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DISCRETE APPROXIMATION OF INTEGRAL OPERATORS
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(Communicated by Edward C. Waymire)

Abstract. A method to approximate the eigenvalues of linear operators de-

pending on an unknown distribution is introduced and applied to weighted
sums of squared normally distributed random variables. This area of applica-
tion includes the approximation of the asymptotic null distribution of certain
degenerated U- and V-statistics.

1. Introduction

Degenerated U- and V-statistics commonly possess asymptotic null distributions
which are a weighted sum of squared normally distributed random variables. The
weights are the eigenvalues of a certain integral operator which might (see Bar-
inghaus and the author [1, 2]) but need not (e.g. the Cramér-von Mises-statistic)
depend on an underlying, unknown distribution. This article deals with a method
to approximate the eigenvalues of operators in the case of dependence on an un-
known distribution by substituting it with a sequence of distributions which are
known to converge weakly to the unknown distribution, e.g. the empirical distri-
bution of observations made. This problem differs from the usual approximation
of linear operators due to the different spaces on which the approximating oper-
ators are defined. Koltchinskii and Giné [5] used random matrices to lay a solid
foundation of the treatment of this problem.

This article presents another way which can be used to cover some aspects of
this problem. By the price of stronger assumptions on the kernel functions the way
offers two extensions to the existing solution by Koltchinskii and Giné: first, the
probability distributions converging weakly are not required to be empirical mea-
sures of iid random variables, and second, the kernel functions of the approximating
operators are allowed to vary, even to be dependent on the sequence of converging
probability measures, e.g. empirical distributions of observations made.

The approach presented is built on work of Stummel [7, 8, 9], a summary of which
is given within the next subsections. The second section deals with the applica-
tion to statistics; an example which particularly highlights the second extension to
existing methods can be found in section 3.
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2438 C. FRANZ

1.1. Approximation by discrete spaces. The theory of discrete approximation
as introduced by Stummel [7, 8, 9] allows the approximating operators to be defined
on different normed spaces Eι with ι ∈ I ⊂ N being an infinite countable index set
and thus delivers the framework for the treatment of the problem of interest.

In order to make statements on the convergence, so-called discrete convergence,
of functions uι → u, where uι ∈ Eι, ι ∈ I, and u ∈ E is an element of the limiting
normed space E, the notion of equivalent sequences is needed:

Definition 1.1. Two sequences (uι)ι∈I , (vι)ι∈I with uι, vι ∈ Eι are called equiva-
lent iff

‖uι − vι‖Eι
−−−→
ι→∞

0.

The equivalence classes of the equivalence relation on the space of sequences
(uι)ι ∈

∏
ι Eι defined by this notion are connected to the limiting space E with a

mapping Q which in turn is needed to possess continuity and linearity properties.

Definition 1.2. A sequence of normed spaces (Eι)ι, ι ∈ I, is called discrete ap-
proximation of the space E (with mapping Q) iff

(i) E, Eι, ι ∈ I, are defined above the same field C, and there exists a mapping
Q which associates each element u ∈ E with an equivalence class Q(u) ⊂∏

ι Eι.
(ii) [Continuity of the norm] For all u ∈ E and every sequence (uι)ι ∈ Q(u)

we have
‖uι‖Eι

−−−→
ι→∞

‖u‖E .

(iii) [Linearity] For all α, β ∈ C, all u, v ∈ E and all (uι)ι ∈ Q(u), (vι)ι ∈ Q(v),
(wι)ι ∈ Q(αu + βv),

‖αuι + βvι − wι‖Eι
−−−→
ι→∞

0.

Having defined such a mapping Q, a sequence (uι)ι is said to converge discretely
to u ∈ E iff (uι)ι ∈ Q(u).

1.2. Discrete compactness and consistency. Let the spaces (Eι)ι be a discrete
approximation of the space E (with corresponding mapping Q). We are now turn-
ing our attention to operators defined on these spaces. Approximating operators
defined on Eι are connected with the operator E, the eigenvalues of which we are
interested in, with a “consistency condition”.

Definition 1.3. A bounded operator B : E → E and a sequence of bounded
operators (Bι)ι∈I , Bι : Eι → Eι are called consistent iff there exists a dense subset
F ⊂ E, such that for every f ∈ F there exists a sequence (fι)ι∈I , fι ∈ Eι, with

fι → f and Bιfι → Bf.

Stummel approximated eigenvalue problems of the kind

Au = λBu

by “discrete” eigenvalue problems

Aιuι = λιBιuι.

For the verification of the convergence of the eigenvalues, projection operators P :
E → E, Pι : Eι → Eι, which are defined by means of integrals of resolvents
A(z)−1 := (A− zB)−1, are examined. For the discrete convergence of the integrals
of resolvents, the discrete compactness of (Bι)ι is crucial.
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DISCRETE APPROXIMATION OF INTEGRAL OPERATORS 2439

Definition 1.4. Let (Bι)ι∈I be a sequence of bounded operators Bι : Eι → Eι.
The sequence is called discretely compact iff for each ‖ · ‖Eι

-bounded subsequence
(uι)ι∈I′ of (uι)ι∈I , i.e.

‖uι‖Eι
≤ γ ∈ (0,∞) for all ι ∈ I ′,

a sub-subsequence (uι)ι∈I′′ and a w ∈ E exists, such that

Bιuι −−−−−−−→
ι∈I′′, ι→∞

w.

1.3. Convergence of eigenvalues. Given the eigenvalue problem Au = λBu,
λ ∈ C, u ∈ E, Stummel’s main theorem on the convergence of eigenvalues of
discrete operators [8, II.3.2.(8), p. 257] mainly requires consistency and discrete
compactness.

Theorem 1.5. Let A, (Aι)ι∈I and B, (Bι)ι∈I be consistent linear operators. Let
B, Bι, ι ∈ I, be compact and let (Bι)ι∈I be discretely compact. Let the resolvent
set and the bounding set of A, B be nonempty. Let λ be an eigenvalue of A, B with
algebraic multiplicity m and let U be an arbitrary closed neighborhood of λ, which is
bounded, and the only element it has in common with the spectrum Σ(A, B) of A, B
is the eigenvalue λ. Then, there exists ι0 ∈ N, such that for ι ≥ ι0, ι ∈ I, there are
exactly m eigenvalues λι

1, . . . , λ
ι
m of Aι, Bι (counting algebraic multiplicity) with

Σ(Aι, Bι) ∩ U = {λι
1, . . . , λ

ι
m}, ι ∈ I, ι ≥ ι0.

The resolvent set is the set of all z ∈ C for which the resolvent A(z)−1 =
(A − zB)−1 is a bounded linear mapping. The resolvent set is the complement of
the spectrum of A, B. The bounding set is the set of z ∈ C, for which there exists
a constant γ > 0 and an ι0 ∈ I, such that for every ι ≥ ι0 z is an element of the
resolvent set of Aι, Bι and the operator norm of Aι(z)−1 is bounded uniformly in
ι ≥ ι0 by γ.

The proof of the theorem Stummel shows that the resolvent set and the bounding
set coincide, as well as the convergence of the resolvents [8, II.2.2.(1), p. 245]. It is
shown that the boundary of an arbitrary compact neighborhood of an eigenvalue,
which contains no further eigenvalues, is completely contained in the resolvent
set of Aι, Bι for ι greater than some ι0 [8, II.2.1.(3), p. 243]. The positively
oriented integrals of the resolvents on this boundary are hence well defined and
converge discretely [8, II.2.3.(4), p. 249]. They can be used to discretely define
converging projection operators P, Pι which project the corresponding domain on
the algebraic eigenspace of the eigenvalue surrounded. As a consequence P (E) is
discretely approximated by Pι(Eι), which eventually has the same dimension as
P (E). Thus, the initially chosen neighborhood eventually contains m eigenvalues
of Aι, Bι. By choosing smaller and smaller neighborhoods of λ, convergence can
be deduced. Even the discrete convergence of the corresponding eigenfunctions can
be inferred. For a more detailed treatment the reader is referred to the work of
Stummel.
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2440 C. FRANZ

2. Application in asymptotic statistics

Stummel’s theory is to be applied to the approximation of the eigenvalues of an
operator

(2.1) H :
E → E,

f 	→
∫

h( · , y) f (y) dµ(y),

by operators

(2.2) Hι :
L2(Rd,Bd, µι) → L2(Rd,Bd, µι),

f 	→
∫

hι( · , y) f (y) dµι(y),

where µ, µι are probability measures on (Rd,Bd) with µι converging weakly to µ,
µι =⇒ µ. E := L2(Rd,Bd, µ) ∩ Cb(R) denotes the normed space of square µ-
integrable functions which are continuous and bounded with respect to the uniform
norm on the support R of µ. E is furnished with the L2(Rd,Bd, µ)-norm. The
conditions we will impose on the kernel h of H will guarantee that H indeed maps
E into itself. The restriction on continuous functions will be no great limitation of
the result, unlike the restriction on bounded functions.

Theorem 2.1. Let E :=L2(Rd,Bd, µ)∩Cb(R) be furnished with the L2(Rd,Bd, µ)-
norm, and let R be the support of µ and µι =⇒ µ with

(2.3) supp(µι) ⊂ R for all ι ∈ I.

Then, the spaces Eι := L2(Rd,Bd, µι) form a discrete approximation of E with the
mapping Q being defined by (uι)ι ∈ Q(u) iff∫

|uι − u|2 dµι −−−→
ι→∞

0

for u ∈ E. For the integration of u with respect to µι choose the restriction of u on
the support supp(µι) of µι vanishing on Rd \ supp(µι).

Proof. For simplicity, we denote the norm on E with ‖ · ‖ and the norm on Eι with
‖ · ‖ι. For any u ∈ E the equivalence class is nonempty. This can be seen by letting
uι be the restriction of u to the support of µι. Condition (ii) is fulfilled, due to

|‖uι‖ι − ‖u‖| ≤ ‖uι − u‖ι + |‖u‖ι − ‖u‖|
for (uι)ι ∈ Q(u), u ∈ E, and the weak convergence of µι to µ. The verification
of (iii) is straightforward. �

Given the situation of Theorem 2.1 under certain conditions, the operators H,
(Hι)ι are consistent and (Hι)ι discretely compact.

Lemma 2.2. Let the conditions of Theorem 2.1 be fulfilled. Let (hι)ι be a uniformly
‖ · ‖∞-bounded sequence of functions

hι : (R × R,R⊗R) → (R,B)

symmetric in its arguments with R the Borel-σ-algebra restricted to R. For every
ε > 0 let there be a δ > 0 such that for any ι ∈ I

(2.4) sup{|hι(x, y) − hι(x′, y)| : |x − x′| < δ, x, x′ ∈ R, y ∈ R} < ε.

Then, the operators (Hι)ι defined above are discretely compact.
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DISCRETE APPROXIMATION OF INTEGRAL OPERATORS 2441

Since hι is defined on R×R, we can evaluate (Hιuι)(x) with uι ∈ L2(Rd,Bd, µι)
not only for x ∈ supp(µι) but also for x ∈ R by

(Hιuι)(x) :=
∫

hι(x, y)uι(y) dµι(y).

Proof. Since the kernels are uniformly ‖ · ‖∞-bounded the operators (Hι)ι are
bounded operators. Let (Rk)k, k ∈ N, be an increasing sequence of compact sets
with Rk := R∩ [−κ, +κ]d for some κ > k with µ(R \Rk) ≤ 1

2k and µι(R \Rk) ≤ 1
2k

for every ι ∈ I. Now, let (uι), ι ∈ I ′, be a subsequence of (uι), ι ∈ I, with ‖uι‖ι ≤ γ
for ι ∈ I ′.

The functions (gι), ι ∈ I ′, gι : R → R with gι := Hιuι are uniformly
‖ · ‖∞-bounded and by the continuity condition (2.4) are equicontinuous on R.
By the Arzela-Ascoli theorem there exists a subsequence (gι)ι∈I′′

k
of (gι)ι∈I′ and a

continuous, complex-valued function wk being ‖ · ‖∞-bounded on Rk such that

max
x∈Rk

|gι(x) − wk(x)| −−−−−−−→
ι∈I′′

k , ι→∞
0.

By successive selection of the (I ′′k )k∈N the sequence can be created such that I ′′k+1 ⊂
I ′′k for every k ∈ N. Let I ′′ be the diagonal sequence of the sequences (I ′′k )k∈N. Then,

w(x) := lim
ι∈I′′, ι→∞

gι(x) = lim
ι∈I′′, ι→∞

Hιuι(x), x ∈ R,

is ‖·‖∞-bounded, and due to the selection of the (I ′′k )k∈N it is a continuous function
on R. Hence, we have found w ∈ E with

‖Hιuι − w‖2
ι

=
∫

R\Rk

|Hιuι(x) − w(x)|2dµι(x)
︸ ︷︷ ︸
≤ const. · µι(R\Rk) ≤ const. · 2−k

+
∫

Rk

|Hιuι(x) − wk(x)|2dµι(x)
︸ ︷︷ ︸

−−−−−−−→
ι∈I′′, ι→∞

0

,

i.e. for k → ∞ discrete compactness follows. �

The consistency proof mainly uses the same procedures as the proof of discrete-
compactness.

Lemma 2.3. Let the conditions of the preceding lemma be fulfilled. For every x ∈ R
let (hι(x, ·))ι converge uniformly on every compact set to the symmetric function
h(x, ·) where

h : (R × R,R⊗R) → (R,B)

denotes a bounded function such that for every ε > 0 there exists a δ > 0 with

(2.5) sup{|h(x, y) − h(x′, y)| : |x − x′| < δ, x, x′ ∈ R, y ∈ R} < ε.

Then, the operator H and the sequence of operators (Hι)ι are consistent, and H is
a compact operator in E.

Proof. We make use of the notations introduced in the proof of the preceding
lemma. Due to the bounded kernel the operator H is bounded. To prove con-
sistency, let u ∈ E and let the functions uι of the sequence (uι)ι be defined as the
restriction of u on supp(µι) (which is vanishing on Rd \ supp(µι)). (uι)ι is uni-
formly ‖ · ‖ι-bounded, and by the proof of the last theorem (gι)ι with gι := Hιuι is
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a uniformly ‖ · ‖∞-bounded sequence being equicontinuous on Rk for every k ∈ N.
For x ∈ R

gι(x) :=
∫

hι(x, y)u(y) dµι(y) −−−→
ι→∞

∫
h(x, y)u(y) dµ(y) = Hu(x)

by the uniform convergence and the ‖ · ‖∞-boundedness of h, u. This pointwise
convergence together with the equicontinuity yields the uniform convergence and
hence discrete convergence of gι to Hu on R.

We will now show that the bounded and linear operator H is compact in E.
We need to show (see e.g. Dunford and Schwartz [3, Theorem 15, p. 22]) that
for a sequence (fn)n of functions fn ∈ E which are uniformly ‖ · ‖-bounded by
1, the sequence (Hfn)n has a point of accumulation f ∈ E: Following the proof
of Lemma 2.2, the sequence (Hfn)n is ‖ · ‖∞-bounded on R and by using (2.5) is
equicontinuous on R. The Arzela-Ascoli theorem with diagonal sequence procedure
gives a subsequence of (Hfn)n which converges uniformly on every compact set Rk

to an ‖ · ‖∞-bounded function f which is continuous on R. Due to the ‖ · ‖∞-
boundedness of every subsequence, L2-convergence of a certain sub-subsequence
and thus compactness of H follows. �

In order to apply Stummel’s main theorem, Theorem 1.5, to the integral opera-
tors H, Hι, we define the operators A, Aι, ι ∈ I, as identity on E, Eι, ι ∈ I. Thus,
the resolvent set and the bounding set contain 0 and are therefore nonempty. The
operators A, (Aι)ι are consistent by Definition 1.2. Let B := H and Bι := Hι, ι ∈ I.
Under the conditions of Lemma 2.3 the operators (Bι)ι are discretely compact and
B, (Bι)ι are consistent. The operators Bι, ι ∈ I, are Hilbert-Schmidt-operators
and therefore compact, as is B by Lemma 2.3. Due to the continuity conditions
on h the eigenfunctions to nonvanishing eigenvalues of B taken as an operator on
L2(R,R, µ) are continuous. Hence, the restriction of B from L2(R,R, µ) to E does
not change the nonvanishing eigenvalues or their multiplicity. The operators B, Bι

are self-adjoint and thus can be understood as operators over the field R without
changing the nonvanishing eigenvalues. Hence, Theorem 1.5 can be applied.

Stummel’s eigenvalue problem Au = λBu, here u = λHu, leads to the inverse
eigenvalues of the usual eigenvalue problem λu = Hu that we are interested in. The
following result, Stummel’s main theorem applied to integral operators, is valid for
either definition.

Corollary 2.4. Let the conditions of Lemma 2.2 and Lemma 2.3 be fulfilled. Then,
for every nonvanishing eigenvalue λ of H with multiplicity m ∈ N and every suffi-
ciently small neighborhood U of λ there exists an ι0 such that the operator Hι has
exactly m eigenvalues (counting multiplicity) in U for every ι ≥ ι0.

An important application of this theory in the field of asymptotic statistics is
the possibility to approximate the distribution of weighted sums of squares of in-
dependent standard normals with the weights being the eigenvalues of a positive
trace-class operator H. The approximation is a weighted sum of squares of inde-
pendent standard normals, where the weights are the eigenvalues of the positive
trace-class operator Hι.

To obtain this result we demand, in addition to the requirements of the last
corollary that the operators (Hι)ι, H are positive and of trace-class.
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Theorem 2.5. Let the requirements of Lemma 2.2 and Lemma 2.3 be fulfilled and
let (Hι)ι, H be positive and of trace class. Then,

Sι :=
∑

σ∈Σι

λι
σZ2

σ
D−−−→

ι→∞

∑
σ∈Σ

λσZ2
σ =: S,

where (Zσ)σ is an iid sequence of standard normally distributed random variables.
The sequences (λι

σ)σ, σ ∈ Σι, denote the positive eigenvalues of Hι and (λσ)σ,
σ ∈ Σ ⊂ N, denote the positive eigenvalues of H. Each eigenvalue appears according
to its multiplicity.

Proof. By (2.4) and (2.5) hι converges uniformly to h on every compact set. Due
to the convergence in distribution µι =⇒ µ the trace Hι converges to the trace of
H.

In the following let λσ := 0 for σ ∈ N if σ �∈ Σ and let λι
σ := 0 for σ ∈ N if

σ �∈ Σι. To show convergence in distribution, we show the stronger L1-convergence:
Let ε > 0 be arbitrary. Let σ0 ∈ N be such that∑

σ>σ0
σ∈Σ

λσ ≤ ε.

Let the positive eigenvalues (λι
σ) of Hι be indexed by Σι ⊂ N such that for every

σ ≤ σ0, σ ∈ N, we have λι
σ → λσ for ι → ∞. With an appropriate change

of indexing this follows from Corollary 2.4. According to this indexing let (Zσ)σ

be assigned to (λι
σ)σ, (λσ)σ, respectively. By the pointwise convergence of the

eigenvalues there exists an ι0 ∈ N such that for every ι > ι0

|λι
σ − λσ| ≤

ε

2σ
for 1 ≤ σ ≤ σ0,

and by the convergence of the trace we can increase ι0 until

|
∑

σ∈Σι

λι
σ −

∑
σ∈Σ

λσ| ≤ ε for every ι > ι0.

Then,

E|Sι − S| ≤
∑

σ≤σ0

|λι
σ − λσ| +

∑
σ>σ0

|λι
σ − λσ|

≤ 2ε +
∑

σ>σ0

λι
σ +

∑
σ≤σ0

λι
σ −

∑
σ≤σ0

λι
σ +

∑
σ≤σ0

λσ +
∑

σ>σ0

λσ −
∑

σ

λσ

≤ 5ε,

i.e. we have L1-convergence. �

3. Example

As an example, the preceding theorem will be applied to approximate the limiting
null distribution of the two-sample V-statistic

Tm,n =
mn

m + n

[
2

mn

m∑
j=1

n∑
k=1

|Xj − Yk|2
1 + |Xj − Yk|2

− 1
m2

m∑
j=1

m∑
k=1

|Xj − Xk|2
1 + |Xj − Xk|2

− 1
n2

n∑
j=1

n∑
k=1

|Yj − Yk|2
1 + |Yj − Yk|2

]
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used to measure the distance between the d-variate distributions PX and PY on
the basis of realizations of independent random variables X1, X2, . . . ∼ PX and
Y1, Y2, . . . ∼ PY . The statistic can be written as

Tm,n =
mn

m + n

∫
· · ·

∫
h̃(x1, y1; x2, y2) dP Y

n (y1) dP Y
n (y2) dPX

m (x1) dPX
m (x2)

with

h̃(x1, y1; x2, y2) =
|x1 − y2|2

1 + |x1 − y2|2
+

|x2 − y1|2
1 + |x2 − y1|2

− |x1 − x2|2
1 + |x1 − x2|2

− |y1 − y2|2
1 + |y1 − y2|2

,

where | · | denotes the euclidian norm and PX
m , PY

n are the random empirical mea-
sures of X1, . . . , Xm and Y1, . . . , Yn, respectively.

In order to carry out a two sample tests of H0 : PX = PY against H1 : PX �= PY ,
the null distribution of Tm,n is needed. Let F0 = PX = PY be the nondegenerate
distribution under the null hypothesis. Applying results of Neuhaus [6] it can be
shown that the limiting null distribution for m, n → ∞ is that of a weighted sum of
squares of independent standard normals. The weights are the eigenvalues divided
by two of the positive trace class Hilbert-Schmidt operator

H̃ :
L2(Rd × Rd,Bd ⊗ Bd, F0 ⊗ F0) → L2(Rd × Rd,Bd ⊗ Bd, F0 ⊗ F0),

f 	→
∫

h̃( · , · ; x, y)f(x, y)d(F0 ⊗ F0)(x, y).

It can be further shown (see [4]) that these weights equal the eigenvalues of the
positive trace class Hilbert-Schmidt operator

H :
E → E,

f 	→
∫

h( · , y)f(y) dF0(y),

with h(x1, x2) :=
∫

h̃(x1, y1; x2, y2) d(F0 ⊗ F0)(y1, y2) and E being the space of
continuous bounded functions on R = supp(F0) equipped with the L2-norm with
respect to F0. This correspondence leads our interest to the approximation of the
eigenvalues of H which can be achieved with the methods introduced in the last
section. For that matter let

HN :
EN → EN ,

f 	→
∫

hN ( · , y)f(y) dFN (y)

with kernel hN (x1, x2) :=
∫

h̃(x1, y1; x2, y2) d(FN ⊗ FN )(y1, y2), N := m + n,
FN = m

m+nPX
m + n

m+nPY
n being the empirical distribution of the pooled sample

and EN := L2(Rd,Bd, FN ). Omitting tedious notation concerning the sequence of
sample sizes we proceed as follows: First, a sequence of sample sizes is fixed. Then,
the spaces EN are constructed. Almost surely FN converges weakly to F0 and thus,
by Theorem 2.1 the spaces EN almost surely form a discrete approximation of E.
Finally, given a sequence of observations such that (FN )N converges weakly to F0,
the sequence of operators (HN )N is derived. This sequence will now be shown to
be consistent with H and discretely compact.

Corollary 3.1. For iid random variables X1, X2, . . . , Y1, Y2, . . . ∼ F0 the operators
H, (HN )N almost surely are consistent, (HN )N almost surely is discretely compact
and H is compact in E.
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Proof. As noted, the empirical distributions (FN )N converge almost surely weakly
to F0 (and condition (2.3) is obviously satisfied). Let (FN )N be such a sequence.
Using ∣∣∣∣ |x − y|2

1 + |x − y|2 − |x′ − y|2
1 + |x′ − y|2

∣∣∣∣ ≤ 2|x − x′|

gives |hN (x, y) − hN (x′, y)| ≤ 4|x − x′|, and thus conditions (2.4) and analogously
(2.5) are fulfilled. The uniform convergence of (hN (x, ·))N to h(x, ·) on every com-
pact set follows from the pointwise convergence due to the weak convergence of laws
and the just established equicontinuity together with the symmetry of the kernel
functions. Hence, the corollary follows from Lemma 2.2 and Lemma 2.3. �

As mentioned above, the operators H and as a consequence the operators (HN )N

can be shown to be positive. H is of trace class and so are (HN )N , since they only
have a finite number of eigenvalues. The requirements of Theorem 2.5 being fulfilled,
we almost surely have

SN :=
∑

σ∈ΣN

λN
σ Z2

σ
D−−−−→

N→∞

∑
σ∈Σ

λσZ2
σ =: S,

where (λN
σ )σ, (λσ)σ are the eigenvalues of HN , H, respectively.

The eigenvalues of HN can easily be obtained by a linear equation system:
Because FN is an empirical measure it is sufficient to evaluate the operator HN

at Z1, . . . , ZN with Z1 := X1, . . . , Zm := Xm, Zm+1 := Y1, . . . , ZN := Yn. For
u ∈ L2(Rd,Bd, FN ) this gives

(HNu)(Zi) =
1
N

N∑
j=1

hN (Zi, Zj)u(Zj) =
1

N3

N∑
j,k,�=1

h̃(Zi, Zk; Zj , Z�)u(Zj),

i = 1, . . . , N , and leads to the eigenvalue problem

λ
u = A
u

with 
u = (u(Z1), . . . , u(ZN ))′ and A = (ai,j)i,j ,

ai,j :=
1

N3

N∑
k,�=1

h̃(Zi, Zk; Zj , Z�), i, j ∈ {1, . . . , N}.

Without going into detail we note that the test statistic works well for scale
alternatives (and in the univariate case for normally distributed random variables
is far better than Cramér-von Mises and Kolmogorov-Smirnov).

Remarks and conclusion

The mentioned example is one element of a class of two-sample tests introduced
by Baringhaus and the author [1, 2] and was chosen to briefly outline a possible
application of this approximation method. For results on the performance of the
tests see [2]. For additional information on the operators H, H̃ and their positivity,
trace class property as well as correspondence of eigenvalues, the reader is referred
to [4].

Although using this way of approximation the finite sample distribution of the
V-statistic is not taken into account, the procedure was shown in [2] to have the
same properties as Monte-Carlo bootstrap methods. An advantage of the proce-
dure which might be transferred to other tests is that no Monte-Carlo bootstrap
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methods are needed to obtain an approximation of the critical value even though
the mentioned test statistic is not asymptotically distribution free.
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