‖L2(T ).

4.2. The global smooth discrete de Rham complex. We now turn our at-
tention to the (global) discrete complex given in (1.3). Again, it is clear that if
k ≥ 7 and z ∈ Υh satisfies curl z = 0, then there exists w ∈ Σh, unique up to
a constant, such that z = gradw. The next lemma shows that the divergence
operator div : Vh → Qh is surjective.

Lemma 4.5. For every q ∈ Qh, there exists v ∈ Vh with div v = q and ‖v‖H1(Ω) ≤
C‖q‖L2(Ω).

Proof. Given q ∈ Qh, let w ∈ H1(Ω) satisfy divw = q and ‖w‖H1(Ω) ≤ C‖q‖L2(Ω)

[16]. We also let Ihw ∈ Pk denote the Scott-Zhang interpolant of w, where Pk =
[Pk]

3 is the vector-valued Lagrange finite element space of degree k (cf. Lemma 2.3).
We then prescribe v1 = (v1,1, v1,2, v1,3)

t ∈ Vh by the following criterion:

(i) v1(a) = Ihw(a),
Dα(∂v1,i)

∂xi
(a) =

1

3
Dαq(a),

Dα(∂v1,i)

∂xj
(a) = 0 (i �= j),

for all multi-indices |α| ≤ 1 and for all vertices a ∈ Vh;
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(ii)

∫
e

v1 · κ =

∫
e

Ihw · κ for all κ ∈ Pk−6(e) and edges e ∈ Eh.

We note that ∂v1

∂te
on each edge is uniquely determined by conditions (i)–(ii);

(iii)

∫
e

∂v1

∂ne+

· ne+σ =
1

2

∫
e

(
q − ∂v1

∂te
· te

)
σ,∫

e

∂v1

∂ne−

· ne−σ =
1

2

∫
e

(
q − ∂v1

∂te
· te

)
σ,∫

e

∂v1

∂ne+

· ne−σ =
∂v1

∂ne−

· ne+σ =

∫
e

∂v1

∂ne±

· teσ = 0,

for all σ ∈ Pk−5(e) and edges e ∈ Eh;

(iv)

∫
F

v1 ·ψ =

∫
F

w ·ψ

for all ψ ∈ Pk−6(F ) and faces F ∈ Fh;

(v)

∫
T

v1 · φ =

∫
T

Ihw · φ, for all φ ∈ Pk−4(T ) and simplexes T ∈ Th.

Clearly we have Dα(div v1)(a) = Dαq(a) at all of the vertices and for all multi-
indices |α| ≤ 1. Furthermore, by (ii) and Appendix A,∫

e

div v1σ =

∫
e

( ∂v1

∂ne+

· ne+ +
∂v1

∂ne−

· ne− +
∂v1

∂te
· te

)
σ =

∫
e

qσ

for all σ ∈ Pk−5(e). We then find div v1 = q on all edges of the triangulation.
Moreover, we have∫

T

(div v1) =

∫
∂T

v1 · n =

∫
∂T

w · n =

∫
T

divw =

∫
T

q.

It then follows that (q − div v1)|T ∈ Qk−1,0(T ), ∀T ∈ Th. By Theorem 4.2 and
Remark 4.4, there exists v2,T ∈ Pk(T )∩H1

0 (T ) such that div v2,T |T = q−div v1|T
and ‖v2,T ‖H1(T ) ≤ C

(
‖q‖L2(T ) + ‖v1‖H1(T )

)
. Define v2 ∈ H1

0 (Ω) by v|T = v2,T |T
for all T ∈ Th. Since v2,T ∈ Pk(T )∩H1

0 (T ), we have D
αv2,T (a) = 0 for all vertices

of T and for all multi-indices with |α| ≤ 2. Moreover, Dv2,T |e = 0 on all edges of T .
It then follows that v2 ∈ Vh. Setting v = v1 + v2 ∈ Vh we have div v = div v1 +
div v2 = q and ‖v‖H1(Ω) ≤ ‖v1‖H1(Ω) + ‖v2‖H1(Ω) ≤ C

(
‖q‖L2(Ω) + ‖v1‖H1(Ω)

)
.

To complete the proof we show the estimate ‖v1‖H1(Ω) ≤ C‖q‖L2(Ω) by a scaling
argument. Since Ihw|T ∈ Pk(T ) for each simplex T ∈ Th, and since the degrees of
freedom (3.2) form a unisolvent set over Vh, we have by (i)–(v) with z := v1−Ihw,

‖z‖2H1(T ) ≈
∑

a∈Vh(T )

{
hT |z(a)|2 + h3

T |Dz(a)|2 + h5
T |D2z(a)|2

}(4.4)

+
∑

e∈Eh(T )

{∣∣∣ sup
κ∈Pk−6(e)

‖κ‖
L2(e)

=1

∫
e

z · κ
∣∣∣2 + h2

e

∣∣∣ sup
σ∈Pk−5(e)

‖σ‖
L2(e)

=1

∫
e

∂z

∂n±
· σ

∣∣∣2
}

+
∑

F∈Fh(T )

h−1
F

∣∣∣ sup
r∈Pk−6(F )

‖r‖
L2(F )

=1

∫
F

z · r
∣∣∣2 + h−2

T

∣∣∣ sup
ϕ∈Pk−4(T )

‖ϕ‖
L2(T )

=1

∫
T

z ·ϕ
∣∣∣2
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=
∑

a∈Vh(T )

{
h3
T |Dz(a)|2 + h5

T |D2z(a)|2
}
+

∑
e∈Eh(T )

h2
e

∣∣∣ sup
σ∈Pk−5(e)

‖σ‖
L2(e)

=1

∫
e

∂z

∂ne±
· σ

∣∣∣2

+
∑

F∈Fh(T )

h−1
F

∣∣∣ sup
r∈Pk−6(F )

‖r‖
L2(e)

=1

∫
F

(w − Ihw) · r
∣∣∣2.

By Lemmas 2.3 and 2.1, we have∑
F∈Fh(T )

h−1
F

∣∣∣ sup
r∈Pk−6(F )

‖r‖L2(e)=1

∫
F

(w − Ihw) · r
∣∣∣2(4.5)

≤ Ch−1
T ‖w − Ihw‖2L2(∂T ) ≤ C

(
h−2
T ‖w − Ihw‖2L2(T ) + ‖w − Ihw‖2H1(T )

)
≤ C‖w‖2H1(ω(T )).

By (i), scaling, and Lemma 2.3, we obtain

∑
a∈Vh(T )

{
h3
T |Dz(a)|2 + h5

T |D2z(a)|2
}(4.6)

≤ C
∑

a∈Vh(T )

{
h3
T |DIhw(a)|2 + h5

T |D2Ihw(a)|2 + h3
T |q(a)|2 + h5

T |∇q(a)|2
}

≤ C
(
‖Ihw‖2H1(T ) + ‖q‖2L2(T )

)
≤ C

(
‖w‖2H1(ω(T )) + ‖q‖2L2(T )

)
.

Next, by (i)–(ii) and integration by parts, we deduce that∫
e

∂v

∂te
· teσ =

∫
e

∂Ihw

∂te
· teσ

for all σ ∈ Pk−5(e). Therefore by (iii), Lemmas 2.1 and 2.3, and an inverse estimate,∑
e∈Eh(T )

h2
e

∣∣∣ sup
σ∈Pk−5(e)

‖σ‖L2(e)=1

∫
e

∂z

∂ne±

· σ
∣∣∣2 ≤

∑
e∈Eh(T )

h2
e

(
‖DIhw‖2L2(e) + ‖q‖2L2(e)

)
(4.7)

≤ C
(
‖Ihw‖2H1(T ) + ‖q‖2L2(T )

)
≤ C

(
‖w‖2H1(ω(T )) + ‖q‖2L2(T )

)
.

Applying the estimates (4.5)–(4.7) to (4.4), we obtain ‖v1 − Ihw‖H1(T ) ≤
C
(
‖w‖H1(ω(T ))+‖q‖L2(T )

)
. It then follows from the triangle inequality and Lemma

2.3 that ‖v1‖H1(T ) ≤ C
(
‖w‖H1(ω(T )) + ‖q‖L2(T )

)
. Summing over T ∈ Th and re-

calling ‖w‖H1(Ω) ≤ C‖q‖L2(Ω), we obtain ‖v1‖H1(Ω) ≤ C‖q‖L2(Ω), and therefore
‖v‖H1(Ω) ≤ C‖q‖L2(Ω). �
Corollary 4.6. The inf-sup (LBB) condition

sup
v∈Vh\{0}

∫
Ω
(div v)q

‖v‖H1(Ω)
≥ C‖q‖L2(Ω) ∀q ∈ Qh(4.8)

holds for a constant C > 0 independent of h.

Corollary 4.7. The image of Vh under the divergence operator is Qh; that is,
divVh = Qh.

Proof. Since div v is C1 at vertices and C0 across edges for v ∈ Vh, we have
divVh ⊆ Qh. On the other hand, Lemma 4.5 gives us the reverse relation Qh ⊆
divVh. The result now follows. �
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Theorem 4.8. The complex (1.3) is exact provided k ≥ 7.

Proof. We show that if v ∈ Vh satisfies div v = 0 then v = curl z for some z ∈ Υh.
Combining this result with Corollary 4.7 proves the theorem.

By (3.4) and Theorem 3.5 we can construct z1 ∈ Υh such that z1 vanishes at
the degrees of freedom (3.4b), (3.4d), and (3.4g) and

(i) z1(a) = 0 and Dαcurl z1(a) = Dαv(a) for all multi-indices |α| ≤ 2, and
vertices a ∈ Vh;

(ii) Dαcurl z1 = Dαv on all edges e ∈ Eh and multi-indices |α| ≤ 1;

(iii)

∫
F

(curl z1 × nF ) · ψ =

∫
F

(v × nF ) · ψ for all ψ ∈ Pk−6(F ) and faces

F ∈ Fh.

Since the value of z1 on all edges is uniquely determined by conditions (i)–(iii), we
may further use the degrees of freedom (3.4e) to impose the condition

(iv)

∫
F

(z1 ×nF ) · curlF q =

∫
∂F

(z1 · t)q+
∫
F

(v ·nF )q for all q ∈ Pk−6(F ) and

F ∈ Fh.

Since Dαcurl z1 = Dαv on ∂F , condition (iii) implies curl z1 × nF = v × nF

on all faces F ∈ Fh. By the identity (3.5) and (iv), we have

∫
F

(curlFz1,F )q =∫
F

(v · nF )q for all q ∈ Pk−6(F ) and F ∈ Fh. Since curlFz1,F = (curl z1) · n and

Dα(curl z1 − v)|F ∈ Pk(F ) vanishes on ∂F (|α| ≤ 1), we have (curl z1) ·n = v ·n
on each F ∈ Fh.

Therefore (v − curl z1)|T ∈ Vk,0(T ) for all T ∈ Th. By Lemma 4.1 there exists
z2,T ∈ Υk+1,0(T ) such that curl z2,T = (v − curl z1)|T . Let z2 be defined by
z2|T = z2,T ∀T ∈ Th. Note that z2,T and curl z2,T vanish up to first order on
the edges of T . Write z2,T = bTp for some p ∈ Pk−5(T ). Restricting the identity
curl z2,T = grad bT ×p+bTcurl p to the boundary ∂T and using the identity (2.1),
we have p × n|∂T = 0. Therefore p vanishes at the vertices of T , and hence z2,T
vanishes up to third order at the vertices. It then follows that z2 ∈ Υh. Setting
z := z1 + z2, we have z ∈ Υh and curl z = v. �

Remark 4.9. The H2-conforming finite element space Σh is only defined for k ≥ 7,
thus leading to the same restriction in Theorem 4.8. However, the finite element
spaces Υh, Vh and Qh are well defined with k = 6, and the exactness property of
these spaces are preserved in this case.

5. Approximation properties of the finite element spaces

Since the degrees of freedom (3.2) involve high-order derivatives, the associated
canonical projections are not well defined on H1(Ω). Similarly, the degrees of free-
dom (3.1), (3.4), and (3.3) are not well defined on H2(Ω), H1(curl ; Ω) and L2

respectively. Here, we construct an interpolation operator using an averaging tech-
nique which is well defined on the appropriate spaces. For brevity we only construct
an interpolation operator onto Vh bounded in H1. Interpolation operators for the
other spaces can be constructed by similar arguments.

To define an interpolation operator on the finite element space Vh, we first
derive an auxiliary enriching operator [5]. Let ω(a) (resp., ω(e)) denote the set of
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tetrahedrons which have a (resp., e) as a vertex (resp., edge). We then define the
average of a piecewise continuous function w on vertices and edges as

wa =
1

|Ta|
∑

T∈ω(a)

wT (a), we =
1

|Te|
∑

T∈ω(e)

wT |e

where wT := w|T and |Ta| and |Te| denote, respectively, the number of tetrahedrons
in ω(a) and ω(e).

Let Pk denote the globally continuous vector-valued Lagrange finite element
space of degree k. We then define Eh : Pk → Vh by the following set of conditions:

DαEhw(a) = (Dαw)a ∀|α| ≤ 2, ∀a ∈ Vh,(5.1a) ∫
e

Ehw · κ =

∫
e

w · κ ∀κ ∈ Pk−6(e), ∀e ∈ Eh,(5.1b) ∫
e

∂(Ehw)

∂ne±

· σ =

∫
e

(
∂w

∂ne±

)
e

· σ ∀σ ∈ Pk−5(e), ∀e ∈ Eh,(5.1c) ∫
F

Ehw ·ψ =

∫
F

w ·ψ ∀ψ ∈ Pk−6(F ), ∀F ∈ Fh,(5.1d) ∫
T

Ehw ·ϕ =

∫
T

w ·ϕ ∀ϕ ∈ Pk−4(T ), ∀T ∈ Th.(5.1e)

By scaling and since w is globally continuous, we have

‖Ehw −w‖2L2(T ) ≈
∑

a∈Vh(T )

{
h5
T |∇Ehw(a)−∇wT (a)|2 + h7

T |D2Ehw(a)−D2wT (a)|2
}(5.2)

+
∑

e∈Eh(T )

h4
e

∣∣∣ sup
σ∈Pk−5(e)

‖σ‖
L2(e)

=1

∫
e

∂(Ehw −wT )

∂ne±
· σ

∣∣∣2.

Given T, T ′ ∈ ω(a), there exists a subset {Ti}Ni=0 ⊂ ω(a) with T0 = T , TN = T ′,
and Ti and Ti+1 share a common face Fi := ∂Ti ∩ ∂Ti+1. It then follows from the
triangle inequality and standard inverse estimates that

|∇wT ′(a)−∇wT (a)|2(5.3)

≤ C
N−1∑
i=0

|∇wTi+1
(a)−∇wTi

(a)|2 ≤ C
N−1∑
i=0

‖∇wTi+1
−∇wTi

‖2L∞(Fi)

≤ Ch−2
T

N−1∑
i=0

‖∇wTi+1
−∇wTi

‖2L2(Fi)
= Ch−2

T

N−1∑
i=0

∥∥ [[∇w]]
∥∥2
L2(Fi)

,

where the jump of ∇w across Fi is defined as [[∇w]] |Fi
= ∇wTi+1

∣∣∣
Fi

− ∇wTi

∣∣∣
Fi

.

Combining the estimates (5.1a) and (5.3) we obtain

|∇Ehw(a)−∇wT (a)|2 =
1

|Ta|
∑

T ′∈ω(a)

|∇wT ′(a)−∇wT (a)|2(5.4)

≤ Ch−2
T

∑
T ′,T ′′∈ω(a)

T ′∩T ′′=F �=∅

∥∥ [[∇w]]
∥∥2
L2(F )

.
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By similar arguments, we also have

|D2Ehw(a)−D2wT (a)|2 ≤ Ch−2
T

∑
T ′,T ′′∈ω(a)

T ′∩T ′′=F �=∅

∥∥ [[D2w
]] ∥∥2

L2(F )
.(5.5)

Next, for T, T ′ ∈ ω(e), there exists {Tj}Nj=0 ⊂ ω(e) with T0 = T, TM = T ′, and
Tj and Tj+1 share a common face Fj := ∂Tj ∩ ∂Tj+1. Using similar arguments as
those found above, we find

∂(wT ′ −wT )

∂ne±

∣∣∣
e
≤ C

M−1∑
j=0

‖∇(wTj+1
−wTj

)‖L∞(Fj) ≤ Ch−1
T

M−1∑
j=0

∥∥ [[∇w]]
∥∥
L2(Fi)

.

(5.6)

By (5.1b) and (5.6), we obtain∣∣∣ sup
σ∈Pk−5(e)

‖σ‖L2(e)=1

∫
e

∂(Ehw −wT )

∂ne±

· σ
∣∣∣2(5.7)

≤
∥∥∂(Ehw −wT )/∂ne±

∥∥2
L2(e)

≤ he

∥∥∂(Ehw −wT )/∂ne±

∥∥2
L∞(e)

≤ h−1
T

∑
T ′,T ′′∈ω(e)

T ′∩T ′′=F �=∅

∥∥ [[∇w]]
∥∥2
L2(F )

.

Applying the estimates (5.4), (5.5), and (5.7) to (5.2) and noting
⋃

e∈Eh(T ) ω(e) ⊂⋃
a∈Vh(T ) ω(a), we obtain

‖Ehw −w‖2L2(T )

≤ C
∑

a∈Vh(T )

∑
T ′,T ′′∈ω(a)

T ′∩T ′′=F �=∅

(
h3
T

∥∥ [[∇w]]
∥∥2
L2(F )

+ h5
T

∥∥ [[D2w
]] ∥∥2

L2(F )

)
.

Next, given v ∈ Hm(Ω) (1 ≤ m ≤ k+1), let Ihv be the Scott-Zhang interpolant
defined in Lemma 2.3. By (2.5), (2.2) and scaling, we have

∑
F⊂∂T

(
h3
T

∥∥ [[∇(Ihv)]]
∥∥2
L2(F )

+ h5
T

∥∥ [[D2(Ihv)
]] ∥∥2

L2(F )

)
≤ Ch2m

T ‖v‖2Hm(ω(T )).

(5.8)

Finally, we define Πh : H1(Ω) → Vh by Πh = EhIh. Then by the triangle
inequality we have (s = 0, 1),

‖v −Πhv‖Hs(T ) = ‖v −EhIhv‖Hs(T )

≤ ‖v − Ihv‖Hs(T ) + Ch−s
T ‖Ihv −EhIhv‖L2(T )

≤ ‖v − Ihv‖Hs(T ) + Ch−s
T

( ∑
a∈Vh(T )

∑
T ′,T ′′∈ω(a)

T ′∩T ′′=F �=∅

(
h3
T

∥∥ [[∇(Ihv)]]
∥∥2
L2(F )

+ h5
T

∥∥ [[D2(Ihv)
]] ∥∥2

L2(F )

))1/2

.
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Combining this identity with (5.8) and Lemma 2.3, we obtain the main result of
this section.

Lemma 5.1. There exists an operator Πh : H1(Ω) → Vh such that for any v ∈
Hm(Ω) with 1 ≤ m ≤ k + 1, there holds (0 ≤ s ≤ 1)

‖v −Πhv‖Hs(T ) ≤ Chm−s
T ‖v‖Hm(ω(T )).

6. Imposing homogeneous boundary conditions and the relation with

the Scott-Vogelius element

Constructing the analogous exact finite element spaces with homogeneous bound-
ary conditions is a non-trivial issue. For example, we cannot simply take Vh,0 :=

Vh ∩ H1
0 (Ω) and Qh,0 := Qh ∩ L̊2(Ω) to be the last two spaces in the discrete

version of (1.2). To see this, note that Dαv(a) = 0 for all multi-indices |α| ≤ 2 and
all corner vertices of the domain Ω. Therefore, div v = 0 and its gradient vanish
at these points. Since functions in Qh,0 do not necessarily vanish at the corners,
the divergence operator div : Vh,0 → Qh,0 cannot be surjective and therefore the
inf-sup condition (4.8) is lost. Similar problems occur on the boundary ∂Ω where
two non-coplanar faces intersect.

A similar situation arises in the construction of the two-dimensional Stokes ele-
ments proposed in [15]. Here, following a smooth de Rham complex, we use Hermite
finite elements to construct stable Stokes elements with pointwise mass conserva-
tion. To overcome the difficulty at the corners of the domain, we relax the C1

continuity condition of the Hermite elements at these points. A mesh condition is
also assumed, namely, that no triangle in the mesh has more than one boundary
edge (equivalently, no corner vertices in the mesh are singular). The stability ar-
gument of the Scott-Vogelius element [23] Pk/P

dc
k−1 (k ≥ 4) is then used locally

at these points to show stability of the finite element pair (see [15, Lemma 3.3]
for details). Here, Pdc

k−1 is the space of piecewise polynomials with no continuity
constraints and with degree not exceeding k − 1, and we recall Pk is the space of
globally continuous polynomials with degree ≤ k.

It is likely that a similar argument can used in the three-dimensional setting, but
unfortunately the stability analysis of the three-dimensional Scott-Vogelius pair
Pk/P

dc
k−1 has been an open problem for nearly 30 years (for partial results see

[30, 33]). Here, we reduce the stability of the finite element pair Pk/P
dc
k−1 to the

following conjecture.

Conjecture 6.1. Under certain geometric restrictions of the triangulation, for
every q ∈ Pdc

k−1, there exits v ∈ Pk such that Dαdiv v(a) = Dαq(a) at all vertices
a ∈ Vh and for all multi-indices |α| ≤ 1. Moreover, ‖v‖H1(Ω) ≤ C‖q‖L2(Ω).

Remark 6.2. A two-dimensional version of Conjecture 6.1 was shown to be true in
[23, 27] provided the triangulation does not contain any singular vertices.

To precisely state our result, we require a definition.

Definition 6.3. An edge e is called singular if the faces in the triangulation meeting
at the edge fall on exactly two planes.

Remark 6.4. The definition of a singular edge is a natural higher dimensional gen-
eralization of the definition of a singular vertex defined in [23].
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Proposition 6.5. Suppose that Conjecture 6.1 holds and the triangulation does
not contain any singular edges. Then given any q ∈ Pdc

k−1 with k ≥ 6, there exists
v ∈ Pk such that div v = q and ‖v‖H1(Ω) ≤ C‖q‖L2(Ω). Consequently, the inf-sup
condition

sup
v∈Pk\{0}

∫
Ω
(div v)q

‖v‖H1(Ω)
≥ C‖q‖L2(Ω) ∀q ∈ Pdc

k−1

holds for a constant C > 0 independent of h.

To prove Proposition 6.5 we first require a technical result.

Lemma 6.6. Suppose that the triangulation does not contain any singular edges.
Then given q ∈ Pdc

k−1, there exists v ∈ Pk such that div v equals q at (k−4) distinct
points on each edge and ‖v‖H1(Ω) ≤ C‖q‖L2(Ω). Moreover, Dαdiv v(x) = 0 at all
vertices and for all multi-indices |α| ≤ 1.

Proof. The proof follows the argument given in [27, Lemma 2.6].
First we observe that the degrees of freedom (3.2) can be used to construct finite

element spaces that are continuous but not C1 across edges of the triangulation.
This is achieved by replacing the derivative DOFs (3.2c) by tangential DOFs in a
local fashion.

Let T+ and T− be two tetraheda with a common face F̄ = ∂T+ ∩ ∂T−, and
let ē be an edge of F̄ . The construction of v with the desired properties will be
associated with the edge ē. For an edge e of ∂T+ ∩ ∂T−, we denote by F±

e the
two faces such that e = ∂F+

e ∩ ∂F−
e , F±

e �= F̄ , F+
e ⊂ ∂T+ and F−

e ⊂ ∂T−. Let te
denote a unit vector parallel to the edge e, and let s±e denote unit tangent vectors
of the faces F±

e with s±e · te = 0. We also set τe to be a unit tangent of F̄ with
τe · te = 0.

Similarly, for an edge e of ∂T+∪∂T−\F̄ , we denote by F
(1)
e and F

(2)
e the two faces

such that e = ∂F
(1)
e ∩ ∂F

(2)
e . Note that either F

(1)
e , F

(2)
e ⊂ T+ or F

(1)
e , F

(2)
e ⊂ T−.

Let te denote a unit vector parallel to the edge e, and let s
(i)
e denote the unit

tangents of the faces F
(i)
e (i = 1, 2) with s

(i)
e · te = 0.

We then construct v to be a piecewise polynomial of degree k that is continuous
on T+ ∪ T− such that

(i) Dαv(a) = 0 for all |α| ≤ 2 and a ∈ Vh(T
+) ∪ Vh(T

−);

(ii)
∫
e
v · κ = 0 for all κ ∈ Pk−6(e) and e ∈ Eh(T

+) ∪ Eh(T
−);

(iii)
∫
F
v · r = 0 for all r ∈ Pk−6(F ) and F ∈ Fh(T

+) ∪ Fh(T
−);

(iv) ∂v/∂s
(i)
e vanishes at (k− 4) distinct points on each edge of ∂T+ ∪ ∂T−\F̄

(i = 1, 2);

(v) ∂v±/∂s±e vanishes at (k − 4) distinct points on each edge of F̄ , where
v± := v|T± ;

(vi) ∂v/∂τe vanishes at (k − 4) distinct points on each edge e ⊂ F̄ with e �= ē;

(vii)
∫
T± v ·ϕ = 0 for all ϕ ∈ Pk−4(T

±).

It remains to specify ∂v/∂τē at (k − 4) distinct points on the edge ē to uniquely
define v. We note at this point that∇v±|e = 0 for all edges e �= ē and v|∂(T+∪T−) =
0.
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For three linearly independent vectors α, β, and γ, we have the identity (cf.
Lemma A.1)

div v =
(
(β × γ) · ∂v

∂α
+ (γ ×α) · ∂v

∂β
+ (α× β) · ∂v

∂γ

)/
(α · (β × γ)).(6.1)

Since
∂v+

∂sē+
= 0 and

∂v

∂tē
= 0 on edge ē, we have by (6.1) with α = sē+ , β = tē,

and γ = τē,

div v+|ē = (sē+ × tē) ·
∂v

∂τē

/
(sē+ · (tē × τē)).

Similarly, since
∂v−

∂sē−

∣∣
ē
= 0, we have

div v−|ē = (sē− × tē) ·
∂v

∂τē

/
(sē− · (tē × τē))

It is easy to see that the vectors (sē+ × tē) and (sē− × tē) are linearly independent
except in the case sē+ = −sē− . Since we can specify ∂v/∂τē at (k − 4) distinct
points on the edge ē, we can prescribe two sets of values div v at (k − 4) points on
edge ē: one set on T+ and one set on T−.

We can then apply this result to an internal edge e. Let {Ti}Ni=1 denote the
set of simplices that have e as an edge and labeled such that Ti and Ti+1 share a
common face. Since e does not lie on two pairs of co-planar faces, we can assume
that the simplices are labeled such that T1 and TN do not have faces that have
e as an edge and are parallel to each other. We also let {ai}k−4

i=1 denote (k − 4)
distinct points on e. Then by the procedure just described, we may prescribe

div v|T1
(ai) = div v|T2

(ai) = c
(1)
i (1 ≤ i ≤ k− 4) for some constants c

(1)
i . Similarly,

we can prescribe div v|T2
(ai) and div vT2

(ai) in the same manner. Continuing this
procedure for all simplices, and since the edge e does not lie on two pairs of co-planar

faces, we have div v|Tj
(ai) = c

(j−1)
i + c

(j)
i for 1 ≤ j ≤ N and 1 ≤ i ≤ k − 4. Thus,

we may choose the constants c
(j)
i such that div v|Tj

(ai) = q|Tj
(ai) and div v = 0 on

all the other edges. A similar construction can be achieved for edges that touch or
lie on the boundary. By summing over all edges and using scaling arguments, we
obtain the desired result. �

Proof of Proposition 6.5. Let v1 ∈ Pk satisfy Dαdiv v1(a) = Dαq(a) at all vertices
of the triangulation. Applying Lemma 6.6 with q replaced by (q − div v1), there
exists v2 ∈ Pk such that Dαdiv v2(a) = 0 at all vertices and |α| ≤ 1, and div v2 =
(q − div v1) at (k − 4) distinct points on each edge. Defining v̄ := v1 + v2 we see
that Dαdiv v̄(a) = Dαq(a) for all |α| ≤ 1 and div v̄ = q at (k− 4) distinct points of
each edge. Therefore div v̄ = q on all edges of the triangulation. Moreover, Lemma
6.6 and Conjecture 6.1 give us ‖v̄‖H1(Ω) ≤ C‖q‖L2(Ω).

Next, let w ∈ H1(Ω) satisfy divw = q and ‖w‖H1(Ω) ≤ C‖q‖L2(Ω). Since
Vh ⊂ Pk, we can construct v3 ∈ Pk such that v3 vanishes at the degrees of
freedom (3.2a)–(3.2c), (3.2e) and

∫
F
v3 · r =

∫
F
(w− v̄) · r for all r ∈ Pk−6(F ) and

F ∈ Fh. Then v3 and its gradient vanish on all of the edges in the triangulation.
Furthermore, Green’s formula gives us

∫
T
div (v̄+v3) =

∫
T
q for all T ∈ Th. It then

follows that
(
q − div (v̄ + v3)

)
|T ∈ Q0(T ) (cf. (4.1)), and therefore by Theorem 4.2

and Remark 4.4 there exists v4,T ∈ Pk(T ) such that div v4,T |T = (q−div (v̄+v3))|T .
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Defining v = v1 + v2 + v3 + v4 with v4|T = v4,T |T , we have div v = q. Moreover,
by scaling we have ‖v‖H1(Ω) ≤ C‖q‖L2(Ω). �

7. Conclusions

In this paper, we have constructed conforming finite element spaces in three
dimensions with high regularity. By making use of the degrees of freedom and by
using an exact local de Rham complex, we have showed that the global discrete
complex (1.3) is exact and desirable stability estimates are satisfied.

We end this paper by discussing possible extensions. First, a natural idea is
to construct the sequence (1.3) starting with a different H2-conforming finite ele-
ment space. For example, one could take Σh to be the quintic composite element
documented in [18]. This element is most likely related to the P3/P

dc
2 Stokes pair

on barycenter refined triangulations studied in [30]. However, the corresponding
H1(curl ; Ω) conforming element in the sequence (1.3) appears to be missing in the
literature.

Alternatively, we may look for other smooth de Rham complexes which may lead
to simpler finite element spaces. Following the ideas in [15], one may consider the
complex with additional regularity

R −−→ H2(Ω)
grad

−−→ H1(curl ; Ω)
curl
−−→ H1(div ; Ω)

div
−−→ H1(Ω) −−→ 0,

where H1(div ; Ω) consists of functions v ∈ H1(Ω) such that div v ∈ H1(Ω). Sur-
prisingly, the two-dimensional H1(div ; Ω) Stokes elements in [15] have less degrees
of freedom than the corresponding H1 elements. We expect a similar result in the
three-dimensional setting. We may also consider the de Rham complex considered
in [13, 14]

R −−→ H1(Ω)
grad

−−→ Φ(Ω)
curl
−−→ H1(Ω)

div
−−→ L2(Ω) −−→ 0,

where Φ(Ω) :=
{
v ∈ L2(Ω), curl v ∈ H1(Ω)

}
. Since this sequence involves

larger spaces, the corresponding finite elements may have smaller degree and less
complexity.

Appendix A. Some calculus identities

Lemma A.1. For any any linearly independent vectors α,β,γ ∈ R3, there holds

grad v =
(
(β × γ)

∂v

∂α
+ (γ ×α)

∂v

∂β
+ (α× β)

∂v

∂γ

)
/(α · (β × γ)).(A.1)

Consequently,

div v =
(
(β × γ) · ∂v

∂α
+ (γ ×α) · ∂v

∂β
+ (α× β) · ∂v

∂γ

)
/(α · (β × γ)).

Proof. Write grad v = a
∂v

∂α
+ b

∂v

∂β
+ c

∂v

∂γ
for some unknown constants a, b and

c. We may then write

grad v = (aαt + bβt + cγt)grad v =⇒ aαt + bβt + cγt = I3×3.

Multiplying the last expression by (α × β), we obtain c(γ · (α × β)) = α × β.
Therefore c = α × β/(γ · (α × β)). Similarly, b = α × γ/(β · (α × γ)), and
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a = β×γ/(α · (β×γ)). The identity (A.1) then follows from the identity A · (B×
C) = B · (C ×A) = C · (A×B). �

Lemma A.2. For any orthonormal vectors α,β,γ ∈ R3, there holds

α · ∂(curl v)
∂α

+ β · ∂(curl v)
∂β

+ γ · ∂(curl v)
∂γ

= 0.

Proof. Since the vectors are orthonormal, we have β × γ = ±α. Therefore by the
vector triple product formula, we find γ × α = ±β and α × β = ±γ. By Lemma
A.1, with v replaced by curl v, we have

α · ∂(curl v)
∂α

+ β · ∂(curl v)
∂β

+ γ · ∂(curl v)
∂γ

=
(
(β × γ) · ∂(curl v)

∂α
+ (γ ×α) · ∂(curl v)

∂β

+ (α× β) · ∂(curl v)
∂γ

)
/(α · (β × γ))

= div curl v = 0. �
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