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Abstract 

 

This paper examines a dataset which is modeled well by the 

Poisson-Log Normal process and by this process mixed with Log 

Normal data, which are both turned into compositions. This 

generates compositional data that has zeros without any need for 

conditional models or assuming that there is missing or censored 

data that needs adjustment. It also enables us to model dependence 

on covariates and within the composition. 
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1 Introduction 

 

Many things that we measure and treat as if they are continuous are really 

discrete count data, even if only at molecular extremes. When we form 

compositions from count data. the underlying discrete nature of the data 

may be hidden, except for the occurrence of zeros. 

 

Another perspective is that there are times when compositions may 

clearly not be generated directly from logistic normal distributions or 

indirectly by applying the compositional process to multivariate log 

normal distributions, but by applying the compositional process onto 

other multivariate distributions on R
d+

. If we know what those 

distributions are, it is obvious that we should use that information, 

although logistic normal distributions may provide a useful 

approximation in some situations. 

 

In this paper, we examine two alternative ways of generating 

compositions and how close those distributions are to the logistic normal 

and the consequences in terms of zero components. These alternatives 

are: 

i. Poisson-Log Normal distribution of Aitchison Ho (1989) 

generating counts and then forming a composition 



ii. The same count data mixed with log normal and then forming a 

composition 

 

2 Dataset 

 

We revisit the goilbird dataset of Aitchison (2003) presented at 

CoDaWork 03. Fortunately, we discovered that some additional data was 

collected at the same time for the 60 goilbirds. In addition to the time 

budget data previously noted, we have data relating to the feeding 

element. As any visitor to Scotland will warn you, there are lots of little 

insects at certain times of year, which humans dislike but the goilbirds 

happily devour. Firstly, we have records of how many insects of three 

different types (creepies, crawlies and flies) each goilbird caught during 

the feeding period. It was not feasible to weigh the insects directly, but 

we can estimate the weights caught per bird based on the size measured 

from photographs. The data can be found in the Appendix. 

 

2. Modelling the counts 

 
Figure 1 Bivariate Fit of Total Count By Feed 

 
 

Figure 1 shows a plot of the total number of insects caught by each bird 

against the proportion of time spent feeding, which shows a clear linear 

relationship. A similar relationship appears for the counts of the 

individual species. This suggests that the counts follow a Poisson process 

with mean proportional to the time spent feeding and indeed the fit of 

such a model is good.  

 



Figure 2 Scatterplot for Creepies, Crawlies and Flies Counts 

 
 

However, scatterplots of the counts in Figure 2 make it clear that the 

counts of the different species are not independent. The plot suggests 

negative correlation of the relative creepie and crawlie numbers, perhaps 

because of competition or choice between them by the birds, while the fly 

numbers may be independent. Note that because of the common effect of 

feeding time on all counts, there should be some positive correlation 

between the raw counts.  

 
Table 1 Raw Correlations 
 Creepies Crawlies Flies 
Creepies 1.0000 -0.3765 0.0861 
Crawlies -0.3765 1.0000 0.0624 
Flies 0.0861 0.0624 1.0000 



 
Table 2 Partial Correlations (controlled for Feed) 
 Creepies Crawlies Flies 
Creepies 1.0000 -0.4134 0.0337 
Crawlies -0.4134 1.0000 -0.0794 
Flies 0.0337 -0.0794 1.0000 

 
Tables 1 and 2 show the correlation of the counts before and after 

controlling for the proportion of feeding time. While it is possible to try 

and apply a logistic normal distribution to the composition of the insects, 

we have zeros which are not due to limitations in the measurement 

process and which would have to be taken account of, so it does not make 

sense to ignore the process information that we have, which may well 

account for the zeros. 

 
Figure 3a Quantile Plot for Log(Creepies/Flies) 

 
7 missing data 



 
Figure 3b Quantile Plot for Log(Crawlies/Flies) 

 
4 missing data 

 

Interestingly, when we look at the quantile plots of the logratios, in 

Figures 3a and 3b, which exclude the 11 data points with zeros, the data 

does not look too different from a normal distribution. However, logistic 

normal is not the process that generated the data, so it is clear that using 

the correct process is important.  Fortunately, we have a suitable 

distribution for count data with dependence, which is the Poisson-Log 

Normal distribution proposed by Aitchison Ho (1989), which is a Poisson 

distribution mixed with log normal for the means of the Poission 

distribution. Using this approach makes sense in terms of the underlying 

process and naturally incorporates the zeros and the discrete nature of the 

data. Using WinBugs to perform the Bayesian analysis of the Poisson-

Log Normal distribution, as suggested by Tunaru (2003), with the 

extension that the lognormal means are assumed proportional to the 

feeding time proportions, provides a good fit to the data that supports the 

graphical evidence in favour of dependence structure amongst the 

different types of insects. If we only knew the proportion of insects of 

different types, we can still fit the Poisson-Log Normal distribution 

together with a compositional process applied by treating the total count 

as an unobserved integer, which is an easy extension in a Bayesian 

analysis. In practice, the discrete nature of the composition enables us to 

generate the underlying counts to a high degree of precision (as the 



answers are exact modulo common factors of the counts), so little 

information is lost by using the relative counts instead of the raw counts. 

 

Bayesian analysis using WinBUGS suggests that there is negligible 

additional variation in the fly count beyond the Poisson process, while 

there is strong negative correlation between the additional variation for 

the creepie and crawlie counts. 

 

3. Modelling the weights 

 
Figure 4 Bivariate Fit of Total Weight By Feed 

 
 
 

Figure 4 shows a plot of the total weight of insects caught against the 

proportion of time spent feeding, which also shows a clear linear 

relationship.  

 



Figure 5a Creepie Wt/insect By Creepies 

 
 
Figure 5b Crawlie Wt/insect By Crawlies 

 
 



Figure 5c Flies Wt/insect By Flies 

 
 

However, Figures 5a, 5b and 5c show that the average weight of each 

insect of each type looks independent of the count for that insect. Careful 

analysis shows that the weight per insect is fitted best by independent 

lognormal distributions where the mean is lower for flies than for the 

creepies and crawlies.  

 
Figure 6 Log(Creepies/Flies) wt By Log(Crawlies/Flies) Wt 

 
11 missing data points 

 

Again, it would be possible to analyse the composition of weights of 

different insect types (Figure 6) using log ratios, but this ignores the 

underlying process and would have the continuing problem of zeros 



which contain useful information about the process and would require 

special conditional treatment as suggested by Aitchison and Kay (2003), 

Bacon-Shone (2003) or Fry et al (2001). 

 

4. Conclusions 

 

This analysis again confirms the value of identifying the correct process 

that generated the data before applying any statistical analysis. It is clear 

that, at least in some situations, zeros in compositional data can be 

correctly handled by modeling an underlying discrete counting process 

and then perhaps mixing with another process on R
d+

 rather than 

“adjusting” the zeros to allow the application of the logistic normal 

process. 

 

5. Ongoing work 

 

The extension of this work that currently interests me is situations with 

more zeros than would be generated by the Poisson-Log Normal 

distribution. To model this, I consider the zero inflated Poisson as the 

underlying process instead of standard Poisson and incorporate this in the 

manner considered by Aitchison and Kay (2003), Bacon-Shone (2003) 

and Fry for logistic normal. More also needs to be done in understanding 

the impact of using logistic normal methods combined with zero 

replacement as an approximation to the processes considered in this 

paper. 
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Appendix Time budget and insect capture data for Goilbirds 

Feed Fight Perch Sleep Creepies Crawlies Flies 
Creepie 
Weight 

Crawlie 
Weight 

Flies 
Weight 

0.5476 0.0107 0.0113 0.4303 4 13 9 4.281 14.058 1.305 

0.5385 0.0253 0.009 0.4271 0 5 7 0.000 5.034 0.881 

0.4712 0.0175 0.0211 0.4902 6 2 9 6.112 2.104 1.196 

0.483 0.0091 0.0553 0.4526 1 5 6 0.796 4.965 0.817 

0.434 0.0031 0.1003 0.4627 7 4 8 7.708 3.305 1.028 

0.522 0.0169 0.0321 0.429 5 1 10 4.980 0.964 1.464 

0.5939 0.0027 0.0115 0.3919 2 9 8 2.149 7.853 1.099 

0.5781 0.0229 0.0222 0.3767 2 8 13 1.818 7.371 1.621 

0.4733 0.0047 0.0122 0.5098 5 5 7 6.094 5.497 0.930 

0.4863 0.0309 0.0096 0.4732 0 15 8 0.000 16.248 1.141 

0.5277 0.022 0.0058 0.4445 4 6 8 3.845 6.925 1.124 

0.444 0.0128 0.0044 0.5389 2 4 6 2.155 4.132 0.718 

0.5106 0.0076 0.0215 0.4603 4 3 12 3.829 3.329 1.582 

0.5264 0.0016 0.0406 0.4313 4 3 6 3.618 2.927 0.748 

0.5323 0.0088 0.0262 0.4327 5 5 15 4.540 5.181 2.058 

0.4396 0.0119 0.0258 0.5227 4 1 8 4.450 0.908 1.106 

0.5981 0.0067 0.0191 0.3761 1 3 18 0.995 3.137 2.392 

0.5453 0.0312 0.0121 0.4115 0 15 10 0.000 16.869 1.420 

0.3141 0.0063 0.156 0.5236 2 3 7 1.810 3.105 0.918 

0.4096 0.0049 0.0227 0.5628 6 1 11 5.653 0.757 1.446 

0.463 0.0112 0.0068 0.519 3 1 9 2.833 0.893 1.349 

0.3388 0.0073 0.0235 0.6304 1 3 7 1.171 3.509 1.042 

0.612 0.0095 0.0107 0.3679 3 10 15 3.167 10.867 2.149 

0.5121 0.0063 0.0205 0.4611 25 0 9 25.741 0.000 1.350 

0.5489 0.002 0.0149 0.4341 0 6 10 0.000 5.806 1.357 

0.4105 0.0011 0.0129 0.5755 9 0 9 8.590 0.000 1.408 

0.5107 0.0048 0.0046 0.4798 5 4 6 4.569 4.762 0.771 

0.5914 0.0396 0.0116 0.3574 7 1 12 6.896 0.811 1.630 

0.55 0.0071 0.005 0.4378 4 3 13 3.694 2.885 1.812 

0.5452 0.0171 0.019 0.4186 1 14 14 1.152 15.009 1.836 

0.5218 0.0257 0.0477 0.4048 11 3 11 11.812 2.870 1.394 

0.4907 0.0046 0.1617 0.3429 2 7 10 1.669 7.588 1.366 

0.4085 0.0047 0.0442 0.5425 0 3 9 0.000 3.794 1.250 

0.649 0.0143 0.0231 0.3136 9 6 13 9.477 5.395 1.793 

0.3846 0.0101 0.0721 0.5333 0 3 5 0.000 3.498 0.581 

0.5142 0.0218 0.0323 0.4317 2 3 5 1.745 2.798 0.760 

0.4805 0.0504 0.0682 0.4009 2 12 10 2.123 11.454 1.298 

0.6062 0.052 0.0137 0.3281 2 13 13 2.572 13.984 1.989 



0.4494 0.0251 0.028 0.4975 5 10 13 5.396 11.259 1.860 

0.5978 0.0162 0.01 0.3759 1 9 11 0.792 10.380 1.588 

0.4533 0.007 0.0128 0.5269 2 3 16 1.618 3.368 2.323 

0.5091 0.0075 0.0133 0.4701 10 5 12 10.624 4.641 1.780 

0.528 0.0314 0.0428 0.3978 7 0 7 6.231 0.000 0.946 

0.4216 0.004 0.029 0.5454 2 4 7 1.553 4.691 1.055 

0.5417 0.0066 0.0039 0.4478 2 4 12 2.177 4.171 1.690 

0.6328 0.0029 0.0801 0.2842 5 2 12 5.367 2.183 1.856 

0.4924 0.0146 0.0418 0.4512 5 1 5 5.988 0.823 0.657 

0.6818 0.0126 0.0035 0.3021 5 2 15 5.385 2.136 1.996 

0.4337 0.0131 0.0186 0.5346 8 4 10 7.843 3.877 1.346 

0.7006 0.0065 0.0167 0.2762 5 8 13 4.743 8.782 1.792 

0.4954 0.0032 0.0118 0.4895 2 1 12 2.103 1.111 1.603 

0.5156 0.0059 0.0206 0.4579 2 3 15 2.107 3.691 2.144 

0.4277 0.0006 0.0367 0.535 1 17 5 0.668 18.689 0.689 

0.3431 0.0073 0.0761 0.5734 3 1 5 2.700 0.784 0.665 

0.4692 0.0057 0.0068 0.5183 4 0 13 4.519 0.000 1.831 

0.4886 0.0578 0.0083 0.4453 0 7 6 0.000 6.300 0.940 

0.5483 0.0169 0.0114 0.4234 4 6 6 4.276 5.871 0.795 

0.3339 0.0367 0.0348 0.5946 5 1 5 5.335 1.208 0.664 

0.3455 0.007 0.098 0.5495 1 8 6 0.951 7.617 0.823 

0.4376 0.0279 0.1273 0.4072 1 5 8 1.425 4.580 1.084 

 


