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Abstract. For discrete operator generated by singular kernel of
Calderon–Zygmund one introduces a finite dimensional approximation
which is a cyclic convolution. Using properties of a discrete Fourier trans-
form and a finite discrete Fourier transform we prove a solvability for
approximating equation in corresponding discrete space. For comparison
discrete and finite discrete solution we obtain an estimate for a speed of
convergence for a certain right-hand side of considered equation.
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1 Introduction

A basic object of this paper is a multidimensional singular integral

v.p.

∫

D

K(x, x − y)u(y)dy, x ∈ D,

which generates the Calderon–Zygmund operator with variable kernel [1,2],
where D is a domain in R

m unbounded as a rule.
Taking into account forthcoming studies of such a general operator using

a local principle here we consider a case of constant coefficients, i.e. when the
kernel does not depend on a first variable and the Calderon–Zygmund operator
looks as follows

(Ku)(x) ≡ v.p.

∫

D

K(x − y)u(y)dy ≡ (1)

lim
ε→0

∫

D∩{|x−y|>ε}

K(x − y)u(y)dy, x ∈ D.

We assume here that the kernel K(x) of the integral (1) satisfy the fol-
lowing conditions: (1) K(x) is a homogeneous function of order −m,K(tx) −
t−mK(x),∀t > 0; (2) K(x) is a differentiable function on a unit sphere Sm−1;
(3) the function K(x) has zero mean value on the Sm−1 [1,2].
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1.1 Canonical Domains

We will consider different types of domains D because the theory is essentially
depended on this type. So for example cases D = R

m and D = R
m
+ = {x ∈ R

m :
x = (x1, · · · , xm, xm > 0} are essentially distinct. Invertibility conditions for the
operator K do not coincide for these cases.

1.2 Infinite Discrete Case–Series

To obtain a good approximation for the integral (1) we will use the following
reduction. First instead of the integral (1) we introduce the series

∑
ỹ∈D∩hZm

K(x̃ − ỹ)ud(ỹ)hm, (2)

which generates a discrete operator Kd defined on functions ud of discrete vari-
able x̃ ∈ D ∩ hZ

m. Since the Calderon–Zygmund kernel has a strong singularity
at the origin we mean K(0) = 0. Convergence for the series (2) means that the
following limit

lim
N→+∞

∑
ỹ∈hZm∩QN∩D

K(x̃ − ỹ)ud(ỹ)hm

exists, where QN = {x ∈ R
m : max

1≤k≤m
|xk| < N}. It was shown earlier that

a norm of the operator Kd : L2(hZ
m ∩ D) → L2(hZ

m ∩ D) does not depend
on h [9]. But although the operator is a discrete object it is an infinite one, and
to solve equations with a such operator one needs to replace it by a certain finite
object.

1.3 Finite Discrete Case–Systems of Linear Algebraic Equations

It is natural to consider a system of linear algebraic equation instead of an infinite
system generated by the series (2). This method is called projection method [3].
It proposes following actions. Let PN : L2(D ∩ Z

m) → L2(D ∩ QN ∩ Z
m) be a

projector on a finite dimensional space. One needs to solve the equation

PNKdPNud = PNvd (3)

in the space L2(D ∩ QN ∩ Z
m) instead of the infinite system of linear algebraic

equations
Kdud = vd (4)

in the space L2(D ∩ Z
m).

The following result plays a key role in the theory of projection methods,
and it was proved for some special domains D and integrable kernel K(x) [3].

Proposition 1. If the Eq. (4) is uniquely solvable in the space L2(D ∩ Z
m) for

arbitrary right-hand side vd ∈ L2(D ∩ Z
m) then the Eq. (3) is uniquely solvable

in the space L2(D ∩ QN ∩ Z
m) for enough large N .
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Here we consider the case D = R
m and prove this proposition 1 with some

novelties because the Eq.(4) is a system of linear algebraic equations and for
large N one needs much time to solve it.

Our considerations are based on two steps: continual infinite object (1) −→
discrete infinite object (2) −→ discrete finite object (3) with justification and
error estimates. Some pieces of this programm were realized in authors’ papers
[4–9].

2 Discrete Fourier Transform and Symbols

Let us define the discrete Fourier transform for functions ud of a discrete
variable x̃ ∈ hZ

m

(Fdud)(ξ) =
∑

x̃∈hZm

ud(x̃)eix̃·ξhm, ξ ∈ �T
m, � =

h−1

2π
,

where T
m is m-dimensional cube[−π, π]m.

Such discrete Fourier transform preserves all basic properties of the classical
fourier transform, particularly for a discrete convolution of two discrete functions
ud, vd

(ud ∗ vd)(x̃) ≡
∑

ỹ∈hZm

ud(x̃ − ỹ)vd(ỹ)hm

we have the well known multiplication property

(Fd(ud ∗ vd))(ξ) = (Fdud)(ξ) · (Fdvd)(ξ).

If we apply this property to the operator Kd we obtain

(Fd(Kdud))(ξ) = (FdKd)(ξ) · (Fdud)(ξ).

Let us denote (FdKd)(ξ) ≡ σd(ξ) and give the following

Definition 1. The function σd(ξ), ξ ∈ �T
m, is called a periodic symbol of the

operator Kd.

We will assume below that the symbol σd(ξ) ∈ C(�T
m) therefore we have

immediately the following

Property 1. The operator Kd is invertible in the space L2(hZ
m) iff

σd(ξ) �= 0,∀ξ ∈ �T
m.

Definition 2. A continuous periodic symbol is called an elliptic symbol if
σd(ξ) �= 0,∀ξ ∈ �T

m.

So we see that an arbitrary elliptic periodic symbol σd(ξ) corresponds to an
invertible operator Kd in the space L2(hZ

m).

Remark 1. It was proved earlier that operators (1) and (2) for cases D =
R

m,D = R
m
+ are invertible or non-invertible in spaces L2(Rm), L2(Rm

+ ) and
L2(hZ

m), L2(hZ
m
+ ) simultaneously [6,8].
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3 Periodic Approximation and Cyclic Convolutions

Here we will introduce a special discrete periodic kernel Kd,N (x̃) which is defined
as follows. We take a restriction of the discrete kernel Kd(x̃) on the set QN∩Z

m ≡
Qd

N and periodically continue it to a whole Z
m. Further we consider discrete

periodic functions ud,N with discrete cube of periods Qd
N . We can define a cyclic

convolution for a pair of such functions ud,N , vd,N by the formula

(ud,N ∗ vd,N )(x̃) =
∑

ỹ∈Qd
N

ud,N (x̃ − ỹ)vd,N (ỹ)hm. (5)

(We would like to remind that such convolutions are used in digital signal
processing [10]). Further we introduce finite discrete Fourier transform by
the formula

(Fd,Nud,N )(ξ̃) =
∑

x̃∈Qd
N

ud,N (x̃)eix̃·ξ̃hm, ξ̃ ∈ Rd
N ,

where Rd
N = �T

m ∩ �Z
m. Let us note that here ξ̃ is a discrete variable.

According to the formula (5) one can introduce the operator

Kd,Nud,N (x̃) =
∑

ỹ∈Qd
N

Kd,N (x̃ − ỹ)ud,N (ỹ)hm

on periodic discrete functions ud,N and a finite discrete Fourier transform for its
kernel

σd,N (ξ̃) =
∑

x̃∈Qd
N

Kd,N (x̃)eix̃·ξ̃hm, ξ̃ ∈ Rd
N .

Definition 3. A function σd,N (ξ̃), ξ̃ ∈ Rd
N , is called s symbol of the operator

Kd,N . This symbol is called an elliptic symbol if σd,N (ξ̃) �= 0,∀ξ̃ ∈ Rd
N .

Theorem 1. Let σd(ξ) be an elliptic symbol. Then for enough large N the sym-
bol σd,N (ξ̃) is elliptic symbol also.

Proof. The function ∑
x̃∈Qd

N

Kd,N (x̃)eix̃·ξhm, ξ ∈ �T
m,

is a segment of the Fourier series∑
x̃∈hZm

Kd(x̃)eix̃·ξhm, ξ ∈ �T
m,

and according our assumptions this is continuous function on �T
m. Therefore

values of the partial sum coincide with values of σd,N in points ξ̃ ∈ Rd
N . Besides

these partial sums are continuous functions on �T
m. 	


As before an elliptic symbol σd,N (ξ̃) corresponds to the invertible operator
Kd,N in the space L2(Qd

N ).
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4 Approximation Rate

Let A : B → B be a linear bounded operator acting in a Banach space B,
BN ⊂ B be its finite dimensional subspace, PN : B → BN be a projector,
AN : BN → BN linear finite-dimensional operator [5].
Definition 4. Approximation rate for operators A and AN is called the follow-
ing operator norm

||PNA − ANPN ||B→BN

We will obtain a “weak estimate” for approximation rate but enough for our
purposes. We assume additionally that a function ud is a restriction on hZ

m of
continuous function with certain estimates [4,5]. Let’s define the discrete space
Ch(α, β) as a functional space of discrete variable x̃ ∈ hZ

m with finite norm

||ud||Ch(α,β) = ||ud||Ch
+ sup

x̃,ỹ∈hZm

|x̃ − ỹ|α
(max{1 + |x̃|, 1 + |ỹ|})β

.

It means that the function ud ∈ Ch(α, β) satisfies the following estimates

|ud(x̃) − ud(ỹ)| ≤ c
|x̃ − ỹ|α

(max{1 + |x̃|, 1 + |ỹ|})β
,

|ud(x̃)| ≤ c

(1 + |x̃|)β−α
, ∀x̃, ỹ ∈ hZ

m, α, β > 0, 0 < α < 1. (6)

Let us note that under required assumptions Ch(α, β) ⊂ L2(hZ
m).

Theorem 2. For operators Kd and Kd,N we have the following estimate

||(PNKd − Kd,NPN )ud||L2(Qd
N ) ≤ CNm+2(α−β)

for arbitrary ud ∈ Ch(α, β), β > α + m/2.

Proof. Let us write

(PNKd − Kd,NPN )ud = PNKdPNud − Kd,NPNud + PNKd(I − PN )ud,

where I is an identity operator in L2(hZ
m).

First two summands have annihilated, and we need to estimate only the last
summand. We have

||PNKd(I − PN )ud|| ≤ C||(I − PN )ud||
because norms of operators Kd are uniformly bounded, and for the last norm
taking into account (6) we can write

||(I − PN )ud||2 ≤ C
∑

x̃∈hZm\QN

|ud(x̃)|2hm ≤ C
∑

x̃∈hZm\QN

hm

(1 + |x̃|)2(β−α)
≤

and further
C

∫

Rm\QN

|x|2(α−β)dx

The last integral using spherical coordinates gives the estimate Nm+2(α−β)

which tends to 0 under n → ∞ if β > α + m/2. 	
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5 Main Theorem on Approximation

Here we consider the equation

Kd,Nud,N = PNvd (7)

instead of the Eq. (4) and give a comparison for these two solutions.
Below we assume that operator Kd is invertible in L2(hZ

m).

Theorem 3. If vd ∈ Ch(α, β), β > α + m/2, ud is a solution of the Eq. (4),
ud,N is a solution of (7) then the estimate

||ud − ud,N ||L2(hZm) ≤ CNm+2(α−β)

is valid, and C is a constant non-depending on N .

Proof. Let us write

ud − ud,N = K−1
d vd − K−1

d,NPNvd =

(I − PN )K−1
d vd + PNK−1

d vd − K−1
d,NPNvd

For the summand PNK−1
d vd − K−1

d,NPNvd we have a corresponding estimate
by the Theorem 2 because the operators K−1

d and K−1
d,N are constructed similar

initial operators Kd and Kd,N .
The first summand is estimated like the proof of the Theorem 2 and using the

property that operator Kd is uniformly on h is bounded in the space Ch(α, β)
[9] and the operator K−1

d has a symbol with required properties [8]. 	


6 Conclusion

We have introduced such a finite approximation for original integral (1) because
there are a lot of algorithms for calculating a finite discrete Fourier transform,
these are so called fast Fourier transform algorithms [10]. On the other hand this
step-by-step approximation permits to justify mathematically without additional
difficulties results on a solvability for a corresponding approximate equation.
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