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The performance of wavelet transform-based features for the speech/music discrimination task has been investigated. In order
to extract wavelet domain features, discrete and complex orthogonal wavelet transforms have been used. The performance of
the proposed feature set has been compared with a feature set constructed from the most common time, frequency and cepstral
domain features such as number of zero crossings, spectral centroid, spectral flux, and Mel cepstral coefficients. The artificial
neural networks have been used as classification tool. The principal component analysis has been applied to eliminate the
correlated features before the classification stage. For discrete wavelet transform, considering the number of vanishing moments
and orthogonality, the best performance is obtained with Daubechies8 wavelet among the other members of the Daubechies family.
The dual tree wavelet transform has also demonstrated a successful performance both in terms of accuracy and time consumption.

Finally, a real-time discrimination system has been implemented using the Daubhecies8 wavelet which has the best accuracy.

1. Introduction

The discrimination of music and speech has been an impor-
tant task in multimedia signal processing with the increasing
role of the multimedia sources in our life. The speech/music
discrimination (SMD) systems can be used in the develop-
ment of the efficient coding algorithms for audio decoders
[1]. Thus, if the speech can be separated, it can be coded with
a speech coder which needs less bandwidth relative to the
audio coder. Also, speech/music discriminator is important
in automatic speech recognition when the recordings include
music such as radio broadcasts [2]. The content-based
multimedia retrieval [3] and automatic channel selector
design for radios are other emerging applications with a
growing interest for speech/music discriminators. There are
several features which are used to classify music and speech
such as number of zero crossings [4], spectral centroid, and
Mel frequency cepstral coefficients [5, 6]. The entropy and
dynamism features have been used for hidden Markov model
classification in [7]. In [8], a system which looks for the

transition between music and speech using two characteris-
tics of signals, which are RMS-based average density of zero
crossings and average frequency, has been proposed. In [9],
the harmonic features are used to discriminate speech and
music using a hierarchical oblique decision tree. An SMD
system designed for radio broadcasts that has been proposed
in [10] uses a three-stage structure, which determines the
speech and music segments that are separable at first glance
with spectral entropy and region growing. Recently, a seg-
mentation method has been proposed in [11] which uses the
property that the mean and the variances of the filter bank
changes more rapidly and reaches higher value for speech
than music.

Since it is important to deal with nonstationary signals
and to achieve variable time and frequency localization of
acoustic data, the wavelet-based parameters became an im-
portant tool in speech/music discrimination [12-15]. How-
ever, there are some important choices to make for recon-
struction of the features from the wavelet coefficients. In
some studies, only one level of wavelet decomposition is



employed, and the wavelet transform is applied to 20 or
30ms windows. To capture the nonstationary information
from a time series, a longer window should be used. The
windows in order of seconds are used in [12]; however,
this is too long for a real-time application. Also, decom-
posing signal into several frequency bands gives us more
discriminative features. In another recent work, Didiot et al.
employed energy-based features extracted from the 5 and
7 bands of discrete wavelet components [15]. For audio
analysis including SMD and genre classification, Tzanetakis
and Cook employed mean and variances of 12 bands of
wavelet coefficients and the ratio of the mean values for
adjacent bands using Daubechies 4 wavelets in 3 sec windows
[12]. The accuracy of the method is approximately 90%.
Along with several advantages, the discrete wavelet transform
has some disadvantages such as lack of time invariance and
oscillatory behavior. In order to cope with these problems,
complex wavelet transform has been proposed [16]. The dual
tree complex wavelet transform, which is a specific case of
complex wavelet transform, has been introduced in [17].

Therefore, the aim of this study is both to consider the
feature extraction for SMD with DWT to further improve
performance for real-time applications and to examine the
features obtained from the statistical parameters of the
dual tree wavelet coefficients. In order to compare the per-
formance of the proposed feature sets, the previously used
time, frequency, and discrete wavelet features have been used
to classify the same data set. The database has been con-
structed from the speech samples taken from TIMIT
database and the music samples which are recorded from the
audio CDs and radios with different genres such as classical,
jazz, and pop. The artificial neural networks (ANNs) have
been used for the comparison of the effectiveness of the
feature extraction algorithms.

The paper is organized as follows: a brief introduction
of the previous and proposed feature extraction methods
are explained in Section 2; the introduction of the data set
and classification algorithm with the results are given in
Section 3; the conclusions and future works are discussed in
Section 4.

2. Features for Speech/Music Discrimination

In this section, the related theoretical background on the
features used for speech/music discrimination systems will
be given briefly.

2.1. Common Features. The time-domain features such as
number of zero crossings and frequency-domain features
such as low energy ratio, spectral centroid, spectral roll-off
and spectral flux are commonly used for speech/music dis-
crimination. Also, Mel frequency cepstrum coefficients are
shown to be successful in speech/music classification and re-
cognition applications. For comparison, a feature vector con-
structed from these features have been used for classification
in the first method of this study.

2.1.1. Number of Zero Crossings. It is the time-domain fea-
ture which represents the number of zero crossing in a frame.
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It is a useful feature in music and speech discrimination,
since it is a measure of the dominant frequency in the signal
[5, 6]. The number of zero crossings are calculated as

N
Z; =05 % Z |sgn(x(n)) —sgn(x(n— 1)), (1)

n=1

where x(n) is the nth component of the frame of length N.

2.1.2. Low Energy Ratio. This feature gives the number of the
frames of which the effective or root mean square (RMS)
energy is less than the average energy. The RMS energy for
each frame is determined as

1
K

M=

Xrms = Xi (2)

k=1

where Xj is the magnitude of kth frequency component in
the frame. Since the energy distribution is more left-skewed
than for music, this measure will be higher for speech [6].

2.1.3. Spectral Centroid. This is the measure of the center of
mass of the frequency spectrum and calculated as

_ ZkK=1 kak
2115:1 Xk

where Xj is the magnitude of the component in the fre-
quency band fi [5, 6].

SC , (3)

2.1.4. Spectral Roll-off. This feature is important in deter-
mining the shape of the frequency spectrum. The spectral
roll-off point Ry is the frequency where the 95% of the spec-
tral power lies below as summarized in

Ry K
> X =0.95> X7, (4)
k=1 k=1

where X is the magnitude of the component of the kth fre-
quency. Since the most of the energy is in the lower
frequencies for speech signals, Ry has lower values for speech
(5, 6].

2.1.5. Spectral Flux. It represents the spectral changes bet-
ween adjacent frames and calculated as

sF= > (x; - xt1)’, (5)

M=

k
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—

where X is the kth frequency component of the tth frame.
Then the average of the all frames are calculated. The music
has a higher rate of changes than the speech does, thus this
value is higher for music [5, 6].

2.1.6. Mel Frequency Cepstrum Coefficients (MFCCs). The
Mel frequency spectrum is the linear cosine transform of
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a log power spectrum on a nonlinear Mel scale of frequency
[18]. The Mel scale is inspired from the human auditory
system in which the frequency bands are not linearly spaced.
Thus, the sound is represented better. The calculation of the
MEFCCs includes the following steps.

(i) The discrete Fourier transform (DFT) transforms the
windowed speech segment into the frequency do-
main, and the short-term power spectrum P(f) is
obtained.

(i) The spectrum P( f) is warped along its frequency axis
f (in hertz) into the mel-frequency axis as P(M),
where M is the Mel frequency using

M(f)=2595*10g<1+7].%0). (6)

(iii) The resulted warped power spectrum is then con-
volved with the triangular band-pass filter P(M) into
0(M). The convolution with the relatively broad cri-
tical-band masking curves (M) significantly reduces
the spectral resolution of (M) in comparison with
the original P( f), which allows for the downsampling
of O(M).

0(Mx) = > P(M — M)y(M), k=1,....,K.  (7)
M

Then, K outputs X (k) = In(6(My)),k = (1,...,K) are ob-
tained. In the implementation, 6(Mjy) is the average instead
of the sum.

(iv) The MFCCs are computed as

MECC(d) = ixkcos[d((k—o.s)%)], k=1...,D.

k=1
(8)

2.2. Discrete Wavelet Transform. The multiresolution anal-
ysis (MRA) provides a time-frequency representation well
suited for nonstationary signals. MRA decomposes and ana-
lyzes the signal at different frequencies and different resolu-
tions in the space spanned by wavelets and scaling functions.
The continuous wavelet transform of a signal x(¢) is the
projection of the signal on this space as

1 t—r

W) = — oy (55), ©)
where y(t) is the mother wavelet s and r are the scale and
translation coefficients, respectively [19]. For computational
issues, discrete wavelet transform (DWT) is obtained. There
is a rich set of basis functions for DWT and it is possible to
get a compact representation of signal using this transform.
In practical applications, DWT is applied in sampled signal
x[n]; n=1,...,N as

N-1
DWT[n,Zj] = zx[m]l//;}[m —nl, (10)
m=0

where vy (1] = (1/7/27)y(n/27).

*(0) High-pass filter

FiGUre 1: DWT with two composition levels [15].

DWT is implemented using a pyramidal algorithm re-
lated to a multirate filter-bank approach for multiresolution
analysis. Mallat has shown that it is possible to make fre-
quency band decomposition by using successive low-pass (L)
and high-pass (H) filters in the time domain as shown in
Figure 1 [15].

After each filtering stage 7, the outputs are downsampled
by 2, and the outputs are a;(r) approximation and w;(r)
detail or wavelet coefficients for low- and high-pass filters,
respectively. Approximation coefficients give local averages
of the signal. On the other hand, detail coefficients show the
differences between local averages. In this work, Haar wavelet
and Daubechies family, which is known as one of the best
families for speech processing applications, is used as the
mother wavelet [9, 10].

2.3. Discrete Wavelet Transform Based Energy Features. In
study of Didiot et al. [15], the energy-based features which
are calculated using wavelet transform have been proposed.
According to study, the energy distribution in each frequency
band is a very relevant acoustic cue and energy, calculated
from DWT, can be used as a speech/music discrimination
feature. In our study, these energy based parameters have
also been used in order to make comparison among different
feature extraction methods.

2.3.1. Instantaneous Energy. This is a feature which gives the
energy distribution in each band and given as

Nj

ijZIOglo(z\lj,Z(Wj(T’))z), (11)

Jr=1

where w;(r) is the wavelet coefficient at time position r and
frequency band j and N is the length of the analysis window.

2.3.2. Teager Energy. Teager energy has been recently applied
for speech recognition and given as

5"
(12)

Nj-1
_ 1og10(‘ 3 (i) = (wr = 0wyl + 1)

r=1

It is said that the discrete teager energy operator (TEO)
allows modulation energy tracking and gives a better repre-
sentation of the formant information in the feature vector
compared to MFCCs in [15]. It is also pointed out that the



Teager energy is a noise robust parameter for speech re-
cognition, because the effect of additive noise is attenuated.

2.4. Complex Wavelet Transform. Conventional discrete wa-
velet transform suffers from some fundamental shortcom-
ings despite its compact representation and efficient com-
putational algorithm. The first shortcoming of DWT is that
a small shift of the signal in time domain yields distortion in
the wavelet coefficient oscillation pattern around singulari-
ties. The second problem of DWT is the lack of directionality
for two and higher dimension signals. Complex wavelet
transform (CWT) has been proposed inspiring by the
Fourier transform which does not suffer from these types
of problems. CWT is defined with a complex-valued scaling
function and complex-valued wavelet

v (1) = v, (1) + (1), (13)

where v, (¢) and y;(t) are real and imaginary parts. If these
functions are 90° out of phase with each other, that is they
form a Hilbert transform pair, then y.(t) is an analytic
signal and it has a one-sided spectrum. Projecting the signal
onto 2/y.(t)(27t — n), the complex wavelet coefficients are
obtained as

dc(jsn) = dr(j,n) + jdi(jsn). (14)

Complex Wavelet Transform can be performed by two
schemes. In the first one, a complex wavelet y.(f) that
forms an orthonormal or biorthogonal basis is searched.
The second method seeks a redundant representation, and
it searches y,(f) and y;(t) that provide orthonormal and
biorthogonal bases individually. The resulting CWT has
2x redundancy in 1-D and has power to overcome the
shortcomings of DWT. In this study, the dual-tree approach
for performing complex wavelet transform which is a natural
approach to second, redundant type has been preferred.

2.4.1. Dual-Tree Complex Wavelet Transform (DT-CWT).
Dual-tree complex wavelet transform was first introduced
by Kingsbury in 1998 [20]. The dual tree implements an
analytic wavelet transform by using two real discrete wavelet
transform with two filter-bank trees; the first DWT gives the
real, and the second one gives the imaginary part of the CWT.
Analysis and synthesis filter-banks can be illustrated as in
Figure 2, where ho(n) and h;(n) denote the low-pass/high-
pass filter pair for the upper filter-bank which implements
WT for real part. In the same way, go(n) and g(n) denote
the low-pass/high-pass filter pair for the lower filterbank for
imaginary part. In this approach, the key challenge is joint
design of two filterbanks to get complex wavelet and scaling
function as close as possible to analytic [20].

The filters used for real and imaginary parts of the
transform must satisfy the perfect reconstruction condition
given as

Zho(”)ho(n +2k) = §(k),
" (15)
hi(n) = (=1)"ho(M — n).

ISRN Signal Processing

—>

(2)—
= %

(: —
x(1) B —{am F—12)

(: —
: —)
)—

FIGURE 2: Analysis filter bank for the dual tree CWT [21].

Two low-pass filters of dual tree hy(n) and go(n) satistying a
very simple property make corresponding wavelets to form
an approximate Hilbert Transform pair: one of them must
be approximately a half-sample shift of the other [21]

go(n) = ho(n —0.5) = y,(t) = H{yu(t)}. (16)

Since hy(n) and gy(n) are defined only on integers, it will be
useful to rewrite the half-sample delay condition in terms
of magnitude and phase functions separately in frequency
domain to make the statement rigorous

|Go(e) | = [Ho(e) |
(17)
Gy (ejw) = ZHO(ejW — 0.5W).

There are two popular methods for design of filters for
DT-CWT [20].

Q-Shift Solution. According to g-shift solution, gy(n) must
be selected as

go(n) = ho(N — 1 —n), (18)

where N is the length of filter /y(n) and is even. In this case,
the magnitude condition is satisfied but not the phase con-
dition as shown in (19) in the frequency domain

|Go(e) | = [Ho(e) ],
(19)
Gy (ej“’) + ZHO(efW — O.SW),

The quarter-shift (g-shift) solution has an interesting prop-
erty that causes to take its name: when you ask that gy(n)
and ho(n) be related as go(n) = ho(N — 1 — n) and also
that they approximately satisfy ZGo(e/*) = ZHp(e/™ —
0.5w), then it turns out that the frequency response of hy(n)
has approximately linear phase. This is verified by writing
go(n) = hy(N — 1 — n) in terms of Fourier transforms

Go(&™) = H; (e)e TN, (20)

where the * represents complex conjugation. This implies
that the phases satisty

LGo(e) = —£Hy (") —(N=Dw.  (21)
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If the two filters satisfy the phase condition approximately, it
can be written that

LHy(e™) = 05w = —ZHp(e/”) = (N = Dw.  (22)
and we have the equation
LHy(e") ~ =0.5(N = 1)w +0.25w. (23)

As it can be seen, ho(n) is an approximately linear-phase
filter. This means that hy(n) is approximately symmetric
around the point n = 0.5(N — 1) — 0.25. This is one quarter
away from the natural point of symmetry, and solutions of
this kind were introduced as g-shift dual-tree filters for this
reason [20].

2.4.2. Common Factor Solution (CFS). Another method for
filter design stage named as common factor solution (CFS)
can be used to design both orthonormal and biorthogonal
solutions for the dual tree CWT [20].

In this approach, the filters, hy and gy are set as

ho(n) = f(n) * d(n),
go(n) = f(n) *x d(L — n),

(24)

where d(n) is supported on 0 < n < L and * represents the
discrete time convolution. In terms of Z-transform, we have

Hy(z) = F(z)D(z),

. (25)

Gol2) = F(z)z’LD(;).

For this solution, the magnitude part of half-sample delay

condition is satisfied; however, the phase part is not exactly
satisfied as in g-shift solution [20]

[Go(e) | = [Ho(e)
Gy (ej“’) + AHo(efW) — 0.5w.

So, the filters must be designed so that the phase condition is
approximately satisfied.

3. Experimental Study and Results

3.1. Dataset and Preprocessing. The two different data sets
have been utilized, and the features have been extracted
separately for these two different datasets. In the first dataset,
TIMIT database has been used for speech and several CD
recordings with various musical genres have been used for
music database. To obtain the second dataset, radio broad-
casts were recorded containing music and speech. The
sampling frequency was set as 44100 Hz in every stage of
study. However, since the data taken from TIMIT database
is sampled with 16000 Hz, they have been interpolated in
the preprocessing stage in order to set sampling frequency
to 44100 Hz. For the common features, the segmentation
has been performed for a frame of 4196 samples with 512

TaBLE 1: Content of datasets.

Overall database Train set Test set
Speech  Music  Speech Music Speech Music
Dataset 1 4620 4290 3080 2860 1540 1430

Dataset 2 2624 2190 1749 1460 875 730

samples overlapping which corresponds to a frame length
of 95ms. Our experiments showed that the use of shorter
window lengths limits the discriminative characteristics of
window.

Both datasets used contain samples with length of 0.5 sec.
While the first dataset includes 4290 music and 4620 speech
samples, the second dataset contains 2190 music and 2624
speech samples entirely derived from radio broadcasts in
contrary to the first dataset. In the rest of the context, the first
and second data sets will be named as Dataset 1 and Dataset
2, respectively. For the performance evaluation, the data sets
have been divided into two groups as training and test sets. A
detailed representation for dataset 1 and dataset 2 is given in
Table 1.

The four different feature extraction methods have been
employed in this study. The first method has a parameter
vector which contains time-frequency-based features and
Mel cepstrum coefficients with length of 21. The second
and third methods use DWT-based features. The second
method contains DWT-based energy parameters Teager and
instantaneous energy as described in Section 2.3. The length
of feature vector for third method is 10.

The novel methods proposed in this study are the last
two feature extraction schemes. In the third method, 12-
level DWT decomposition has been performed to cover
the analysis frequency range in detail using several types
of mother wavelets of Daubhecies family. The length of
feature vector constructed from the statistical measures of the
coefficients, and ratios between the adjacent subbands is 38.
Usage of ratio parameters and the selection of the size of the
analysis window are the important aspect which improves
the performance of the classification in this study.

The last method is based on complex wavelet transform
(CWT), and two different filter design strategies including
common factor solution and Q_shift solution have been used
at feature extraction stage. CWT has been performed for 5-
level and 7-level to avoid further increase in the length of the
feature vector which results in feature vectors with length of
25 and 35 for 5 and 7 bands, respectively.

Before classification stage, the features that are highly
correlated with the other features have been eliminated using
principal component analysis (PCA) to reduce the length of
feature vectors. The principal components that contribute
less than 0.05% to the total variation in the data set have been
eliminated. Table 2 shows the length of the feature vectors
before and after PCA. It has been observed from Table 2
that the DWT-based energy features include discriminative
information. Similarly, approximately half of preliminary
feature vectors are correlated with each other especially for
CWT-based features.
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TABLE 2: Lengths of the feature vectors before and after PCA.
Olglgglglal After PCA
Conventional Common features 21 20
DWT based DWT Energy (db8) 10
Energy DWT Energy (coifl) 10
Haar 38 19
db2 38 19
DWT based dbs 38 22
db15 38 21
db20 38 21
CFS (5 Levels ) 25 11
CWT based Q_Shift (5 Levels ) 25 11
CFS (7 Levels ) 35 15
Q_Shift (7 Levels ) 35 14

The feedforward artificial neural networks with the
scaled conjugate gradient (SCG) backpropagation algorithm
in MATLAB’s neural networks toolbox which belongs to
the class of the conjugate gradient algorithms have been
used for classification. SCG algorithm uses step size scaling
instead of line-search per learning iteration, and this makes
it faster than other second-order algorithms [22]. This
algorithm performs well for networks with a large number of
weights, where it is as fast as the Levenberg-Marquardt and
resilient backpropagation algorithms; its performance does
not degrade quickly. Also, the conjugate gradient algorithms
have relatively modest memory requirements. The number
of hidden neurons has been preferred as 40, and the target
mean square error has been defined as 0.001, as a result of
extensive simulations.

All codes and programs in this study have been written in
MATLAB. The codes for common features, DWT-based sta-
tistical and energy features have been written by the authors.
For DWT-based analysis, wavelet toolbox of MATLAB has
been used. For CWT-based analysis, the codes are taken from
the study of Selesnick [21] for common factor solution-based
filter design and the programs written by two students under
supervision of I. Selesnick have been used for Q-shift filter
based analysis [23].

In the following section, the general classification results
will be given for feature vectors. The performance has been
given as the accuracy of the classification which can be
formulated as

Accuracy — — PHIN.
Y = TPTFPTINTEN’

where TP, TN, FP, and FN represent the number of speech
samples labeled as speech, the number of music samples
labeled as music, the number of music samples labeled as
speech and the number of speech samples labeled as music,
respectively.

(27)

3.2. General Classification Performance. The results of the
experiments are summarized as general performance in
Table 3.
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TaBLE 3: General classification results.

Performance (%) Dataset 1  Dataset 2
Conventional Common features 99.72 94.27
DWT based DWT energy (db8) 89.02 91.21
Energy DWT energy (coifl) 8293 77.45
Haar 99.9 96.51
db2 99.93 97.69
DWT based dbs 99.97 99.19
db15 99.83 98.63
db20 99.9 98.69
CFS (5 Levels ) 99.12 98.13
CWT based Q_shift (5 Levels ) 99.93 97.95
CFS (7 Levels ) 99.87 97.82
Q_shift (7 Levels ) 99.93 97.57

When Table 3 is taken into consideration, it can be
seen that wavelet-based parameters have higher classification
results than traditional methods. In general, all methods are
successful in the classification of samples in Dataset 1, which
indicates that the TIMIT speech data and CD recordings are
separable. However, it is not possible to say same thing for
Dataset 2, since the samples in Dataset 2 reflects a more real-
istic case, where samples are recorded from radio broadcast.
The best performance has been obtained with db8 wavelet.
The complex wavelet-based features perform better than
conventional methods and wavelets with fewer vanishing
moments. However, they are not as successful as the db8. The
similarity of the mother wavelet with the analyzed waveforms
is an important criterion for the wavelet analysis which may
be the cause of this performance difference. Therefore, the
accuracy for different databases may differ drastically.

The feature extraction methods are considered in terms
of their calculation times, and the average computation times
for feature-extraction stage for all methods used in this study
are given in Table 4.

According to Table 4, a sorting among the feature extrac-
tion methods can be made as

tc > towt > fcwT > tDWTE» (28)

where t¢, tpwr, tcwr, and fpwre show the computation time
for the methods based on conventional, DWT, CWT, and
DWT-based energy features. As expected, the conventional
methods take more time, since they include time domain
calculations. Although energy-based features are the fastest,
they have poor classification performance.

The calculation times for DWT-based statistical feature
extraction show differences according to the used wavelet
in the analysis. Wavelet families including more vanishing
moments such as db15 and db20 spend more time for com-
putation comparing to other wavelet families, since they have
longer filters. It is encountered that the db8 families as the
optimum wavelet for DWT-based analysis since it shows
highest performance in classification of speech and music
and it has acceptable calculation time.
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TABLE 4: Average computation times for used feature extraction
methods.

Speech Music
(msn.) (msn.)
Conventional Common features 0.2768 0.2745
DWT based Daubechies8-based 0.0216 0.0217
energy features
Energy Coiflet1-based
oUiet "based energy 4 0176 0.0176
features
Haar 0.0357 0.0382
Daubechies2 0.0401 0.04
DWT based Daubechies8 0.0485 0.0462
Daubechies15 0.1035 0.1034
Daubechies20 0.155 0.1547
Q-shift-based CWT
CWT based features 0-0298 0.0296
CFS-based CWT 0.0301 0.03
features

CWT-based method is faster than DWT-based analysis,
and it shows performance results close to DWT. In this per-
spective, CWT-based features can be used for online imple-
mentation as well.

It should be noted that the silent parts of samples could
be determined quicker than the feature-extraction methods
during online implementation, since only an energy thresh-
old value is considered to make a decision if the segment is
silence or not.

3.3. Graphical User Interface (GUI) Design for Speech/Music
Discrimination. A graphical user interface has been designed
as well in order to perform speech music discrimination
visually. An online labelling module has been also embedded
to the interface and observation of performance for real-time
classification has become possible with this tool.

3.3.1. Main Module. Main module can be used to see clas-
sification results obtained by methods. In Figure 3, the GUI
designed for main module is shown. Using “load file” button,
the file to be analyzed is selected, and the “play” button plots
and plays the signal at the same time. Since time-/frequency-
based features are also used at the classification stage, it is
important to see the general structure of spectrogram. For
this aim, there is a button named as “spectrogram of signal”
in the module to plot time/frequency properties. In the
DWT-based features part of module, 12-level decomposition
is performed using selected wavelet from pop-up menu. It is
also possible to see shape of wavelet and wavelet coefficients
using “show wavelet” and “plot wavelet coefficients” buttons,
respectively. For CWT-based feature, there is also a pop-
up menu which you can select the filter design method for
analysis. It can be seen the existing complex wavelet with
its real and imagined parts using “plot filter Coefficients”
button in CWT-based feature extraction part of the module.
For time/frequency based feature extraction, there is also a
button and the values of parameters such as spectral centroid,

spectral rolloff, spectral flux, the number of zero crossings,
and low energy ratio of loaded file exist in the blanks when
this button is pushed. It is possible to get the classification
results of four-feature extraction methods simultaneously
using “classification results” button. If “online labelling
module” button is pushed, the online labelling module will
appear in a new window.

3.3.2. Real-Time Speech/Music Discrimination Module. This
module has been designed to observe speech/music classifi-
cation performance for online implementations. In the given
graphical user interface in Figure 4 , a sample file is fetched
using “open” button and the online labelling process is
started using “start” button. “pause” button makes it possible
to stop the process temporarily, and using “continue” button
the labeling process can be continued from where it is
stopped. The “stop” button interrupts the program and ends
the label assignment process.

In the module, the red letters under the signal graph
shows the preassigned labels for data and “S” “M”, and
“” are used to indicate speech, music, and silence parts
of data, respectively. Online classification results are shown
with blue color under preassigned labels, as it can be seen
from Figure 4. These labels are assigned for segments which
have the length of 0.5sec. In online label assigning, the
features are extracted using 12-level DWT with db8 wavelet
for each sample, since it has given the most accurate results
in experiments and a previously trained artificial neural
network is used to determine the labels.

4. Conclusions and Future Work

There has been a growing interest in speech/music discrim-
ination systems which is usually used in several applications
as a preprocessing stage of several audio systems. However,
still improvements for SMD systems are required to develop
effective real-time systems. Therefore, in this study, two
feature-extraction schemes based on discrete and dual-tree
wavelet transforms have been proposed which are suitable
for real-time applications. After comparing the proposed fea-
tures with the conventional features and recently proposed
wavelet-based energy features, an online labeling module has
been implemented with the Daubhecies8 wavelet.

Regarding the experiments and results given in the previ-
ous section, it has been observed that conventional features
are not very effective in discrimination of speech/music
samples when they are used alone. However, if they are used
together, the accuracy tends to slightly increase.

The wavelet transform methods except the energy-based
ones have shown higher performance for Database 1 than the
results for Database 2, because the second database consists
of the recordings from radio broadcasts which reflects a more
realistic case.

The selection of the analysis window length which spec-
ifies the content of the nonstationary signal and the speed
of implementation is an important choice for SMD. The
selection of a short window order of milliseconds as in lit-
erature will not give the necessary information on time-
varying frequency content, since the signal can be assumed
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as stationary in this interval. On the other hand, the usage
of long window order of seconds, which is reported as
successful, limits the online application of the algorithms.
The proposed algorithm is computationally efficient (average
running time for the proposed method is <50 msn), and this
allows the use of method for real-time implementation.

The classification performance of DWT-based feature ve-
ctor varies depending on the mother wavelet used in the
feature-extraction stage. When the number of vanishing
moments is increased, the wavelet becomes smoother. These
smooth wavelets produce large coefficients for slowly chang-
ing signals like music, while it produces relatively small
coefficients for speech signals. This can be used as a dis-
criminative property for SMD. The Haar and db2 wavelets
have a few vanishing moment this may prevent the good rep-
resentation of signal in frequency domain. On the contrary,
db15 and db20 have much more filter coefficients and van-
ishing moments, but this increases the complexity in the
feature space and also requires longer computations. In this
way, db8 has emerged as the most ideal wavelet type.

Among the CWT-and DWT-based features, DWT feature
extracted with Daubechies8 wavelet has demonstrated the
highest classification performance, while the CWT-based
classification has shown results as 99.93% for Databasel and
98.13% for Database2. When all features are concerned, we
see that Daubechies8-based parameters have superior dis-
crimination features in terms of classification of speech and
music.

In the study, the contribution of the ratio parameters to
the discrimination performance have also been examined for
DWT- and CWT-based features. It has been observed that
ratio parameters provide a contribution about 1-1.5% to the
overall performance for DWT-based parameters. However,
the results were inconclusive for CWT.

In the classification stage, artificial neural networks have
been used as classification tool. The number of hidden neu-
rons has been preferred as 40, and the target mean square
error has been defined as 0.001, heuristically. Conjugate
gradient algorithms have been selected as learning algorithm,
since they have advantages according to other methods. Also,
principal component analysis has been performed before the
classification stage to represent signals more efficiently and
to decrease the dimension of feature vector.

The observed SMD performance of CWT-based features
was less than the DWT-based ones. To obtain a better
performance, a feature set which reflects the most powerful
properties of CWT must be constructed. The filter structure
used in CWT-based parameterization has the possibility of
presence of unsuitable characteristics in terms of speech/
music discrimination, and as a result, the accuracy is ob-
served as lower than performance of DWT-based features.
In this manner, adaptive filter design is required to get more
successful results. The dataset can be expanded to include
mixed speech-music samples. In this way, a multiclass clas-
sification can be performed instead of binary classification
for future studies.

The proposed feature extraction is also suitable for
a hardware implementation using digital signal processors to
have a faster SMD system.
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