Discrete and Continuous Bodies with Affine Structure (*).

G. Carriz - P. Popro GurpueL1 (Pisa)

A DARIO GRAFFI nel suo 70° compleanno

Summary. — The equations of motion of an affine body are derived (also for the case of variable
mass) evidencing in particular the réle of the generalized moment of momentum of internal
forces. Successively, local dynamic and thermodynamic equations of balance for a continuous
body with an affine microstructure are proposed, also for the case when such a body is one of
the constituents in a mixture.

1. — Introduction.

In this paper our aim is to motivate the theory of structured media which we
have used elsewhere [1] by showing that that theory covers the important special
case of bodies which are only capable of homogeneons microdeformations [2], i.e., as
we ‘prefer to say, of bodies endowed with an affine structure.

It has long been recognized [2][3] that on the basis of this model it is possible
to develop a mechanical theory which is completely equivalent to the theory of an
oriented medium in the sense of ERICKSEN and TRUESDELL [4], i.e., a medium at
each point of which there are three linearly independent deformable vectors (the
directors). A feature of our present theory is that the mass of the unit cell is not
necessarily conserved; as a consequence the equation of evolution of microinertia
is no longer a kinematical identity; it involves, rather, the assumed mechanism of
mags transfer between neighbouring cells. In addition, the global balance equations
for momentum, moment of momentum and energy are affected.

We accept a general tensorial form of the balance of moment of momentum;
while the skew part of this equation reduces to ordinary statements of balance of
moment of momentum for structured continua, the symmetric part requires inter-
pretation. Generalizing an idea put forward by Toupin for a hyperelastic continum
with directors [3], we show that this equation is the evolution equation for micro-
inertia. We remark also that in some relevant special theories of structured media,
such as Ericksen’s theory of anisotropic fluids[5] and the directors theory of shells
as rendered e.g. by NAGHDI [6], equations of balance for the so-called « director mo-
mentum » appear which can be shown to correspond exactly to this equation.

(*) Entrata in Redazione il 3 dicembre 1975.



196  G. Capriz - P. Fopio GUipucGLI: Discrete and continuous bodies, ete.

In a companion paper we will show how significant special cases (e.g., Cosserat,
Grioli, Mindlin and Tiersten’s theories) are obtained from our theory by introducing
suitable kinematical constraints on the affine structure [15].

L. - Mechanics of Affine Systems of Mass-Points.

2. — Kinematics.

Let I be an index set. We call a system {(P%, m™)im®>0,iel} of mass-points
affine if its motion has the form

(2.1) ¥ = x(t) + Gt YV —X);

in (2.1), x(-) and G(-) are defined on a (perhaps infinite) time interval G, and G(-)
has values which are invertible tensors so that

(2.2) YO =X+ G (y?—x).
We denote an affine system of masgs-points by S, and introduce the tensor W de-

fined by
(2.3) W=GG (1).

Using (2.2) and (2.3) we deduce from (2.1) the following identities:

@4) 5V =z+ Wy —x) = (&— Wx)+ Wy?;
(2.5) y(i)z x - (W+ WZ)(y(i)—x) — (x——(W—{— Wz)x) + (W+ Wg)y(’i).

‘We also assume that

(2.6) SmOYP—X)=0(),

which means that we identify X (x) with the position vector with respect to a fixed
origin of the center of mass of S in the reference (current) placement.
Let

m=3m?

(1) We mark derivation with respect to time by a dot. In [1] we called « wryness tensor »
the transpose of the tensor W defined here. Because this name is already in use for a dif-
ferent object, we suggest here for W the designation « wrench» Affine motions are consi-
dered by ERINGEN [7] in the context of his theory of micromorphic continua.

(?) Here and henceforth we drop the summation limits.
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be the mass of S, and let
mI=3mP(y?—x) @y —x)

be the Euler inertia tensor of S with respect to the center of mass. We then have
for the momenium q of S per unit mass

mg=3mO5D

and for the moment of momentum s of S per unit mass with respect to the center of mass
ms =3 (¥ —x) xm? yP = S mO(yD— ) x W(y? — ).

We introduce also a generalized moment of momenium, i.c. the tensor S defined as
follows:

mS = 3 m Ay —x) @ Wy —=),

so that s is the axial veector associated with the skew-symmetric part of S.
The above definitions have the following easy consequences, which will be relevant
for our developments:

(2.7) q=%, S=IWr, [=2symS ).

We also record here for future use a formula which delivers the generalized moment
of momentum with respect to the origin:

(2.8) S;=x2Rx+S.

3. — Dynamics.

Given a system of forces F = {(P?, fM)]iel} for S, we consider the dynamical
problem of determining the motion of S under the action of F, i.e. the problem of
determining the pair (x(-), G(-)).

We interpret £ as the total force acting on the mass-point (P, m®). By taking
the zeroth and the first moment with respect to the origin of the set of Newtonian

(3) We write sym 4 (skw 4) for the symmetric (skew-symmetric) part of the second-
order tensor 4. We also write tr for the trace functional, and dev A4 for the deviatoric part

of 4: devA—=A—(3tr )1
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equations
(3.1) mOyD = f@ el

that rules the motion of S, we deduce two (*) global consequences:
A first one, Euler’s first law, involving

r= Ef (i)7
the resultant force of F:
(3.2) SwO¥%V =3 fO o mg=r.

A second one, involving
(3.3) My=3y"®@f%=3(x+ (y"—x) @fP=x@r+ M,
the generalized resultant torque of F about the origin:
(34) Sy @m0 =3 yO @Y < m(Sg— WIW?—i ® %) = M.
In view of (2.7), and (2.8), we have
So—WIWr— 4 Qx=xQi+ S— WS,
so that, taking into account also (3.3),, equation (3.4), can be given the form
(3.5) m(S—WS)=M.
As to this last equation, some comments are in order. We put
M—M+M,

(%) Consideration of higher order moments of momenta and forces is out of the scope
of the present paper, as we delimited it in the Introduction. Had we aimed at- theories of
more general structured continua than those suffering only affine microdeformations, then
consgideration of higher moments would have been in order. It would be easy to construet
a theory in which the motion of §is described by a countable set of tensors {Gy,)} of increasing
order, and is governed by a system of differential equations in which suecessive moments
of F appear. Such a theory would then serve as a model for theories of econtinuous bodies
endowed with a microstrueture of a certain grade, e.g. the theory sketched by TRUESDELL -
TouPIN in Sections 166, 205 and 232 of [8], or Green-Rivlin’s multipolar mechanies (vid. [97,
and a sequence of related papers). There is also a methodological reason for refraining from
this easy greater generaliby (such as is pursued in some papers by Riviix [10], [11]), namely
that a model should be simpler than the theory it is devised to enlighten, even at the expense
of giving up some subtle correspondences.
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€ m
where M (M) is the generalized resultant torque of external (mutual) forces aboutb
the center of mass, and we assume

m
(3.6) skwM =10 (%) .
Then, the skew-symmetric part of (3.5) reduces to Euler’s second law
(3.7) ms = m,

prescribing the balance of moment of momentum with respect to the center of mass

e
(in (3.7) m is the vector associated with skw M).
The symmetric part of (3.5) reads

(3.8) m(symS— WS) = sym Ikel+ Z‘nl,

or rather, in view of the kinematical identity (2.7),,

(3.9) m(f—2WIW?) — 2(sym M+ M) .

Thus, (3.9) can be interpreted as the evolution equation for the Euler tensor of S (%).
Equations (3.2), (3.7) and (3.9) rule the motion of S. We now derive an equivalent
form of these equations which is perhaps more convenient for certain applications. Let

mJ=3mOY?—X) ® ¥YV-X),
80 that, by (2.1) and the definition of I,
(3.10) I=GJG~.

Once m, J are assigned (with m >0, J a symmetric, positive semidefinite tensor),
1 w m

and r, M, M (with M a symmetric tensor) are given as functions of (x, G; %, G; 1),

a motion of S is a solution (x(-), G(+)) (with G an invertible tensor) of the differ-

ential system

mx =r,
(3.11) o skw (GIET) = skw M,
m sym (GJ("';T) = gym I‘EI+ I?l,
corresponding to a given set of initial values for x, G, £ and G.
{®) The statement (3.6) could be derived from (and anyway is suggested by} an appro-
priate interpretation of Newton’s Lex Tertia and the following two Corollaria. -

{®) Cf. Tourin [3], who put forward this interpretation in the context of his theory of
polar hyperelastic material. Vid. also [8], Sect. 219.
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The kinetic energy theorem for S can be obtained either directly from equa-
tions (3.1) or from the global equations (3.2), and (3.5). Let I denote the kinetic
energy of S (per unit mass), so that

omT = 3 m® 3.5
and
(3.12) 2T =&-&-+ IW”-Wr,
‘We have the identities
(IWT-Wry = 2[(W+ W2)r-Wr,
I(W4+ Wyr=8—WS.
Thus we conclude that

(3.13) mT=rx+ M-Wr,

4. — Affine systems with variable mass.

We tacitly assumed in the former sections that the number of mass points of S
were constant in time. With certain applications in mind for our model (?), we now
proceed to derive the governing equations for those affine systems which may lose,
or gain, mass-points as time progresses. As the imbalance of mass is essentially
abrupt in character for these systems, we are naturally driven to use the frame-
work of classical impulsive mechanics (2).

Let y denote any tensorial field defined on the current placement of S, so that
in particular »® = p(y?, ). Let further

(4.1) {v} =@+ 0)—p(E—0)=p, —yp_

denote a jump discontinuity (at the instant #) of y as a funetion of time. If {yp}£0
we say that y suffers an impulsive change at t. We state the general impulsive balance
law for a field ¥ defined by

4.2) my =3 m@Dy®
in the following way:
(4.3) {m¥P} =8y,

where &y is the impulsive supply of ¥. Taking 1/)(“=1, and using (4.2) and (4.3),

(") We typically think of mixtures of constituents endowed with an affine microstructure.
(8) A fairly more inclusive treatment of this and related matters will be presented elsewhere.
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yields the impulsive balance of mass for S:

(4.4) {m}=3§,.
In view of the identity

(4.5) (mP} = m_{P}+ (m}¥P,,
equations (4.3) and (4.4) combine as to give
(4.6) m_{P}=8y— 8.V,

a statement of the impulsive balance law which is sufficiently general to serve as a
basis for the impulsive mechanies of any system of mass-points with variable total
mass, be it affine or not.

Specialization of (4.6) yields the following impulsive counterparts of the balance
of momentum, inertia, and moment of momentum:

4.7) m_{q} =8,—8&.q, (for P =5D; of. (3.2),);

4.8)  m_{I}=38—3§ I (for y?=(y"—2) @ (" —=); cf. (2.7),);

4.9) m_{S}=8;—8,5, (for @ = (y?—x) @ W(y®—x); of. (3.5)).
Equation (4.8) shows that the rate of change of inertia is now ruled by a true balance
equation in lieu of thé kinematical identity (2.7),. Moreover, the fact that S is affine

emerges when one takes care of (2.7);, and combines (4.8) and (4.9) using also (4.5).
It turns out that

(4.10) 8s= 8§, Wﬁ + (mI)—{WT} ’

a kinematical identity again which is peculiar of affine systems.

Appendix.

It seems to us that the theory of affine systems of mass-points is a subject of
mechanical interest in itself, apart from the r6le of stimulus and support of intui-
tion that we aseribed to it within the limits of the present paper. To substantiate this
statement, we collect hereafter (under A) some examples of affine systems with
invariable mass, as well as (under B) further material about affine systems with
variable mass which completes the rather formal developments presented in Section 4.

A) Some examples.

(i) Rigidity. In the important special case when S is rigid, i.e. G is orthogonal
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and W is skew-symmetric, equations (3.11),, alone determine the motion of 8,

m
whereas equation (3.11), assigns M, a global property of the reaction fo the initernal
constrasnt of rigidity.
We observe further that the last term in (3.13) can be written in general

(A1) M-Wsz-w+(symZ\el-|—ﬁ)-D,

where  is the vector associated with Q=2 skw W7, and D = sym W. In the present
instance, & = —2W, and D =0, so that (A.1) reduces to

(A.2) M-Wr=m-w.

(ii) Pure sirain. In the instance, in a sense complementary to (i), when S is
only capable of pure strain, i.e. G is a symmetric, invertible tensor, equations (3.11), 5
determine the motion of S, whereas equation (3.11), can be viewed either as a con-
dition of compatibility for the data or as assigning a global property of the reaction
to the external constraint that prevents S from rotating.

More particularly, let
G=y1, yt)>0 for 1€ G,

so that, by (3.10),
I=y21.

Then, equations (3.11),, reduce to

e
(A'3) 0= SkWM,
mypJ =M .
If we now take the trace of both sides of equation (A.3),, and put

. tr M
Tﬂ:m(x,’}/; x, V; t)"—_m,

we obtain the evolution equation for y in the form
(A.4) myy =m.

(iii) Spherical inertia tensor. There is another interesting case in which G is
a scalar multiple of an orthogonal tensor, a case that occurs when one imposes the
kinematical constraint

(A.5) I=21, (1)#0 for t€ G,
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and chooses the reference configuration so that J= 1. Under these circumstances
it follows from (3.10) that

G =R, with R= an orthogonal tensor.

Moreover, by (2.3) we have
W= 1i1--RR",
with
D=1, R =2RR7;
by (2.7)s,
S =ul+ Q.

Accordingly, equation (3.5) reduces to
(A.6) m(i1 -+ (3 2Q) + 12Q) =M.,

Clearly, equation (A.6) has consequences which correspond to equations (3.11),;.
These are, respectively:

(A.7) mElw) =m,
which is obtained by taking the skew part of both sides of (A.6); and

mtt—§12m?) = m,
(A.8) o m
dev (32w Qw—M)=dev M,

which are obtained by taking in turn the trace and the deviator of the symmetric
part of (A.6). Equations (A.7) and (A.8), form the system of evolution equations
for w and ¢ (°), whereas a global evaluation of the reaction to the internal con-
straint (A.5) ensues from equation (A.8),.

B) Addendum to Section 4.

With slight abuse of the notation introduced in (4.1), we denote by

I} =(I,UL)—(I,NL)

(®) We note in passing that (non-linear) oscillations of S become possible when e.g.:
(i) external forces vanish; (ii) the resultant torque of mutual forces has negative trace, i.e.
m <0 (a physically reasonable hypothesis); (iii) |«?m| is an increasing function of .
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the impulsive e¢hange at ¢ of the index set I of S (°). If further we denote by y the
characteristic function of I, UI_, and we put y® = y(é), then clearly

0 if iel, nI_;
0 =—41 if el —1_;
—1 ifiel —1I,.;

We then prescribe the bebaviour of mass-points in an impulse in the usual way:
(i) individual mass-points conserve their masses and places, i.e.

m =0 and {y" =0, Viel, VL ;

(ii) individual mass-points leave (join) S according as they lose (gain) instantly
the affine velocity, i.e. the velocity specified by (2.4), at time ¢t —0 (¢ 4+ 0) (**).

It follows from the first part of assumption (i) above that

(B.1) Oy = 3 mO% 4 3 mOyl— 3 mOl,

_ﬁI-(-

a formula which clarifies the meaning of the left member of (4.3). Moreover, com-
bining (4.2), (4.5) and (B.1), we have

(B.2) m P} 3, = 3 OO 3 mOyQ— 3 mOyC.

Iini. ~

A straightforward consequence of identity (B.2) is obtained by taking w‘i)z 1:
(B.3) {m}y=Fm®{}.
I

A less trivial application of (B.2), which is arrived at by taking y® = ¥ (and,
consequently, ¥ = x), and using also the second part of assumption (i), is the fol-
lowing statement of the fundamental theorem on the center of mass for systems of
mass-points with variable total mass

(B.4) m_{x}+ {myx, = > mO " ¥,
{1}

(19) It should be noticed that {I} is precisely the symmetric difference of the sets I, and L.
O =m%L-IT)yud—1L).

(11) These hypotheses imply that I, — I_ is comprised of mass-points occupying places
specified by (2.1), although their velocities do not conform to (2.4), at ¢ — 0 (whereas -1
is any subset of I.).



G. Capriz - P. Popio GuipvuaLi: Discrete and continuous bodies, etc. 205

Although the affine structure is unimportant to get the former result, it does
lend some special features to the behaviour of S in an impulse. Let I, N L. include
at least four mass-points placed at the vertices of a non-degenerate tetrahedron.
It follows from (2.1) and the second part of assumption (i) that

0={x—GX}+ {G}Y,
go that
{G}(Y“)—- Y(s‘)) =0

for any pair (i, j) of those mass-points, and hence
(B.5) {Gy=0 and {x}=G{X}.
Clearly, (B.5), implies that

(B.6) (W} ={G}G.

Let further the manner of impulsive imbalance of the total mass of 8 be affine:
i.6. such that
(B.7) {X}=0,
or equivalently, due to (B.5),,
(B.8) {x}=0.
(B.8) implies the coalescence of the centers of mass, not only of I, and I_ but also

of any set resulting vie union, intersection or difference from these two sets. Another
consequence of (B.8) and (B.3) is the following reduction of (B.4):

(B.9) 2mO Ny —=x)=0.
I

Finally, in order to show how to identify the right member of (4.3}, let us con-
gider the case ¥ =gq. We write the impulsive supply of g as follows:

€ m
(B.10) S;=r+r,
where
e £
(B.11) T = z fo®
Iinl

is interpreted as the resultant impulsive force acting on S independently of the

m
imbalance of total mass, whereas £ is interpreted as the resultant impulsive force
acting on S as a consequence of the abrupt imbalance of mutual forces going along
with the imbalance of total mass.
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Because on the one hand

tng) = TmOyP—Im30 = T mOF0 4 3 mO50— 3 w52,
i i Lnl I—1 I-L

and on the other hand

Z m(i’{y(”} — Z f(fz),

L.NI- LNk
one has
mgt= 3 O+ 3 mOy0— 3 m®52.
1+0-I L-I- I
But

> fo—F— 3 mo(30)
[y

I.NI-
so that finally

[
{mg} =7 — z m® y® L Z m y@
I—14 -1

and

3

B.12 = 3 mHyOH__ 3 gty
( ) I+§L y ][ZL Y

II. = Continuous Bodies with Affine Structure.

The developments of Chapter I suggest ideas for a definition of a continuous body
with affine structure.

‘We consider first here the case of a single body of this type, and lay down the
governing balance equations, which, on accepting a well known « metaphysical »
principle of TRUESDELL (ef. ¢.g. [12], Lect. 5), remain formally unaltered also for a
mizture of such bodies. We further list the peculiar balance equations for a generic
constituent of a reacting mixture, when that constituent is endowed with the affine
structure.

5. — Balance equations for a single body.

We begin by sketching the definition of a continuous body endowed with affine
structure along lines first made precise by Nowrr (12).

(*2) As far as possible we follow NoiL [13], [14] for terminology and notations; we refer
the reader to Noll’s papers, where the notions used here in a hasty way are most precisely
introduced and deseribed.
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Let % model a set of material particles X, whieh is equipped with a class P of
mappings x, called placemenis, from 3 into open subsets B, of the three-dimensional
Euclidean point space §. Let further P obey a number of axioms sufficient to in-
duce on B a structure of differentiable manifold, so that a tangent space Iy is at-
tached to each particle X e $. In addition to P, we equip $ with a class G of
mappings [, such that, at any Xe B, [y = I'(X) is an invertible linear mapping
from J, into VU, the translation space of §. We say that such a continuous body B
has affine struciure determined by G, and call the pair (x, I') a complete placement
of B. We single out a particular placement (:*, I'*), and we use also I'y to induce
an inner product on J;: then, any other placement can be uniquely specified in
terms of two fields

x=xX); G=GX),
where
XeB,. = {X|X =»*(X), XeB};
x=n(x*"1X)); G=Tx(Iy™).

Actually, we will assume that x and G be given for all ¢ of a time interval G:
x=x(X,1); 6G=6X1), for (X,t)eB,. x5,

and that appropriate regularity conditions prevail. Accordingly, the kinematical
state of B is determined by a velocity field

&= &(Xy i),
and a wrench field

(8.1) W= GX,1)G(X,1).

We now pass on to establish the balance equations which rule the thermomechanics
of our affine body; in these equations, the definitions of the kinematical entities and
the form of their supplies are directly inspired by the corresponding discrete objects
in Sections 2 and 3 (*2).

We assume that volume densities exist for mass (p), inertia (¢I), momentum (pi),
and generalized moment of momentum (o8,) with respect to 0. Moreover, we take

(33) The developments of this Chapter are based on a straightforward adaptation to a
continuum of the results of Ch. I. It is possible to pursue different courses leading to models
of different physical systems; for instance, one can define generalized moment of momentum
in such a way that § vanishes when W= gradx, etc.
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for the supply of momentum:

(5.2) r:fgde—}—ands (),
B aB

where b is the density of body force, T is the Cauchy stress tensor and n is the unit
outward normal to 2B. To write the correct expression of supply of generalized
moment of momentum we must keep in mind the developments of Sect. 3; it ap-
pears from the discrete model that such supply does not derive from external agencies
alone, but that also internal actions contribute to it (though these do not contribute
to the classical moment). Thus we are led to assume that there exists a density Z
of generalized moment of momentum of internal forces (which is symmetric for
consistency with condition (3.6)) and to accept the following expression of M,:

(5.3) Mozfg(x Qb+ L)dB+f(x QT+ H)ndS—{—deB; skwZ =0,
B éB B

where pL is the density of external body couples, and H is a third-order hyperstress
tensor. Then, we write down the following balance laws:

(6.4) (mass) ( fedB)'=0-
(8.5) (inertia) ( feIdB) —Zfesym(IWT> (cf. eq. (2.T)5,);
50 momentum (foran) =
(5.7) (generalized moment( fgs,,dB) f & @&~ WIWD)dB=M, (cf. eq. (3.4),) .

of momentum) 3

Under usual assumptions of smoothness, equations (5.4), (5.5) and (5.6) have local
consequences. These are:

g=—pdivy,
(5.8) I = 2sym (IWr),
o = b divT.

If we recall (2.7), and (2.8), and use (5.8) to perform some obvious cancellations,
equation (5.7) can be given a form corresponding to (3.5), which generalizes Euler’s

(14) From now on we write B in place of B,..
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second law:

(5.9) fg(s— WS)dB =f(gL + T%dB +ands -{—J.ZdB .
éB - B

B B
The local counterpart of equation (5.9) reads
(5.10) oS—WS) =L+ T?+divH+ Z.

We then preliminarly state the balance of energy in the form:

(5.11) (fg(e+ LE& 4 %IWT-W’T)dB)' = [e(b-3+ L- W7+ )aB +
B B

+f(Tn-ae+Hn-WT+ h-n)dS  (cf. eq. (3.12)),

B
where ¢ is the density of internal energy, og the density of heat source, and A is the
heat flux per unit area. Combining (5.11) with (5.8) and (5.10) and using a number

of trivial differential identities, yields the following reduced form of the so-called
« first law» of thermodynamics:

(6.12) (fgsdB)' = [(T-(grad s — W)+ H-grad Wr— Z- W+ o) dB + [h-nas,
B B JB

which admits of the local version
(5.13) oé = og+ divh + T-(grad & — W)+ H-grad W2 —Z-W.

Finally, we introduce a density gy of entropy production, and define the total
entropy production as

(5.14) fgydB: (fgndB) —fg%qu—f%hmdS,
B B B 8B

where g7 is the density of entropy, and ¢ is the temperature; as a statement of the
entropy imbalance, we lay down the inequality

(5.15) [eyaB>o;
B

denoting by

oy = o(e—9n)

14 — Adnnali di Matematica
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the density of free energy, and using (5.13) to eliminate ¢, we manipulate (5.14)
and (5.15) to arrive at the following local reduced form of the « second law » of thermo-
dynamies:

(5.16) — o(¢+ 99) - %h-gradq‘}—[— T (grad*— W)+ H-grad W7—Z-W=>0.

REMARK. We recall from the Introduction that a primary secope of the present
paper is to motivate the basic fields equations used in [1).

As the comparison of (5.8), 55, (8.10), (5.13) and (5.16) with equations (3.4), (3.15),
(4.4), (4.11), (5.3) and (6.14), respectively, of [1] is disconcerting, we must declare
that we were unable to have corrected in [1] many misprints, or even to have in-
gerted missing lines. We remark also that an attempt was made in [1] to start with
such equations of balance for inertia and generalized moment of momentum as to
cover at the same time the case explicitly studied here and that envisaged in foot-
note (13). Therefore our present formulae are to a certain extent more special.

6. — Structured constituent in a mixture.

Perusal of Section 4 suggests immediately the equations of balance for a consti-
tuent in a mixture; in fact our equation (4.5) is the discrete impulsive equivalent
of equation (3.10) of [1]. Corresponding to equations (4.4) and (4.7), we have,
adopting standard notation (°).

6.1) (deB) :fgédB,
3 a
(6.2) fgde fgde and :f B ;

corresponding to equations (4.8), (4.9) we have

(6.3) f (I——2symS)dB f@@_éz)d_g,

& x

(6.4) f@(S WIW?)dB — fgL+TT dB—andS—deB—f (8—¢S)aB.

* a4 &

(1) The subscript « indicates the «-th constituent, and a backward prime denotes ma-
terial differentiation following that constituent.
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REMARK. — From equations (6.1), (6.2), (6.3), (6.4) local equations follow which

should be compared, with caution (vid. the final Remark of Sect. 5), with equa-
tions (3.1), (4.1), (3.13), (4.8), respectively, of [1].
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