
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998 569

Discrete Approximation and Supervisory
Control of Continuous Systems

Jörg Raisch and Siu D. O’Young

Abstract— This contribution addresses the following hybrid control
problem: a continuous plant (its state evolving in Euclidean space) is to be
controlled via symbolic output feedback—both measurement and control
signal “live” on finite sets of symbols. We adopt the following approach:
the hybrid problem is first translated into a purely discrete problem by
approximating the continuous plant model by a (nondeterministic) finite-
state machine. By taking into account past measurement and control
symbols, approximation accuracy can be improved and adjusted to the
specification requirements. Supervisory control theory for discrete-event
systems (DES) is then applied to find the optimal controller which enforces
the specifications. As the behavior of the approximating automaton is
guaranteed to contain the behavior of the underlying continuous plant
model, the controller also forces the latter to obey the specifications.

Index Terms— Discrete approximation of continuous systems, hybrid
control systems, timed supervisory control.

I. INTRODUCTION

We consider a special class of hybrid control problems: the
plant state evolves inIRn and is affected by real-valued unknown
but bounded disturbances, whereas control input and measurement
signals are discrete-valued or symbolic.1 One is then concerned
with finding an appropriate feedback structure mapping symbolic
measurement signals into (sets of) symbolic control inputs. Such
problems frequently arise in chemical process control: process models
typically have a continuous state set but continuousand discrete
control inputs and measurement signals. Often, there is also a clearly
defined hierarchical structure where feedback loops from continuous
measurement to continuous control variables are interpreted to be
“low level” (dealing, for example, with set-point regulation), and
discrete signals are used for “high level,” or supervisory, control.
Examples for the latter are start-up/shut-down procedures and the
handling of “irregularities” (discrete alarm signals). In this paper,
we will take plant model and continuous control loops as an entity
(simply referred to as “the plant”), for which a discrete controller has
to be designed.

How to approach such problems depends crucially on specifica-
tions: if specifications are purely in terms of continuous variables,
one can adopt a “continuous point of view” (e.g., [10])—under certain
conditions, a controller equipped with a continuous plant model can

Manuscript received September 23, 1997. This work was supported by
Deutsche Forschungsgemeinschaft under Grants Ra 516/2-2 and Ra 516/3-1,
by “Sonderforschungsbereich” SFB 412, and by the Information Technology
Research Centre, Ontario, Canada.

J. Raisch is with the Institut für Systemdynamik und Regelungstechnik,
Universiẗat Stuttgart, D-70550 Stuttgart, Germany (e-mail: raisch@isr.uni-
stuttgart.de).

S. D. O’Young is with the Faculty of Engineering and Applied Science,
Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
A1B 3X5.

Publisher Item Identifier S 0018-9286(98)02807-4.
1This paper is set in a discrete-time framework, i.e., the domain of all

signals isft0; t1; � � � g, with ti � ti�1 being constant. This understood, the
adjectives “discrete” and “continuous” will in the sequel only be used to refer
to the codomainof signals: the codomain of a discrete, or discrete-valued,
signal is a set of symbols which, for our purposes, will be assumed to be
finite (e.g.,f“valve open,” “valve closed”g or f“liquid level too low,” “ok,”
“too high”g). The codomain of a continuous, or continuous-valued, signal
gives the real numbers.

reconstruct the plant state from symbolic measurements and use it
in a Receding Horizon scheme. Hence, the hybrid problem is solved
within the “traditional” framework provided by continuous systems
theory.

In this paper, we follow a complementary approach, which is based
on the work by Antsakliset al. (e.g., [1]), and Lunze (e.g., [5]):
if specifications are in terms of symbolic variables, the continuous
plant model can be approximated by a (nondeterministic) finite-
state machine (FSM); this converts the hybrid control problem into
a purely discrete one, which can subsequently be solved using
tools from discrete-event systems (DES) theory (e.g., [13]). A key
requisite in this approach is that the discrete-time behaviorBc of
the underlying continuous model must be contained in the behavior2

Bd of the discrete model. If the conditionBc � Bd were violated,
the continuous system could respond to a given input signal with
an unacceptable output or measurement signal which would not be
predictable by the discrete approximation. Hence, this unacceptable
phenomenon could not be suppressed by a control strategy based
on the discrete approximation—the approximation would be useless
for the purposes of control systems design. In general,Bc is a
proper subset ofBd, and the smaller the differenceBd n Bc, the
more accurate the discrete approximation. In the behavioral context,
dynamic feedback for a given system (plant model) essentially
reduces to intersecting the system behavior with the controller be-
havior; the intersection, assuming it is nonempty, must be contained
in the specification behavior. Hence, ifBd is “too big” (i.e., the
approximation is too coarse), there might be no control scheme which
enforces the specifications. This is where the original contributions
suggesting discrete approximation for continuous models (e.g., [1]
and [5]) might run into problems: they are based onpartitioning
IR

n via the measurement mapqy: IR
n ! Yd, where Yd is a

finite set of measurement symbols; all states which correspond to
the same measurement symbolyd 2 Yd are “lumped”; the cosets
of the measurement map can be interpreted as the state set of a
discrete approximation model. Hence, the minimal achievableBd

which coversBc (and hence the maximal accuracy of the discrete
model) is completely determined by the measurement mapqy. If
the resulting model is “too coarse” to allow design specifications
to be met, one has “run out of luck” (unless one can change the
measurement map). We, therefore, suggest a modified approximation
scheme, which is characterized by the fact that the degree of accuracy
can be adjusted to suit various specificationswithout changing
measurement quantization. This is achieved by identifying subsets of
IR

n which are compatible withstrings of measurement and control
symbols. As, in this approach, the controller is “responsible” for
high-level tasks, we adopt a supervisory control philosophy [13]:
denote the finite set of control symbols byUd; the controller does
not map the sequence of past and present measurement symbols
into Ud to determine the current control input, but into the power
set 2U , i.e., it disables a subset ofUd and leaves the decision
which of the remaining control symbols is to be chosen to a
lower level agent. The controller is considered optimal if it is
least restrictive while guaranteeing that design specifications are
met.

This contribution is based on previous work by the authors
[11]. There, the continuous model was translated into a discrete

2Loosely speaking, the behavior of a model is the set of all time-trajectories
of its external signals; for a survey on “behavioral systems theory,” see [14]
and the references therein.

0018–9286/98$10.00 1998 IEEE

570 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

decision tree, which was subsequently used to determine limited
lookahead control policies. The approximation step employed in
the present paper is described in more detail in [12]. Beside the
references given above, the following papers deal with closely related
topics; Pappas and Sastry [9] considercontinuousabstractions of
continuous dynamical systems. Caines and Wei [4] propose a lattice
of dynamically consistent partition machines associated with a given
continuous system. Niinomiet al. [6] design supervisory control on
the basis of approximating automata; in contrast to our work, their
approximations are purely logical, i.e., timing information (apart from
the temporal order of events) isnot retained.

This paper is organized as follows: In Section II, the continuous
plant model is introduced. In Section III, it is shown how to approx-
imate it by a nondeterministic FSM. Section IV treats the synthesis
of an optimal supervisory controller for the resulting FSM model.
In Section V, this controller is shown to force the continuous plant
model to obey the specifications.

Finally, a short remark concerning notation: signals are represented
by lower case letters, their codomains by the corresponding upper
case letters. Discrete-valued signals are characterized by the subscript
“d.” For example,ud: ft0; t1; � � � g ! Ud is the input signal, which
is defined on the sampling gridft0; t1; � � � g and “lives” (takes
values) in the discrete setUd.

II. THE CONTINUOUS PLANT MODEL

The plant is modeled as a discrete-time dynamic system:

x(tk+1) = f(x(tk); w(tk); ud(tk)) (1)

zd(tk) = qz(x(tk)) (2)

yd(tk) = qy(x(tk)) (3)

wherek 2 f0; 1; 2; � � � g is the time index,x(tk) 2 IRn the state at
time tk, and w(tk) 2 IRr an unknown but bounded disturbance:
w(tk) 2 W := fw jw 2 IRr; kwk1 � 1g, where kwk1 =
maxi jwij. ud(tk) 2 Ud, zd(tk) 2 Zd, andyd(tk) 2 Yd are control,
output, and measurement symbols, respectively.Ud, Zd, andYd are
finite sets without any algebraic structure

Ud = fu
(1)
d ; � � � ; u

(�)
d g; Zd = fz

(1)
d ; � � � ; z

(�)
d g

Yd = fy
(1)
d ; � � � ; y

()
d g:

Output symbols are used to specify desired performance.3 The only
requirement onf : IRn � IRr � Ud ! IRn is that its restriction to
IRn be invertible. Therefore, (1) can be solved for the first argument
on the right-hand side, and the solution is denoted byx(tk) =
~f�1(x(tk+1); w(tk); ud(tk)). Both output and measurement map,
qz : IR

n ! Zd andqy: IRn ! Yd, are onto. They induce equivalence
relations onIRn; their cosets are referred to aszd-cells andyd-cells,
respectively.

III. N ONDETERMINISTIC AUTOMATA AS DISCRETEAPPROXIMATIONS

In this section, it will be shown how to generate a nondeterministic
automaton as an approximation, or abstraction, for the continuous
plant model. First of all, choose a nonnegative integerv—this will
turn out to be a design parameter which determines accuracy of the
discrete abstraction. Then, the state of the approximating automaton

3Clearly, the choice of the outputs is part of the design process. For
example, if safety is our only concern, the codomain of the output mapqz is
Zd = f ; g.

at time tk is defined as

xd(tk) :=

([yd(tk); � � � ; yd(t0)]; [ud(tk�1); � � � ; ud(t0)]);
if k = 0; 1; � � � ; v � 1

([yd(tk); � � � ; yd(tk�v)]; [ud(tk�1); � � � ; ud(tk�v)]);
if k � v:

(4)

Hence, the current state of the approximation consists of a recorded
string of measurements and control symbols reaching back over a
certain intervalmin(k; v). This choice is reminiscent of observer
canonical realizations in (continuous) control theory—the state is
made up of known quantities and hence is trivially observable. As
bothUd, the set of control symbols, andYd, the set of measurement
symbols, are finite, the number of different strings (4) one gets by
exhaustive permutation of measurement and control symbols is also
finite.

It is obvious, however, that the continuous system (1), (3)
cannot generateall these strings. In the next step, one there-
fore eliminates all strings which are not compatible with the
continuous model (1), (3) and the disturbance assumptions: let
0 � � � v and denote~f�1(x; w; u

(k)
d) by ~f�1

k (x; w). Then,
([y

(i)
d ; � � � ; y

(i)

d]; [u
(k)
d ; � � � ; u

(k)

d]) is an element in the state set
of the discrete abstraction if and only if

y
(i)
d = qy(x) (5)

y
(i)
d = qy(~f

�1
k (x; wj)) (6)

...

y
(i)

d = qy(~f
�1
k � � � (~f�1

k (x; wj); � � � ; wj)) (7)

subject to

kwj k1 � 1; l = 1; � � � ; � (8)

has a nonempty solution set for[x0; w0j ; � � � ; w
0

j]0. This “compat-
ibility check” becomes a numerically straightforward and reliable
procedure, if the right-hand side of (1) is affine in the statex(tk)
and the unknown disturbance vectorw(tk), and the measurement
map has the formqy = Qy � Cy, whereCy: IRn ! IRp is a
linear map and the “quantizer”Qy: IR

p ! Yd partitions IRp into
finitely many rectangular boxes with edges parallel to the coordinate
axes. In this case, (5)–(8) reduces to a set oflinear inequalitiesin
[x0; w0j ; � � � ; w

0

j]0. Details can be found in [12].
This second step boils down to “weeding out” nonreachable states;

the remaining state structure is therefore guaranteed to be minimal.
The number of elements in this minimal state setXd is denoted by
Nv: Xd := fx

(1)
d ; � � � ; x

(N)
d g. The statex(i)d belongs to the set

Xd0 of possible initial states, if it contains exactly one measurement
symbol (and no control symbols), i.e.,Xd0 = Yd. This reflects the
fact that, prior to timet0, we do not have any control over the plant.
Hence,x(tk) can be anywhere inIRn, and any measurement symbol
in Yd is possible at timet0.

Denote the strings of control and measurement symbols associated
with a particularx(i)d by u�d(x

(i)
d) and y�d(x

(i)
d), respectively, and

introduce a “forgetting operator”F which deletes the “oldest” symbol
from stringsy�d(xd(tk)) andu�d(xd(tk)), if k � v

F(y�d(xd(tk)))

:=
[yd(tk); � � � ; yd(t0)]; if k = 0; 1; � � � ; v � 1
[yd(tk); � � � ; yd(tk�v+1)]; if k � v

F(u�d(xd(tk)))

:=
[ud(tk�1); � � � ; ud(t0)]; if k = 0; 1; � � � ; v�1
[ud(tk�1); � � � ; ud(tk�v+1)]; if k � v:

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998 571

Now, writing down the transition structure of the discrete approxi-
mation is trivial; (x(i)d ; u

(j)
d ; x

(k)
d) is a transition iff there exists a

y
(l)
d 2 Yd such that

y
�

d(x
(k)
d) = [y

(l)
d ; F(y�d(x

(i)
d))] (9)

and

u
�

d(x
(k)
d) = [u

(j)
d ; F(u�

d(x
(i)
d))]: (10)

x
(i)
d andx(k)d are called the exit state and the entrance state of the

transition; the control symbolu(j)d is its transition label. Each state
x
(i)
d has an associated unique (measured) output, which is simply

the leftmost symbol iny�d(x
(i)
d). Hence, for eachv � 0, we get a

finite Moore automaton as a plant approximation. For a givenx
(i)
d

andu(j)d , more than oney(l)d (hence more than onex(k)d) may satisfy
(9) and (10); the resulting automaton will be nondeterministic—this
is further illustrated below.

By construction,x(j)d is an element inXd if and only if the set of
solutions[x0; w0

j ; � � � ; w0

j]0 for (5)–(8) is nonempty. The projection
of this set onto its firstn elements can be interpreted as the set of
continuous plant statesx which are compatible with the automaton
state x(j)d = ([y

(i)
d ; � � � ; y

(i)

d]; [u
(k)
d ; � � � ; u

(k)

d])—this set is
denoted byX(x

(j)
d). In other words, if the approximating automaton

is in statex(j)d , j = 1; � � � ; Nv, we know that the state of the un-
derlying continuous plant is in the setX(x

(j)
d)—the setX(x

(j)
d) can

be interpreted as a set-valued estimate for the continuous plant state.
Clearly, N

j=1 X(x
(j)
d) = IRn, and, in general,X(x

(i)
d)\X(x

(j)
d) 6=

;. Hence, the setsX(x
(j)
d) form a cover forIRn. Obviously, a set

X(x
(j)
d) never increases (and, in general, decreases) in “size” if the

input and measurement strings embodied inx
(j)
d are extended further

into the past—this is an immediate consequence of the “triangular”
structure of (5)–(8). Increasingv, the maximum length of strings,
is therefore equivalent to generating a finer “granularity” for the
finite cover of IRn—the nonnegative integerv can be seen as a
design parameter, which may be used to improve the accuracy of
the discrete model. This of course implies that the number of states,
and hence the complexity of the discrete model, also increases.
This mental picture is also helpful for understanding the intrinsic
nondeterminism of discrete abstractions: a statexd(tk) = x

(i)
d of

the discrete abstraction corresponds to a setX(x
(i)
d) � IRn. An

input ud(tk) = u
(j)
d then maps this set onto another set. Only

under very restrictive assumptions will the latter be contained in
exactly oneX(x

(k)
d) and not intersect anyX(x

(l)
d), l 6= k, i.e., only

in exceptional cases will the discrete statexd(tk) = x
(i)
d have a

unique successor statexd(tk+1) = x
(k)
d under inputu(j)d . Existence

of unknown disturbances in the “base” model merely increases the
“level of nondeterminism” in its discrete abstraction.

As controller synthesis is to be based on the discrete approximation,
we also have to provide it withzd-outputs. But this is easy; simply
define a symbolz(j)d to be an output of statex(i)d , if X(x

(i)
d)

intersects thezd-cell f� 2 IRnjz
(j)
d = qz(�)g. Note thatX(x

(i)
d)

can intersect severalzd-cells, hence a statex(i)d can be associated
with a (nonempty)set of possible output symbolsz(j)d .

The Moore automaton evolves on the same sampling gridT =
ft0; t1; � � � g as the underlying continuous system: the time needed
for a transition is the sampling intervalti+1�ti. Hence, an (implicit)
notion of time is retained in our discrete approximation. Denote the
set of all functions fromT into (Ud�Yd�Zd) by (Ud�Yd�Zd)

T .
The behaviorsBc � (Ud � Yd � Zd)

T and Bd(v) � (Ud �
Yd �Zd)

T are the sets of control/measurement/output signals which
are compatible with the continuous model (1)–(3) and its discrete

Fig. 1. Clock process.

abstraction. The following key result has been proven in [12] and
formalizes our previous discussion of approximation accuracy.

Theorem 1: The behavior of the continuous plant model (1)–(3)
and the behaviors of the discrete abstractions obtained forv =
0; 1; � � � form a totally ordered set, where ordering is in the sense of
set inclusion:Bc � Bd(vi) � Bd(vj); vi; vj = 0; 1; � � � ; vi � vj .

Hence, as required, the approximation behavior contains the contin-
uous model behavior for any nonnegativev. Moreover, as expected,
approximation accuracy is monotone inv.

Finally, for the purposes of control systems design, we convert
the Moore automaton into an equivalent4 transition structure without
state outputs. This is done by adding aYd-labeled selfloop to each
state and one or moreZd-labeled selfloops (depending on the number
of zd-symbols attached to the state). To ensure “correct” ordering
of transitions, we compose this transition structure with the simple
clock process shown in Fig. 1. This also makes time explicit—the
tick event represents the passage of one sampling interval and
can be thought of as being synchronized with an external clock.
The arrows labeled byUd, Zd, and Yd represent the occurrence
of any symbol fromUd, Zd, and Yd, respectively. The resulting
nondeterministic transition structure is referred to as adiscrete-time
discrete-event process (DTP). It includes explicit timing (tick-
events) and a control mechanism (transitions labeled by a control
symbol can be disabled). Its behavior is defined as follows: count the
tick-events; denote transitions occurring before the firsttick by
ud(t0); yd(t0); zd(t0), transitions occurring between the first and the
secondtick by ud(t1); yd(t1); zd(t1) etc.; in this way, the DTP
generates a behavior identical to the one of the underlying Moore
automaton.

IV. SUPERVISORYCONTROL FOR THEAPPROXIMATING AUTOMATON

We adopt a supervisory control philosophy [13] to suitably modify
the behavior of the discrete plant model. We use the state transition-
based framework suggested in [7] which is well suited to deal with
nondeterminism in the discrete plant model and which can also handle
time.5

The departure point is a discrete approximation of the plant model
in the form of a DTP. The mechanism of control is via a subset of
transitions that can be disabled (prevented from happening). These
are the transitions labeled by a control symbol. Specifications are
also formulated as DTP’s. The most straightforward example is the
case where one is only concerned with safety: then, the codomain of
the output mapqz is chosen asZd = f ; g, and the
specification DTP simply states that after eachtick, zd = has
to occur. It is obvious how more complex dynamic specifications can
be coded as DTP’s. Forming the parallel compositionP = M k S of
the plant DTP,M , and the specification DTP,S, formally removes
all transitions which violate the specifications—but this is done
without caring for realizability. For example, a transition can only
be eliminated if it is labeled by a control symbol; a transition
cannot be eliminated if this implies that the process can reach a
state where no furthertick-event can be executed—stopping time
is impossible. The optimal supervisor’s job can then be thought of

4In the sense of having the same behavior as the Moore automaton.
5An extension of [13] to (deterministic) DES with timing features is

described in [3].

572 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998

as implementing the “least restrictive,” but realizable substructure of
P . This is formalized in the following paragraph.

Let Q and� be the (finite) sets of states and event (or transition)
labels ofP . A transition is represented by a triplet(qe; �; qi), with
qe; qi 2 Q, and� 2 �. qe andqi are calledexit andentrance state;
� is theevent label. Transitions(qe1; �1; qi1) and(qe2; �2; qi2) are
calledpartners, if qe1 = qe2 and�1 = �2 (they have the same exit
state and event label). A DTP can be represented by a pair(�; Q0)
where� andQ0 are the (finite) sets of transitions and initial states,
respectively.

Definition 1: Let P = (�; Q0) be a DTP. The DTP~P modeled
by the pair(~�; ~Q0) is called adiscrete-time discrete-event subprocess
(DSP) of P (denoted by ~P � P), if ~� � �, ~Q0 � Q0, and a
transition� 2 � can only be an element in~�, if all its partners are
also contained in~�.

A stateq2 2 Q is reachablefrom a stateq1 2 Q (or, equivalently,
q1 is coreachable fromq2) if there is a sequence of transitions from�
connectingq1 with q2. A DTP P is called reachable if every element
of its state set is reachable from an initial state.

Definition 2: Let P = MkS andUd be the set of transition labels
of M (and henceP) which can be disabled by a control agent.
Let ~P = (~�; ~Q0) be a reachable DSP ofP with state set~Q and
with ~Q0 = Q0. Then, ~P is said to becontrollable w.r.t. toM if
(qMe; �; qMi) 2 �M (the transition set ofM), (qMe; qSe) 2 ~Q,
and ((qMe; qSe); �; �) 62 ~� implies that� 2 Ud (� means “don’t
care”).

Clearly, a DSP~P of P can only be realized by a controller if it is
controllable w.r.t.M . Another condition for realizability is that the
progress of time can never be stopped.

Definition 3: A stateq1 2 Q is said to betick-coreachable if
there exists a stateq2 2 Q where atick-transition can occur and
which is reachable fromq1. The DTPP is calledtick-coreachable
or temporally nonblocking, if every state inQ is tick-coreachable.

Let ~P1 = (~�1; ~Q1
0) and ~P2 = (~�2; ~Q2

0) be two DSP’s ofP . Then
the unionof ~P1 and ~P2, denoted by~P1 [~P2, is a transition structure
represented by the pair(~�1 [~�2; ~Q1

0 [~Q2
0). It is immediately

clear that ~P1 [~P2 is another DSP ofP . The relation� induces a
partial ordering on the set of all DSP’s ofP . Let f ~PCNg be the set
of all DSP’s of P which are controllable w.r.tM and temporally
nonblocking. In [8], it has been shown thatf ~PCNg is closed under
union. Hence, if nonempty,f ~PCNg forms an upper-semilattice (with
the join operation being[). Clearly,f ~PCNg is finite. Therefore, the
following holds.

Theorem 2: If f ~PCNg is nonempty, there exists a (unique) greatest
DSP ofP (w.r.t. the ordering via�) which is controllable w.r.t.M
and temporally nonblocking.

If f ~PCNg is nonempty, denote its supremal element by~PS . It can
be interpreted as the transition structure ofP that survives under the
least restrictive realizable supervisory control policy which guarantees
the specifications to be met.~PS (and hence the least restrictive control
strategy) can be synthesized formally in a computer-aided design
environment. Iff ~PCNg is empty, the supervisory control problem
has no solution. This implies that either the approximating automaton
is too coarse (we need to provide a finer approximation by increasing
the parameterv), or the specifications are too strict (they cannot be
met no matter how accurate our approximation is) and need to be
relaxed.

V. THE CONTINUOUS PLANT UNDER DISCRETE CONTROL

Now, suppose we have come up with a supervisory control scheme
that solves the discrete feedback problem. Does the continuous “base”
model, when subject to thesamecontrol scheme, also satisfy the
specifications? Or, in other words, does it make sense to base the

design of symbolic feedback controllers for a continuous plant on a
discrete approximation? This is indeed the case: denote the behaviors
of the controlled continuous plant model and the controlled discrete
approximations forv = 0; 1; � � �, by Bcs andBds(v), respectively
(the subscripts signifies supervision). As, in the behavioral context,
the meaning of control essentially reduces to intersecting the plant
model behavior and the controller behavior, the following is an
immediate consequence from Theorem 1:

Bcs � Bds(vi) � Bds(vj); vi; vj = 0; 1; � � � ; vi � vj :

(11)

Hence,Bds(v) � Bspez—the discrete control system satisfies the
specifications (for any nonnegativev)—implies Bcs � Bspez. It
remains to show thatBcs 6= ;, i.e., the discrete controller can
actually be connected to the continuous plant model (or, in the DES
terminology, does not cause it to block). All that is required for this is
that the controller never disablesall control symbols simultaneously.
But this is an immediate consequence from the temporal nonblocking
property in the discrete case.

VI. CONCLUSIONS

We have proposed an approach to hybrid control systems design
which is based on approximating the continuous plant model by a
nondeterministic FSM. Two important features of the approximation
procedure are: 1) it allows adjusting the accuracy of the discrete
abstraction to the specification requirements and 2) the approximating
automaton “lives” on the same sampling grid as the underlying con-
tinuous plant model and hence retains a notion of time. This approach
“translates” the hybrid control problem into a purely discrete problem.
Given the discrete approximation, the least restrictive control scheme
that forces a given (discrete) set of specifications to hold can then be
formally synthesized. If there is no solution, either the approximating
plant automaton is too coarse (i.e., we need to increase approximation
accuracy) or the specifications are too strict (for any approximation)
and hence have to be relaxed. If one succeeds in solving the discrete
control problem (i.e., one finds an appropriate supervisor), one has
also solved the underlying hybrid control problem: the continuous
plant model under discrete control is also guaranteed to obey the
specifications.

REFERENCES

[1] P. J. Antsaklis, J. A. Stiver, and M. Lemmon, “Hybrid system modeling
and autonomous control systems,” inHybrid Systems,Lecture Notes in
Computer Science, vol. 736, R. L. Grossman, A. Nerode, A. P. Ravn,
and H. Rischel, Eds. New York: Springer-Verlag, 1993, pp. 366–392.

[2] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds.,Hybrid Systems
II, Lecture Notes in Computer Science, vol. 999. New York: Springer-
Verlag, 1995.

[3] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete event systems,”IEEE Trans. Automat. Contr.,vol. 39, pp.
329–342, 1994.

[4] P. E. Caines and Y.-J. Wei, “On dynamically consistent hybrid systems,”
in P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds.,Hybrid
Systems II,Lecture Notes in Computer Science, vol. 999. New York:
Springer-Verlag, 1995, pp. 86–105.

[5] J. Lunze, “Qualitative modeling of linear dynamical systems with
quantized state measurements,”Automatica,vol. 30, pp. 417–431, 1994.

[6] T. Niinomi, B. H. Krogh, and J. E. R. Cury, “Synthesis of supervisory
controllers for hybrid systems based on approximating automata,” in
Proc. Conf. Decision Contr.,1995, pp. 1461–1466.

[7] S. D. O’Young, “On the synthesis of supervisors for timed discrete event
processes,”IEEE Trans. Automat. Contr.,to be published.

[8] S. D. O’Young and J. Raisch, “Timed DES supervisory control of hybrid
systems,” inProc. Workshop on Discrete Event Systems,Edinburgh,
U.K., 1996, pp. 189–194.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 4, APRIL 1998 573

[9] G. J. Pappas and S. Sastry, “Toward continuous abstractions of dy-
namical and control systems,” Univ. California, Berkeley, Tech. Rep.
UCB/ERL M96/53, Oct. 1996.

[10] J. Raisch, “Control of continuous plants by symbolic output feedback,”
in P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds.,Hybrid
Systems II,Lecture Notes in Computer Science, vol. 999. New York:
Springer-Verlag, 1995, pp. 370–390.

[11] J. Raisch and S. D. O’Young, “A DES approach to control of hybrid
dynamical systems,” inHybrid Systems III,Lecture Notes in Computer
Science, vol. 1066, R. Alur, T. A. Henzinger, and E. D. Sontag, Eds.
New York: Springer-Verlag, 1996, pp. 563–574.

[12] , “A totally ordered set of discrete abstractions for a given hybrid or
continuous system,” inHybrid Systems IV,Lecture Notes in Computer
Science, vol. 1273, P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry,
Eds. New York: Springer, 1997, pp. 342–360.

[13] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event systems,”SIAM J. Contr. Optimiz.,vol. 25, pp. 206–230
1987.

[14] J. C. Willems, “Paradigms and puzzles in the theory of dynamical
systems,”IEEE Trans. Automat. Contr.,vol. 36, pp. 259–294, 1991.

Differential Petri Nets: Representing Continuous
Systems in a Discrete-Event World

Isabel Demongodin and Nick T. Koussoulas

Abstract— Differential Petri nets are a new extension of Petri nets.
Through the introduction of the differential place, the differential tran-
sition, and suitable evolution rules, it is possible to model concurrently
discrete-event processes and continuous-time dynamic processes, repre-
sented by systems of linear ordinary differential equations. This model
can contribute to the performance analysis and design of industrial
supervisory control systems and of hybrid control systems in general.

Index Terms—Differential Petri nets, discrete-event dynamic systems,
hybrid systems, Petri nets, supervisory control systems.

I. INTRODUCTION

One of the most recent and most intense efforts in control theory
deals with handling dynamic systems that include not only the
technological process but its supervisory mechanism(s) as well. For
our purposes, hybrid systems are considered to be all combinations
of a continuous plant (such as a chemical process) or a mixed
continuous/discrete-event plant (such as a chemical process with
process-related logic), with a discrete-event supervisor that reacts to
external events (planned or unforeseen). Thus, a supervisory control
system of the classical hierarchically structured form of three levels
(execution, supervision, and coordination) falls into this description.
This kind of control system, being a mixture of continuous-time
and discrete-event dynamic processes, has been termed “hybrid” or
“discontinuous.” Modeling, analysis, control, and synthesis of such
systems pose a number of challenging problems.

Manuscript received September 23, 1997. This work was supported in part
by the European Commission through the ESPRIT-8924 program SESDIP.

I. Demongodin is with the Department of Automatic Control and Production
Systems, Ecole des Mines de Nantes, La Chantrerie, B.P. 20722, 44 307
Nantes, Cedex 03, France.

N. T. Koussoulas is with the Laboratory for Automation and Robotics,
Electrical and Computer Engineering Department, University of Patras, 26500
Rio, Patras, Greece (e-mail: ntk@ee.upatras.gr).

Publisher Item Identifier S 0018-9286(98)02780-9.

In this initiatory phase of hybrid control systems theory, most of the
discussions focus on the issue of suitable modeling approaches to the
representation of hybrid systems. Different approaches of modeling
have been used, and there is already an abundance of models [16],
[7]. Some authors (e.g., [4]) define a homogeneous model which links
the discrete-event part and the continuous part in a single formalism.
Others (e.g., [8], [1], and [17]) use specific formalisms for each of the
two parts or define a model based on the interface between the two
parts. Perhaps naturally, most of the efforts are based on the discrete-
event part and involve models for discrete-event dynamic systems
(DEDS’s) such as finite state machines, process algebras, Petri nets,
temporal logic, etc. A nice overview, along with a first attempt for
a unified model, appeared in [7].

Among the DEDS models, Petri nets proved to be a very popular
model with the academic and industrial community alike. Having
a dual nature of a graphical tool and a mathematical object can
serve in both the practical and the theoretical camp. There is a
constantly growing number of publications regarding Petri nets and
their applications which can be found in quite diverse fields. A
major step in the effort to enlarge the modeling power of Petri
nets has been their extension known as continuous Petri nets. The
motivation was the inability for successful modeling of discrete-
event systems with a large number of mostly unobservable events
(e.g., circulation of bottles in a bottling line). Thus, a continuous
approximation was proposed instead, replacing the uncertain counting
with a speed approximation, a technique quite popular in similar
settings, such as queuing networks. Continuous Petri nets are thus
approximations to discrete-event systems allowing faster simula-
tion of the latter without sacrificing accuracy. The combination of
continuous with ordinary Petri nets leads to the concept of hybrid
Petri nets [2], where hybridity does not refer to the kind indicated
above.

It is advantageous, if not indispensable, to be able to represent
both continuous and discrete parts of a hybrid system in the same
context. This can be problematic, however, due to the mathematical
incompatibility between instantaneous events and the convenience
of continuity. Given that, it appears less cumbersome to choose
the discrete-event domain as the environment for this common
representation. Therefore, an extension for Petri nets is necessary
to allow them to represent the continuous time dynamic components.
Bourjij et al. [6] show that it is possible to model a hybrid Petri
net in a singular system, by using Euler approximation. Their
approach permits us to perform diagnostics through a reference model
established by an extension of a hybrid Petri net. However, this
consideration does not take into account the possibility of negative
values for continuous variables. To represent negative values, Saadi
et al. [19] have developed another extension of continuous Petri nets
in which a continuous place can support a negative marking. They
call this extension a dynamical continuous Petri Net and merge this
kind of Petri net with a regular one as defined in the hybrid Petri net
framework. In [5], the simulation of ordinary differential equations is
represented with predicate/transition Petri nets. While they consider
only Euler integration because their work seems to be focused on
real-time applications, it is in principle valid for other integration
algorithms too. In a similar vein, in [15], to arrive at a unified model
for the hybrid system, a Petri net equivalent to the causal graph of
the continuous system is found. However, the issues of interface with
the “logical” part and the issue of negative markings are not covered
in both works.

0018–9286/98$10.00 1998 IEEE

