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A DARxO GR_aFFX nel suo 70 ° compleanno 

S u m m a r y .  - The equations o/motion o/ an a//ine body are derived (also ~or the case o/variabte 
mass) evidencing in particular the r~le of the generalized moment of momentum o/ internal 
]orces. Successively, local dynamic and thermodynamic equations o] balance/or a continuous 
body with an amine mivrostructure are proposed, also/or the case when such a body is one o/ 
the constituents in  a mixture. 

l .  - I n t r o d u c t i o n .  

I n  this pape r  our a im is to m o t i v a t e  the  theory  of s t ruc tured  media  which we 

have  used elsewhere [1] b y  showing t h a t  t h a t  theory  covers the  impor t an t  special 
case of bodies which are only capable  of homogeneous  microdeformat ions  [2], i .e . ,  as 

we "prefer to say, of bodies endowed with  an amine structure.  

I t  has long been  recognized [2] [3] t h a t  on the  basis of this model  it is possible 
to develop a mechanica l  theory  which is comple te ly  equivalent  to the  theory  of an 
or iented m e d i u m  in the  sense of ERICKSEN and TZT:ESDELL [4], i .e.,  a medium a t  
each point  of which there  are three  l inearly independent  deformable  vectors  (the 
directors). A fea ture  of our present  theory  is t h a t  the  mass  of the  uni t  cell is not  
necessari ly conserved;  as a consequence the  equat ion of evolut ion of mieroiner t ia  

is no longer a k inemat ica l  ident i ty ;  i t  involves,  ra ther ,  the  assumed mechan ism of 
mass  t ransfer  be tween  neighbouring cells. I n  addit ion,  the  global balance equations 
for m o m e n t u m ,  m o m e n t  of m o m e n t u m  and  energy are affected. 

We  accept  a general  tensoria l  fo rm of the  ba lance  of m o m e n t  of m o m e n t u m ;  
while the  skew pa r t  of this equat ion  reduces to ordinary  s t a t emen t s  of ba lance  of 
m o m e n t  of m o m e n t u m  for s t ruc tured  continua,  the  symmet r i c  pa r t  requires inter- 
pre ta t ion.  Generalizing an  idea pu t  forward  by  T o v P I ~  for a hypere las t ic  cont inum 
wi th  directors [3], we show t h a t  this equat ion is the  evolut ion equat ion for micro- 

inertia.  We  r e m a r k  also t h a t  in some re levan t  special theories of s t ruc tured  media,  
such as Er icksen ' s  theory  of anisotropic fluids [5] and  the  directors theory  of shells 
as rendered  e.g. by  N~Gn~I  [6], equations of ba lance  for the  so-called (~ director  mo-  
m e n t u m  >> appea r  which can be shown to correspond exac t ly  to this equat ion.  

(*) Entrata in Redazione il 3 dicembre 1975. 
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I n  a companion pape r  we will show how significant special cases (e.g.~ Cosserat,  

Grioli, Mindlin and  Tiersten~s theories) are ob ta ined  f rom our theory  b y  introducing 
sui table  k inemat ica l  constraints  on the  affine s t ruc ture  [15]. 

I. - Mechanics  o f  Afl lne Systems o f  Mass -Points .  

2. - Kinematics.  

Le t  ][ be an index set. We  call a sys tem ((P(~), m(~))Im(O> O, /e  I} of mass-points  

amine if its mot ion  has the fo rm 

(2.1) y(~)= x(t) ~ G(t)(Y(°--X) ; 

in (2.1), x(-)  and  G( . )  are defined on a (perhaps infinite) t ime  in terval  ~ ,  and  G( . )  

has values which are invert ible tensors so t ha t  

(2.2) Y(~) = X ~- G-l(y  (~)- x) . 

We denote  an affine sys tem of mass-points  by  S~ and introduce the tensor  W de- 

fined b y  

(2.3) W =  (~G -1 (1). 

Using (2.2) and  (2.3) we deduce f rom (2.1) the  following identi t ies:  

(2.4) y(~) = ~ + W(y + -  x) = (~ - -  Wx) + IVy+; 

(2.5) y + = ~ +  ( W +  W 2 ) ( y + - - x )  = ( ~ - - ( W +  W~)x)+ ( W +  W2)y + .  

W e  also assume tha t  

(2.6) ~ m(~)(Y(~)--X) =- 0 (~) , 

which means  t h a t  we ident i fy  X (x) wi th  the  posit ion vector  wi th  respect  to a fixed 

origin of the center  of mass  of S in the  reference (current) p lacement .  

Le t  

m ~-~ ~ m (i) 

(1) We mark derivation with respect to time by a dot. In [1] we called (( wryness tensor )> 
the transpose of the tensor W defined here. Because this name is already in use for a dif- 
ferent object, we suggest here for W the designation (~ wrench ~>. Affine motions are consi- 
dered by ERINGEN [7] in the context of his theory of micromorphie continua. 

(~) Here and henceforth we drop the summation limits. 
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be the  mass of S, and  let 

m I  = ~ m(°(y ( 0 -  x) ~) ( y ( O  x) 

be  the  Euler  inertia tensor of S wi th  respect  to the  center  of mass. We  then  have  
for the  momentum q of S per  uni t  mass  

mq = ~ m (0)'(0, 

and for the  moment of momentum s of S per  uni t  mass  with respect  to the center  of mass  

m8 = ~ ( y " ) -  x) × m ( ° ~  (~) = ~ m")(y (~)- x) × W(y (~)- ~). 

We introduce also a generalized moment of momentum, i.e. the tensor  S defined as 
follows: 

m S  = ~ m(~)(y (~)- x) ~) W(y  ( i ) -  x) , 

so t h a t  s is the  axial  vector  associated with the  skew-symmetr ic  pa r t  of S. 
The above  definitions have  the  following easy consequences, which will be re levant  

for our developments :  

(2.7) q = & ,  S -~  I W  z,  I = 2 s y m S ( a ) .  

We  also record here for fu ture  use a formula  which delivers the  general ized m o m e n t  
of m o m e n t u m  with respect  to the  origin: 

(2.8) so = ~ ® ~ + s .  

3 .  - D y n a m i c s .  

Given a system of forces F = ((P(~),f(~))IieI} for S, we consider the  dynamica l  
p rob lem of de termining the  mot ion  of S under  the  act ion of F, i.e. the  prob lem of 
de termining the  pair  (x(-) ,  G(-) ) .  

W e  in te rpre t  f ( o  as the total force act ing on the  mass-point  (p(O m(~)). By taking 
the  zeroth  and  the  first m o m e n t  with respect  to the origin of the set of Iqewtonian 

(3) We write sym A (skwA) for the symmetric (skew-symmetric) part  of the second- 
order tensor A. We also write tr for the trace functional, and dev A for the deviatoric part 
of A: devA = A - - ( l t r A )  1. 
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e q u a t i o n s  

(3.1) m(O~(~) = f ( 0 ,  i e I,  

t h a t  ru les  t h e  m o t i o n  of S, we  d e d u c e  two  (4) g loba l  c onse que nc e s :  

A f i rs t  one,  E u l e r ' s  f i rs t  law,  i n v o l v i n g  

r = 5 f  <'), 
t h e  resultant force of F: 

(3.2) 5m(~)y(° = 5 f ( ~ )  <=> m 4 = r .  

A second  one,  i n v o l v i n g  

(3.3) Mo = 5 Y(~) ®f(~) = 5 (x ÷ (y(~)-- x)) ® f ( o  = x ® r ÷ M ,  

t h e  generalized resultant torque of F a b o u t  t h e  or ig in :  

(3.4) ~ y ( O ~  m(O~(o = ~ y(O Qf(~) ¢> m ( S o -  W I W ~ - - £  Q k) = M o .  

I n  v i e w  of (2.7)2 a n d  (2.8), we h a v e  

S o - -  W I W ~ - -  ~ ® ~ = x (D Ji ~- iS--  W S  , 

so t h a t ,  t a k i n g  i n to  a c c o u n t  also (3.3)3, e q u a t i o n  (3.~)2 can  be  g i v e n  t h e  fo rm 

(3.5) re(S--  WS) = M .  

As to  th i s  l a s t  e q u a t i o n ,  some  c o m m e n t s  a r e  in  order .  W e  p u t  

(4) Consideration of higher order moments of momenta  and forces is out of the scope 
of the  present paper ,  as we del imited i t  in the  Introduct ion.  Had we aimed al~-theories of 
more general s t ructured continua than those suffering only affine microdeformations, then 
consideration of higher moments  would have been in order. I t  would be easy to construct 
a theory in which the motion of S is described by  a countable set of tensors (Gin)} of increasing 
order, and is governed by  a system of differential  equations in which successive moments 
of F appear.  Such a theory would then serve as a model  for theories of continuous bodies 
endowed with a microstrueture of a certain grade, e.g. the  theory  sketched by  T~V~SD]~LL - 
ToveI• in Sections 166, 205 and 232 of [8], or Green-Rivlin 's  mult ipolar  mechanics (rid. V9], 
and a sequence of related papers) .  There is also a methodological reason for refraining from 
this easy greater  general i ty  (such as is pursued in some papers  by  RIVLI~ [10], [11]), namely 
tha t  a model should be simpler than  the theory it is devised to enlighten, even at the expense 
of giving up some subtle correspondences. 
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where M (2~/) is the generalized resultant  torque of external (mutual) forces about 
the center of mass, and we assume 

m 

(3.6) s k w M  = 0 (5). 

Then, the skew-symmetric part  of (3.5) reduces to Euler 's  second law 

(3.7) mh = rn ,  

prescribing the balance of moment  of momentum with respect to the center of mass 

(in (3.7) rn is the vector associated with s k wM) .  
The symmetr ic  part  of (3.5) reads 

(3.8) m(sym ,~-- WS) ---- sym M +  - ~ ,  

or rather,  in view of the kinematical  ident i ty  (2.7)~, 

(3.9) m ( I - - 2 W I W  ~) = 2(sym M ~ -  . 

Thus, (3.9) can be interpreted as the evolution equation /or the Euter tensor of S (e). 
Equat ions (3.2), (3.7) and (3.9) rule the motion of S. We now derive an equivalent 

form of these equations which is perhaps more convenient for certain ~pplications. Le t  

m J :  ~ m(°(Y(°--X) Q (Y(i)--X), 

So that ,  by  (2.1) and the definition of I, 

(3.10) I---- GJG r . 

Once m, J are assigned (with m >  0, J a symmetric,  positive semidefinite tensor), 

and r, M, M (with M a symmetric  tensor) are given as functions of (x, G; &, G; t), 
a motion of S is a solution (x(.) ,  G(.))  (with G an invertible tensor) of the differ- 
ential  system 

(3.11) m skw (GJ(~ ~) = skw M ,  

m sym (GJG r) = sym ~ / +  2~/, 

corresponding to a given set of initial values for x, G, :~ and (~. 

(~) The statement (3.6) could be derived from (and anyway is suggested by) an appro- 
priate interpretation of Newton's Lex Tertia and the following two Corollaria. 

(~) Cf. Toceis  [3], who put forward this interpretation in the context of his theory of 
polar hyperelastic material. Vid. also [8], Sect. 219. 
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The kinet ic  energy theorem for S can be obtained ei ther  direct ly f rom equa- 
tions (3.1) or fl 'om the global equations (3.2)2 and  (3.5). Le t  Y denote  the kinetic 
energy of S (per un i t  mass),  so t ha t  

and  

(3.12) 

W e  have  the  identi t ies 

Thus we conclude t h a t  

(3.13) 

2 m / '  = E m ¢~) y ( o . ~ ( o ,  

2T -= ~'~-}- IWz" IV T. 

(xw~. w~)" = 2 I ( W +  w~)~. w~, 

x(w+ w~)~ = ~ -  ws. 

r o T =  r.&-}- M.  W T. 

4. - Affine systems with  var iable  mass .  

W e  tac i t ly  assumed in the  former  sections t ha t  the  n u m b e r  of mass  points of S 
were cons tan t  in t ime.  Wi th  cer tain applicat ions in mind  for our model  (7), we now 
proceed to derive the governing equations for those affine systems which m a y  lose, 
or gain, mass-points  as t ime  progresses. As the imbalance  of mass  is essentially 
ab rup t  in charac ter  for these systems,  we are na tura l ly  dr iven to use the f rame-  
work of classical impuls ive  mechanics  (s). 

Le t  yJ denote  a n y  tensorial  field defined on the current  p lacement  of S, so tha t  
in par t icular  ~ ( 0 =  ~(y(O, t). Le t  fu r ther  

(4.1) {,p} = w(t + o) - ~ ( t -  o) = ~+  - v,- 

denote a jump discontinuity (at the ins tan t  t) of ~p as a funct ion of t ime. I f  {~} ¢ 0 
we say t ha t  ~v suffers an  impulsive change at  t. W e  s ta te  the general  impulsive balance 
law for a field k y defined b y  

N.2) 

in the  following way :  

(4.3) 

m T =  y. m(°w "~ 

{roT} = ~ , 

where ~ is the  impulsive supply of ~ .  Taking  ~v(°-- - 1, and  using (4.2) and  (4.3), 

(~) We typically think of mixtm'es of constituents endowed with an affinc microstructure. 
(s) A fairly more inclusive treatment of this and related matters will be presented elsewhere. 



G. CAPRIZ - P. PODI0 GUIDUGLI: Discrete and continuous bodies, etc. 201 

yields the impulsive balance of mass for S: 

(4.4) 

In  view of the ident i ty  

(4.5) 

{m) = 8~. 

{roT} = m_{T} + {m}~÷,  

equations (4.3) and (4.4) combine as to give 

(4.6) 

a s ta tement  of the impulsive balance law which is sufficiently general to serve as a 
basis for the impulsive mechanics of any system of mass-points with variable total  
mass, be it affine or not. 

Specialization of (4.6) yields the following impulsive counterparts of the balance 
of momentum,  inertia, and moment  of momentum:  

(4.7) m_{q} =- ~q--~mq+ 

(4.S) m_{I} = 5, - - ~ I ÷  

(4.9) m { S }  =- ~ s - - ~ , ~ S +  

(for F(O=:~(O; el. (3.2)~); 

(for ~ (o=  ( y ( O  x) Q (y(O_x)  ; cf. (2.7)8) ; 

(for ~(~) = (y(~)-- x) (~ W(y (~)- x); cf. (3.5)). 

Equat ion  (4.8) shows tha t  the rate  of change of inertia is now ruled by a true balance 
equation in lieu of the kinematical  ident i ty  (2.7)3. Moreover, the fact tha t  S is affine 
emerges when one takes care of (2.7)~, and combines (4.8) and (4.9) using also (4.5). 
I t  turns out  tha t  

(4.10) ~ = ~,W~+ + (mX)_{W~}, 

a kinematical  ident i ty  again which is peculiar of affine systems. 

Appendix. 

I t  seems to us tha t  the theory of affine systems of mass-points is a subject of 
mechanical interest  in itself, apart  from the r61e of stimulus and support of intui- 
t ion tha t  we ascribed to it  within the limits of the present paper. To substant iate  this 
s ta tement ,  we collect hereafter (under A) some examples of affine systems with 
invariable mass, as well as (under B) further  material  about affine systems with 
variable mass which completes the rather formal developments presented in Section 4. 

A) Some examples. 

(i) Rigidity. In  the impor tant  special case when S is rigid, i.e. G is orthogonal 
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and W is skew-symmetr ic ,  equat ions (3.11h, 2 alone de te rmine  the  motion of S, 

whereas  equat ion (3.11)~ assigns M, ~ global p rope r ty  of ~he reaction to the internal 
constraint of rigidity. 

We observe fur ther  t ha t  the last  t e r m  in (3.13) can be wr i t ten  in general  

(A.1) M .  IVz--  - m ' t o + ( s y m M +  ) ' D ,  

where to is the  vector  associated wi th  Et = 2 skw W ~, and  D = sym 117. I n  the  present  

instance,  Et = - - 2 W ,  and D =--0, so t h a t  (A.1) reduces to 

(A.2) M" W T = r e . t o .  

(if) _Pure strain. I n  the instance,  in a sense complemen ta ry  to (i), when S is 
only capable  of pure  strain,  i.e. G is a symmetr ic ,  invert ible  tensor,  equations (3.11)1,~ 
de te rmine  the  mot ion  of S, whereas equat ion (3.11)2 can be viewed ei ther  as a con- 
dition o] compatibility ]or the data or as assigning a global p rope r ty  of the  reaction 
to the external constraint t h a t  p revents  S f rom rotat ing.  

More par t icular ly ,  let 

G = y l ,  

so tha t ,  b y  (3.10), 

Then,  equations (3.11)2,~ reduce to 

(A.3) 

y(t) > 0 for t e "G, 

I =  y~l .  

e 

0 = skw M ,  

m y ~ J  = M .  

I f  we now t ake  the  t race  of bo th  sides of equat ion (A.3)2, and  pu t  

t r  M 
art = re(x, y; &, :~; t) - -  t r J  ' 

we obta in  the  evolution e~uation for y in the  fo rm 

(AA) my~ = m .  

(iii) Spherical inertia tensor. There  is another  interest ing case in which G is 
a scalar mult iple  of an or thogonal  tensor,  a case t h a t  occurs when one imposes the  

k inemat ica l  constraint  

(A.5) I = t 2 1, t(t) :/: 0 for t ~ 23, 
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and chooses the  reference configuration so t h a t  J = 1. 
it follows f rom (3.10) t ha t  

G =  t R ,  

:~foreover, b y  (2.3) we have  

with  

b y  (2.7)~, 

Under  these c i rcumstances  

with R = an or thogonal  t ensor .  

W.-= t-l il + R R  z, 

D = t -~ "tl,  ~ = 2 R R  z ; 

S = d l  4-- ½ t ~ 2 .  

Accordingly,  equat ion (3.5) reduces to 

(A.6) ~(,; ':t  + (½ ,~£).  + { , 2£~ )  = M .  

Clearly, equat ion (A.6) h~s consequences which correspond to equat ions (3.11)2,3. 
These at% respect ively:  

(A.7) m(½ Pea)" = m ,  

which is obta ined  b y  taking the  skew pa r t  of bo th  sides of (A.6); and  

(A.S) 
{ m(t'i--~t2o~ 2) = m ,  

¢ ~rt 

dev (¼ t~to @oa - -  M) = dev M ,  

which are obta ined  b y  tak ing  in tu rn  the t race  and  the  devia tor  of the  symmet r ic  
pa r t  of (A.6). Equa t ions  (A.7) and  (A.8)1 form the system o/ evolution equations 
for ¢o and  ~ (9), whereas  a global evaluat ion  of the  react ion to the  in ternal  con- 

s t ra int  (A.5) ensues f rom equat ion (A.8)2. 

B) Addendum to Section 4. 

With  slight abuse of the  nota t ion  int roduced in (4.1), we denote  b y  

{;} = ( L  u L )  - -  ( L  n L )  

(9) We note in passing that (non-linear) oscillations of S become possible when e.g.: 
(i) external forces vanish; (ii) the resultant torque of mutual forces has negative trace, i.e. 
m < 0 (a physically reasonable hypothesis); (iii) It-lml is an increasing function of t. 
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the  impulsive change ~t t of the  index set I of S (~o). I f  fu r ther  we denote  b y  Z the  
characterist ic  funct ion of I+ ~)I_, and we pu t  Z ( ° - -  z(i), then  clearly 

0 if i e  I+ (~ I_ ; / 
{g (0}=~+I if i ~ I + - - I _ ;  

~ - - 1  if i e  I _ - -  I+ ; 

We then  prescribe the behaviour  of mass-points in an impulse in the usual way: 

(i) individual mass-points conserve their  masses and places, i.e. 

{m (0} ---- 0 and {y(O} = 0,  Yi e I+ u I_ ; 

(if) individual mass-points leave (join) S according as they  lose (gain) ins tan t ly  
the affine velocity, i.e. the  veloci ty specified by  (2.~), at  t ime t - - 0  (t + 0) (~). 

It follows f rom the  fit'st par t  of assumption (i) above tha~ 

(B.1) ,";v T + - -  
I -  n I+ I + - - I -  I - - - I +  

a formula which clarifies the meaning of the left  member  of (4.3). Moreover, com- 
bining (4.2), (4.5) and (B.]),  we have 

(B.2) 
I + n l -  I + - I -  I - - I +  

A stra ightforward consequence of iden t i ty  (]3.2) is obtained by  taking ~v(°= 1: 

(B.3) {m} = 
{i} 

A less t r ivial  application Of (B.2), which is arr ived at  b y  taking ~p(~)= y(0 (and, 
consequently,  T---- x), and using also the second par t  of assumption (i), is the fol- 
lowing s t a t ement  of the fundamenta l  theorem on the center  of mass for systems of 
mass-points with variable to ta l  mass 

(B.4) m_{x} + {m} x+ = Z y('). 

(10) It  should be noticed that {I} is precisely the symmetric difference of the sets ][+ and ][_: 

{~} = (L --  L)  W ( L - -  L)  • 

(n) These hypotheses imply that L -  L is comprised of mass-points occupying places 
specified by (2.t), although their velocities do not conform to (2.4), at t - -  0 (whereas L --  L 
is any subset of L).  
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Although the affine s t ructure  is un impor tan t  to get the  former  result,  i t  does 
lend some special features to the  behaviour  of S in an impulse. Le t  I+ ~ L include 
a t  least four  mass-points placed at  the vertices of a non-degenerate  te t rahedron.  
I t  follows from (2.1) and the second par t  of assumption (i) t ha t  

so tha t  

o = { x -  Gx~ + {G} Y"), 

{G}(Y (~)- Y(~)) = 0 

for any pair  (i, j)  of those mass-points,  and hence 

(B.5) {C} = o a n d  {x} = c { x } .  

Clearly, (B.5)1 implies tha t  

(B.6) {W}  = { (~}G -~ . 

Let  fu r ther  the manne r  of impulsive imba]ance of the total  mass of S be amine: 
i.e. such t ha t  

(B.7) {X} = 0,  

or equivalent ly ,  due to  (B.5),, 

(B.8) {~} = 0.  

(B.8) implies the coalescence of the centers of mass, not  only of I+ and I_ bu t  also 
of any  set resulting via union, intersection or difference f rom these two sets. Another  
consequence of (B.8) and (B.3) is the following reduct ion of (B.4): 

(B.9) ~ m(*~{Z(*)}(y")-- x) = 0 .  
{i} 

Final ly ,  in order  to  show how to ident i fy  the  right member  of (4.3), let  us con- 
sider the case T = q. We write the impulsive supply of q as follows: 

A e m 

(B.10) s~ = ~ -~- ~ ,  

where 
e 

(]3.11) 2r = i+~ni_ f̂ (O 

is in te rpre ted  as the resul tant  impulsive force acting on S independent ly  of the 

imbalance of to ta l  mass, whereas r is in te rpre ted  as the resul tant  impulsive force 
acting on S as a consequence of the  ab rup t  imbalance of mutua l  forces going along 
with the imbalance of to ta l  mass. 
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Because on the one hand  

I+ I -  I+ r~ I -  I+-- I -  I - -  I+ 

and on the other hand  

one has 

Bu t  

so tha t  finally 

I + n I -  I+ClI- 

{ m q }  = ~ f (~)+ ~ m(~):~<!/- ~ m(~):~ ) . 
I+C~-I ~+--~- I_--I+ 

A 

I+ C) I -  {I} 

I - - I+  I+ - I -  

and 

(B.12) r = . 
l + - I -  K--I+ 

II. - Continuous Bodies with A ~ n e  Structure. 

The developments of Chapter I suggest ideas for a definition of a continuous body 

with affine structure. 

We consider first here the case of a single body of this type,  and lay clown the 

governing balance equations, which, on accepting a well known (( metaphysical  >> 

principle of TRUESDELL (Cf. e.g. [12], Lect. 5), remain formally unMtered also for a 

mixture of such bodies. We further  list the peculiar bMance equations for a generic 

constituent of a reacting mixture,  when tha t  const i tuent  is endowed with the affine 

structure. 

5. - Balance equations for a single body. 

We begin by  sketching the definition of a continuous body endowed with affine 

structure along lines first made precise by  •OLL (12). 

.(12) As far as possible we follow NOLL [13], [14] for terminology and notations; we refer 
the reader to Noll's papers, where the notions used here in a hasty way are most precisely 
introduced and described. 
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L e t  35 model  a set  of ma te r i a l  part icles X ,  which is equipped wi th  a class P of 
mappings  ~, called placements, f rom 33 into open subsets B ,  of the  three-dimensional  

Eucl idean  point  space 8. Le t  fu r the r  P obey a n u m b e r  of axioms sufficient to in- 
duce on 35 a s t ruc ture  of differentiable manifold~ so t ha t  a t angen t  space 3x is at-  
t ached  to each part icle  X e 35. I n  addi t ion to P, we equip 35 with  a class G of 
mapp ings  / ' ,  such tha t ,  a t  a n y  X e 35, Fx = / ' ( X )  is an  inver t ible  l inear mapp ing  

f rom 3z into 'U, the  t rans la t ion  space of ~. We  say t ha t  such a continuous body  35 
has  a/line structure determined  b y  G, and  call the  pair  (~, F)  a complete placement 
of $ .  W e  single out  a par t icular  p lacement  (z*, F*),  and  we use a l so /~x  to  induce 
an  inner p roduc t  on 3x: then,  any  other  p lacement  can be uniquely  specified in 

t e rms  of two fields 

x = x ( X ) ;  G=G(X) ,  

where 

X e B~. = (X]X  = n*(X),  X e 33) ; 

= c = 

Actual ly,  we will assume t h a t  x and  G be given for all t of a t ime  in terva l  23: 

x =  x ( X , t ) ;  G = G ( X , t ) ,  for (X, t) e B~. X "6, 

and  t h a t  appropr ia t e  regular i ty  conditions prevail .  Accordingly,  the  k inemat ica l  

s ta te  of 35 is de te rmined  b y  a velocity field 

= ~ (X ,  t ) ,  

and  a wrench field 

(5.1) w =  d;(x, t)G-~(X, t). 

We now pass on to establ ish the  ba lance  equat ions which rule the  thermomechanics  
of our affine body ;  in these equations,  the  definitions of the  k inemat ica l  enti t ies and  
the  fo rm of thei r  supplies are direct ly inspired b y  the  corresponding discrete objects 

in Sections 2 and  3 (1~). 
We  assume t h a t  vo lume densities exist  for mass  (~), inert ia  (QI), m o m e n t u m  (~&), 

and  generalized m o m e n t  of m o m e n t u m  (~S0) wi th  respect  to 0. Moreover,  we t ake  

(In) The developments of this Chapter are based on a straightforward adaptation to a 
continuum of the results of Ch. I. I t  is possible to pursue different courses leading to models 
of different physical systems; for instance, one can define generalized moment of momentum 
in such a way that S vanishes when W =  grad ~, etc. 



208 G. CAPRIZ - P. PODI0 GUII)UGLI: Discrete and continuous bodies, etc. 

for the  supply of momen tum:  

(5.2) r=febdB + fT.ds (~), 
B OB 

where b is the densi ty of body  force, T is the  Cauchy stress tensor  and n is the uni t  
ou tward  normal  to ~B. To write the  correct expression of supply of generalized 
moment  of m o m e n t u m  we must  keep in mind the developments  of Sect. 3; it  ap- 
pears f rom the  discrete model tha t  such supply does not  derive from external  agencies 
alone, bu t  t ha t  also internal  actions contr ibute  to it ( though these do not  contr ibute  
to the classical moment) .  Thus we are led to assume tha t  there  exists a densi ty Z 
of generalized moment  of mome n t u m of internal  forces (which is symmetr ic  for 
consistency with condition (3.6)) and to accept the following expression of Mo: 

(5.a) Mo=fq(x®b+ L)dB+f(x®T÷ H)ndS+fZdB; s k w Z =  0, 
B OB .B 

where eL is the densi ty of external  body  couples, and H is a th i rd-order  hyperstress 
tensor. Then,  we write down the following balance laws: 

(5.5) (inertia) (fe,dB)'=~fesym(,WT)dB (cf. eq. (e.7),.,); 
B B 

(f )" (5.6) (momentum) ~&dB = r ;  
B 

(5.7) W W )dB:Mo (el. eq. (3.4h) . (generalized moment  
of momentum)  ~ 

Under  usual assumptions of smoothness, equations (5.4), (5.5) and (5.6) have local 

consequences. These are: 

----- --  ~ div • ,  

(5.8) I = 2 sym (IW~"), 

~ = 9b + div T .  

I f  we recall (2.7h and (2.8), and use (5.8) to perform some obvious cancellations, 
equat ion (5.7) can be given a form corresponding to (3.5), which generalizes Euler ' s  

0 4) From now on we write B in place of BK,. 
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second law: 

(5.9) fO(B-- WS)dB =f(oL÷ Tf)dB + fHndS+ fZaB. 
B B OB " B 

The local counterpart  of equation (5.9) reads 

(5.10) ~(S-- IVS) = qL-~ T~ ~ - div H-~ Z. 

We then preliminarly state the balance of energy in the form: 

(5.11) (fo(s+ ½i.i~-½IIV~.IV~)dB)" =fe(b.  + L. Ivy+ q)dB-~ 
B B 

~-f(Tn'i+Hn'iv~"-~h'n)dS (cf. eq. (3.12)), 
OB 

where e is the density of internal  energy, Qq the density of heat  source, and h is the 
heat  flux per uni t  area. Combining (5.11) with (5.8) and (5.10) and using a number  
of trivial differential identities, yields the following reduced form of the so-called 
~ first l a w ,  of thermodynamics:  

(5.12) 
B B OB 

which admits  of the local version 

(5.13) OR = ~q + div h + T.  (grad i - -  IV) -t- H. grad IVT_ Z .  IV. 

~'inally, we introduce a density ~y of entropy production, and define the tota l  
entropy production as 

(5.14) f ~ydB=(f ~dB) ' - - f  Q 1 --f~h.ndS qdB 
B B .B OB 

where ~] is the density of entropy, and ~ is the temperature;  as a s ta tement  of the 
entropy imbalance, we lay down the inequali ty 

(5.15) f qy dB > 0 ; 
B 

denoting by  

~- -  ~(~--~) 

14  - . d n n a l i  d i  M a t e m a t i c a  
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the  densi ty  of free energy, and using (5.13) to eliminate q, we manipula te  (5.14) 
and (5.15) to arrive at  the following local reduced form of the (( second law ~) of thermo-  
dynamics : 

1 
(5.16) --e(¢+ v~iT)+-~h.gradva+ T.(grad]c--W)+ H.grad tV~'--Z. IV~o. 

REMAI~K. We recall f rom the In t roduc t ion  tha t  a pr imary  scope of the  present  
paper  is to mot iva te  the  basic fields equations used in [1]. 

As the comparison of (5.8)1,2.~ , (5.10), (5.13) and (5.16) with equations (3.4), {3.15), 
(4.4), (4.11), (5.3) and (6.14), respectively,  of [1] is disconcerting, we must  declare 
t ha t  we were unable  to have  corrected in [1] m a n y  misprints, or even to have  in- 
serted missing lines. We remark  also tha t  an a t t e mp t  was made  in [1] to s tar t  with 
such equations of balance for inert ia  and generalized moment  of m o m e n t u m  as to 
cover at  the same t ime the  case explicitly studied here and tha t  envisaged in foot- 
note  (13). Therefore our present  formulae are to a certain ex ten t  more special. 

6.  - S t r u c t u r e d  c o n s t i t u e n t  i n  a m i x t u r e .  

Perusal  of Section 4 suggests immediate ly  the equations of balance for a consti- 
tuen t  in a mixture ;  in fact  our  equat ion (4.5) is the discrete impulsive equivalent  
of equat ion (3.10) of [1]. Corresponding: to equations (4.4) and (4.7), we have,  
adopt ing s tandard  nota t ion (15). 

(6.1) 

13 13 

(6.2) 
13 B 013 13 

corresponding to equations (4.8), (4.9) we have 

(6.3) 

(6.4) 

B B OB 13 B 

(1~) The subscript ~ indicates the ~-th constituent, and a backward prime denotes ma- 
terial differentiation following that constituent. 
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RE~AI~K. -- F r o m  equa t ions  (6.1), (6.2), (6.3), (6.4) local  equa t ions  fol low wh ich  

should  be  compared ,  wi th  cau t ion  (rid. t he  final R e m a r k  of Sect.  5), wi th  equa-  

t ions  (3.1), (4.1), (3.13), (4.8), respect ively ,  of [1]. 
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