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Abstract— This paper addresses the weighted anisotropic
shortest-path problem on a continuous domain, i.e., the com-
putation of a path between two points that minimizes the
line integral of a cost-weighting function along the path. The
cost-weighting depends both on the instantaneous position
and direction of motion. We propose an algorithm for the
computation of shortest-path that reduces the problem to an
optimization over a finite graph. This algorithm restricts the
search to paths formed by the concatenation of straight-line
segments between points, from a suitably chosen discretization
of the continuous region.

To maximize efficiency, the discretization of the continuous
region should not be uniform. We propose a novel “honeycomb”
sampling algorithm that minimizes the cost penalty introduced
by discretization. The resulting path is not optimal but the
cost penalty can be made arbitrarily small at the expense of
increased computation.

This methodology is applied to the computation of paths for
groups of Unmanned Air Vehicles (UAVs) that minimize the
risk of being destroyed by ground defenses. We show that this
problem can be formulated as a weighted anisotropic shortest-
path optimization and show that the algorithm proposed can
efficiently produce low-risk paths.

I. INTRODUCTION

Consider a compact region R ⊂ R
n and two points

xi, xf ∈ R. Our goal is to compute a continuous path ρ from
xi to xf that minimizes the line integral over ρ of a cost-
weighting function ` that depends on position and direction
of motion. Motivated by the observation that the optimal path
is a straight-line from xi to xf when the cost-weighting is
constant, one often refers to this problem as a shortest-path
optimization. To emphasize the fact that the cost-weighting
is not uniform and that it depends on the direction of motion,
we further qualify it as a weighted anisotropic shortest-path
optimization.

To formalize the problem, we denote by P the set of all
unit-speed paths in R from xi to xf that are continuous and
piecewise twice continuously differentiable, i.e., the set of
continuous functions ρ : [0, T ] → R, T > 0 for which (i)
ρ(0) = xi and ρ(T ) = xf ; (ii) ρ̇ and ρ̈ exist on [0, T ], except
for a finite number of points; and (iii) ‖ρ̇‖ = 1 wherever this
derivative exists. The problem under consideration can be
formalized as follows:
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Problem 1 (Weighted anisotropic shortest-path):
Compute a path ρ∗ ∈ P such that1

J [ρ∗] = min
ρ∈P

J [ρ],

where J : P → [0,∞) denotes the functional defined by

J [ρ] :=

∫ T

0

`(ρ(t), ρ̇(t))dt,

for each ρ : [0, T ] → R in P . �

We assume throughout the paper that the cost-weighting
` : R× R

n → [0,∞) is continuously differentiable.
The solution to this problem has numerous applications

that range from mobile robotics to path planning on topo-
graphical maps. The specific application pursued here is the
computation of paths for groups of Unmanned Air Vehicles
(UAVs) that minimize the risk of being destroyed by ground
defenses, e.g., Surface-to-Air Missiles (SAMs).

The computation of shortest-paths has a long history and
is, in fact, the most basic problem in Calculus of Variations
(cf., e.g., [7]). Assuming for simplicity that R := R

n, the
optimization formulated above is equivalent to the optimal
control problem of finding a terminal time T ≥ 0 and a
control v : [0, T ] → V , with V := {z ∈ R

n : ‖v‖ = 1}

that minimizes the cost J :=
∫ T

0 `(x(t), v(t))dt, subject to
the dynamics ẋ = v and initial and terminal conditions
x(0) = xi, x(T ) = xf . The solution to this problem can
be found using the Hamilton-Jacobi-Bellman (HJB) equa-
tion: Assuming that there exists a continuously differentiable
solution V : R

n → R to the HJB equation

0 = min
v∈V

H(x, v,∇xV (x)), ∀x ∈ R
n,

with boundary condition V (xf ) = 0, where the Hamiltonian
H is defined by H(x, v, p) := `(x, v)+

〈

p, v
〉

, ∀x, v, p ∈ R
n,

the optimal control v∗ : [0, T ∗] → V is given by

v∗(t) = arg min
v∈V

H(x∗(t), v,∇xV (x∗(t))),

where x∗ denotes the optimal trajectory defined by ẋ∗ = v∗

and x∗(0) = xi. However, this method generally fails when
the HJB equation (or a relaxation of it) has no continuously
differentiable solution. Even when an appropriate solution
exists (perhaps only a viscosity solution), it is generally
computationally very difficult to find.

1Without further assumptions, the minimum may not be achieved for a
path in P , but we will ignore this for now.



Several methods have been proposed to overcome this
difficulty. These methods typically explore special structures
for the cost-weighting ` and/or compute paths that are only
approximately optimal. We pursue here the latter approach
and solve a discrete version of the continuous problem, which
provides an approximate solution. This approximation yields
solutions that are not necessarily optimal but whose cost
can be made arbitrarily close to the optimal one. We start
by sampling the region R to extract a finite number of
points X and then restricting the search to paths consisting
of the concatenation of line segments between points in
X . The search portion of the algorithms is performed by
constructing a finite graph (whose nodes are the points in
X ), for which one then solves a shortest-path problem using
standard algorithms.

This type of approach has been proposed before (cf.,
Section II) but because of the “curse of dimensionality”
its successful application to nontrivial problems depends
crucially on the algorithm used to sample the region R. This
paper addresses precisely this issue. We start by deriving in
Section III a worst-case bound for the cost penalty introduced
by discretization. Inspired by this bound, we then propose in
Section IV an efficient algorithm to sample R so as to achieve
a small cost penalty with a relatively sparse sampling of R.
The key idea is to sample R so that there will be more sample
points in regions where the optimal path is more likely to
deviate from a straight-line.

We apply the proposed algorithm to the computation of
paths for groups of UAVs, which minimize their probabil-
ity of destruction by ground defenses. This is an inher-
ently three-dimensional, anisotropic shortest-path problem
for which previous algorithms do not apply. The results
obtained, which are summarized in Section V, validate the
algorithm and show that it can solve the problem with rea-
sonable computational effort. In this section we also compare
the performance of several alternative sampling methods.

II. RELATED WORK

The solution to shortest-path problems is an active area
of research in computational geometry [18]. When strong
assumptions on the cost-weighting ` are imposed, efficient
algorithms can be used to compute the shortest-path. Often
`(x, v) is assumed independent of the velocity v and takes
only two distinct values: a low value corresponding to “free-
space” and a high value (in the limit +∞) corresponding
to “obstacles.” Hershberger and Suri [8] proposed an al-
gorithm for planar regions and obstacle spaces defined by
polygons that runs in worst-case time O(n log n) and requires
O(n log n) space, where n is the total number of obstacle
vertices. Another algorithm that is competitive when the
number m of disconnected obstacles is much smaller than
the number of vertices has been proposed by Kapoor et al.
[9] and runs in worst-case time O(n+m2 log n) and requires
O(n) in space. The complexity of the problem increases
when the cost-weighting `(x, v) is still independent of the
velocity v and piecewise constant over space, but can take
more than two values. However, polynomial-time algorithms
can still be found that produce ε-optimal solutions, i.e. paths

for which the cost is above the minimum by a factor no larger
than (1 + ε). For example, Mitchell and Papadimitriou [14],
Aleksandrov et al. [1], and Mata and Mitchell [12] provide
ε-optimal planar algorithms for any ε > 0 that run in worst-
case times, O(n8 log n

ε ), O(n
ε log 1

ε ( 1√
ε
+log n)), and O(n3

ε ),
respectively. In three dimensions the complexity of the prob-
lem also increases but polynomial-time algorithms can still
be found that produce ε-optimal solutions. Aleksandrov et al.
[1] provide an ε-optimal algorithm for any ε > 0 that runs
in worst-case time O(n

ε log 1
ε ( 1√

ε
+ log n)), where n is the

number of convex regions needed to define the piecewise
constant cost-weight `. The worst-case time decreases to
O( n

ε3 log 1
e log n) when ` only takes two very distinct values.

The reader is referred to the survey by Mitchell [13] for
additional results.

Much less work has been devoted to the anisotropic case,
i.e., when `(x, v) depends both on the position x and velocity
v. Rowe and Ross [17] considered the computation of the
minimum-energy path for a ground vehicle moving between
two points on a hilly terrain described by a triangular mesh
(2 1/2-dimensional case). Rowe and Ross [17] used a simple
model for the energy-cost that takes into account the grade of
the climb and is therefore velocity dependent. They provided
an exact algorithm with worst-time run complexity O(nn).
Lanthier et al. [11] later provided an approximate algorithm
with polynomial worst-case time.

The numerical solution to stochastic shortest-path prob-
lems has also been addressed in the control literature, where
most of the focus has been on approximations to the HJB
formulation. The reader is referred to [10] for a detailed
discussion on this topic. Tsitsiklis [20] proposes two effi-
cient algorithms to solve an isotropic shortest-path problem
by solving a discretized HJB equation. By restricting the
attention to isotropic cost-weights and sampling R using a
regular rectangular grid, the author constructs an algorithm
whose complexity is linear on the number of sample points.
An even more efficient algorithm for the same optimization
is proposed in [5]. However, none of these algorithms seems
to generalize to the anisotropic case [20].

A fundamentally different approximation to the HJB for-
mulation was proposed in [19] for the isotropic case when
`(x, v) only takes two distinct values: +∞ on a finite col-
lection of non-intersecting “obstacles” and a fixed constant
value elsewhere. The authors compute the solution to the
HJB exactly for a single disk-like obstacle and then an
approximation of it for the case of multiples obstacles, which
is constructed considering the effect of one obstacle at a time.
The method can be efficiently implemented and the paths
generated are near-optimal and guaranteed to reach the goal.
This type of approximation depends critically on the binary
nature of `.

III. DISCRETIZATION

To overcome the difficulties that arise in solving the
Weighted Anisotropic Shortest-Path Problem 1 exactly, one
may finely grid the region R and force the path to consist of
the concatenation of several straight segments between points
in the grid. For a finite number of grid points, this procedure



converts the original continuous shortest-path problem into a
shortest-path problem on a finite graph.

Given a finite set of points X that includes xi and xf , we
say that a path ρ : [0, T ] → R in P is piecewise linear with
respect to X if there exists a sequence of points

{

x0 = xi, x1, x2, . . . , xm = xf} ⊂ X

such that

ρ(t) = xk−1 +
xk − xk−1

‖xk − xk−1‖
(t − tk−1), (1)

∀t ∈ [tk−1, tk], k ∈ {1, 2, . . . , m}, where the tk are defined
recursively by

t0 := 0, tk = tk−1 + ‖xk − xk−1‖, ∀k ∈ {1, 2, . . . , N},

and T = tm. The set of all such paths is denoted by PX . The
following results show that restricting our search to this type
of path can provide solutions arbitrarily close to the optimal.

Theorem 1: For any A, ε > 0, there exists a finite set X
of Nε points in R such that for every initial and final points
xi, xf ∈ R

inf
ρ∈PX̄

J [ρ] − ε ≤ inf
ρ∈P‖ρ̈‖≤A

J [ρ] ≤ inf
ρ∈PX̄

J [ρ],

where X̄ := X ∪ {xi, xf} and P‖ρ̈‖≤A denotes the set of
twice continuously differentiable paths in P with second
derivative bounded by A. �

The proof of Theorem 1 is constructive and will inspire the
construction of sampling algorithms that attempt to minimize
the worst-case cost penalty ε introduced by discretization.
The following two technical results are needed to prove
Theorem 1. The proofs of the following Lemmas are omitted
due to space limitations.

Lemma 1: Given any positive constants A, εx, εv, εδ

(without loss of generality assuming that εx ≤ εδ), there
exists a finite subset X of R such that for every twice
continuously differentiable path ρ : [0, T ] → R ∈ P with
second derivative bounded by A, one can find

1) a sequence of times {τ0, τ1, . . . , τN} ⊂ [0, T ], with
τ0 := 0 ≤ τk−1 < τk ≤ τN := T , and

2) a sequence of points {x0, x1, . . . , xN} ∈ X

such that

‖xk − xk−1‖ ≤ εδ , ∀k ∈ {1, . . . , N}, (2)

‖ρ(t) − xk−1‖ ≤ εδ, ∀t ∈ [τk−1, τk], k ∈ {1, . . . , N}, (3)

‖ρ(τk) − xk‖ ≤ εx, ∀k ∈ {0, 1, . . . , N}, (4)
∥

∥

∥
ρ̇(τ) −

xk − xk−1

‖xk − xk−1‖

∥

∥

∥
≤ εv,

∀τ ∈ (τk−1, τk), k ∈ {1, . . . , N}, (5)
N

∑

k=1

‖xk − xk−1‖ ≤
1 + εv

2 + εv
2T. (6)

Moreover, as εx decreases to zero, the integer N remains
uniformly bounded. �

Lemma 2: Given two paths ρi : [0, Ti] → R in P and
two intervals (ti, τi) ⊂ [0, Ti], i ∈ {1, 2} on which the
corresponding ρi are twice continuously differentiable,
∫ τ2

t2

`(ρ2(t), ρ̇2(t))dt −

∫ τ1

t1

`(ρ1(t), ρ̇1(t))dt

≤ |`(ρ2(t2), ρ̇2(t
+
2 )) − `(ρ1(t1), ρ̇1(t

+
1 ))|∆

+ |`(ρ2(τ2), ρ̇2(τ
−
2 )) − `(ρ1(τ1), ρ̇1(τ

−
1 ))|∆ + (τ2 − t2 − 2∆)h

+ (gx,1 + gx,2 + a1gv,1 + a2gv,2)∆
2 (7)

where2

∆ :=
1

2
min

{

‖ρ1(τ1) − ρ1(t1)‖, ‖ρ2(τ2) − ρ2(t2)‖
}

,

h := sup
s∈(t2+∆,τ2−∆)

`(ρ2(s), ρ̇2(s))

ai := sup
s∈(ti,τi)

‖ρ̈i(s)‖, i ∈ {1, 2},

g(·),i := sup
s∈(ti,τi)

‖∇(·)`(ρi(s), ρ̇i(s))‖, (·) = x or v.

The inequality (7) still holds if we replace (gx,1 + gx,2 +
a1gv,1 + a2gv,2)∆

2 by (gx,1 + gx,2)∆
2 + 2(gv,1 + gv,2)∆.�

Proof of Theorem 1: 1 Let X be the set whose existence
is guaranteed by Lemma 1 for parameters εx, εv, εδ to be
defined shortly, and let ρ∗ : [0, T ∗] → R be a path in P for
which

J [ρ∗] ≤ inf
ρ∈P

J [ρ] + δ,

where δ is a constant that can be made arbitrarily small (δ
is only needed when the infimum is not a minimum). From
Lemma 1, we know that there exists a sequence of times
{τ0, τ1, . . . , τN} ⊂ [0, T ], with τ0 := 0 ≤ τk−1 < τk ≤
τN := T , and a sequence of points {x0, x1, . . . , xN} ∈ X
such that ρ̇∗ and ρ̈∗ exist on any interval (τk−1, τk), k ∈
{1, . . . , N} and (2)–(6) hold for the path ρ∗. We can then
use these points to construct a path ρ : [0, T ] → R in PX̄
defined as in (1). We proceed to compare the costs associated
with ρ∗ and ρ. To this effect, we expand

J [ρ] − J [ρ∗] =

N
∑

k=1

∫ tk

tk−1

`(ρ(s), ρ̇(s))ds

−

∫ τk

τk−1

`(ρ∗(s), ρ̇∗(s))ds.

Applying Lemma 2 to each pair of intervals (τk−1, τk) and
(tk−1, tk), ∀k ∈ {1, . . . , N}, we conclude that

J [ρ] − J [ρ∗] ≤
N

∑

k=1

|`(xk−1, ρ̇(t+k−1)) − `(ρ∗(τk−1), ρ̇
∗(τ+

k−1))|∆k

+ |`(xk, ρ̇(t−k )) − `(ρ∗(τk), ρ̇∗(τ−
k ))|∆k

+ (tk − tk−1 − 2∆k)hk + 2(gx,k + Agv,k)∆2
k, (8)

2We denote by ∇x` and ∇v` the gradient of `(x, v) with respect to x
and v, respectively.



where

∆k :=
1

2
min

{

‖xk − xk−1‖, ‖ρ
∗(τk) − ρ∗(τk−1))‖

}

, (9)

hk := sup
x∈R,v∈V

‖x−xk−1‖≤εδ

`(x, v), (10)

gx,k := sup
x∈R,v∈V

‖x−xk−1‖≤εδ

‖∇x`(x, v)‖, (11)

gv,k := sup
x∈R,v∈V

‖x−xk−1‖≤εδ

‖∇v`(x, v)‖. (12)

From (6), we further conclude that

N
∑

k=1

∆k ≤
1

2

N
∑

k=1

‖xk − xk−1‖ ≤
1 + εv

2 + εv
T. (13)

In case ‖xk − xk−1‖ ≤ ‖ρ∗(τk) − ρ∗(τk−1))‖ we have that
2∆k = ‖xk − xk−1‖ = tk − tk−1 and therefore tk − tk−1 −
2∆k = 0. On the other hand, if ‖xk − xk−1‖ > ‖ρ∗(τk) −
ρ∗(τk−1))‖, then 2∆k = ‖ρ∗(τk)−ρ∗(τk−1))‖ and therefore

tk − tk−1 = ‖xk − xk−1‖ ≤ ‖xk − ρ∗(τk)‖

+ ‖ρ∗(τk) − ρ∗(τk−1))‖ + ‖xk−1 − ρ∗(τk−1)‖

≤ 2(εx + ∆k).

In either case it is true that

tk − tk−1 − 2∆k ≤ 2εx. (14)

Using the Mean Value Theorem, (4), and (5) we also con-
clude that

|`(xk−1, ρ̇(τ+
k−1)) − `(ρ∗(τk−1), ρ̇

∗(τ+
k−1))|

≤ gx,kεx + gv,kεv, (15)

|`(xk, ρ̇(τ−
k )) − `(ρ∗(τk), ρ̇∗(τ−

k ))|

≤ gx,kεx + gv,kεv. (16)

We can now use the bounds provided by (13), (14), and (15)–
(16) in (8) to obtain

J [ρ] − J [ρ∗] ≤
2 + 2εv

2 + εv
g T + 2Nεxh, (17)

where g := supk

(

gx,kεx + gv,kεv + (gx,k + Agv,k)εδ

)

and
h := supk hk. This finishes the proof, since the right-hand-
side of (17) can be made arbitrarily small by selecting εx,
εδ, and εv sufficiently small. Note that Lemma 2 guarantees
that N will not grow unbounded as εx is decreased. �

IV. NON-UNIFORM SAMPLING

In principle solving the optimization over paths in PX̄ is
a simple problem that can be solved using standard tools to
determine shortest-paths on finite graphs. The main difficulty
with this approach is that the required number of points Nε

may grow very fast as ε decreases. However, this can be
minimized by carefully selecting the location of the points.

The idea behind the proof of Theorem 1 is that we can
construct a piecewise linear approximation ρ to an optimal
path ρ∗ by approximately sampling ρ∗ so that the following
constraints are satisfied:

1) the distance between consecutive sample points xk

should not exceed a given constant εδ;
2) each sample point xk should be in an εx-ball of the

corresponding point ρ∗(τk) in the path;
3) the difference between the derivatives of ρ∗ and its

approximation ρ should not exceed εv.
By forcing εδ, εx, and εv to be sufficiently small, one can
get piecewise linear paths whose costs are arbitrarily close
to ρ∗. It turns out that if one examines closely the proof of
Theorem 1, in particular equation (17), one concludes that
εδ can actually be large and that it suffices that both εx and

gx,kεx + gv,kεv + (gx,k + Agv,k)‖xk − xk−1‖ (18)

be small for every k, where the constants gx,k and gv,k

are defined in (12). This shows that one can actually allow
‖xk − xk−1‖ to be large in some regions, provided that
gx,k + gv,kA be sufficiently small on those regions. To take
advantage of this, one should not sample R uniformly. The
honeycomb-like sampling shown in Figure 1 can be used to
keep (18) small with sparse sampling. Indeed, by keeping the
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Fig. 1. Honeycomb sampling

diameter of the cells inversely proportional to gx,k + gv,kA,
one makes sure that it is possible to pick the xk appropriately
spaced, while minimizing the overall number of sample
points. Note that to be able to keep xk in a small εx-ball
of ρ∗(τk), the edges of the cells should be finely sampled.
This type of spacing can be efficiently obtained using the
following procedure:

Algorithm 1 (Honeycomb sampling):
1) Extract randomly K points Z := {zk ∈ R : k =

1, 2, . . . , K} ⊂ R
n, with a spacial probability density

over R proportional to
(

sup
v∈V

‖∇x`(x, v)‖ + A‖∇v`(x, v)‖
)n

.

The distance between points in a particular area is then
roughly inversely proportional to

K
1

n sup
v∈V

‖∇x`(x, v)‖ + A‖∇v`(x, v)‖. (19)

2) Compute the Voronoi diagram generated by the points
in Z . The size of the resulting cells in a particular
area is roughly proportional to the distance between
the points in that area, which is inversely proportional
to (19).



3) Construct X by sampling the edges of the Voronoi
diagram sufficiently finely so that it is possible to
choose points xk in an εx-ball of any point where
an optimal path would cross the cell boundary. (See
Lemma 1) �

This algorithm was used to produce the sampling in Figure 1.
In this figure the background color represents the magnitude
of supv∈V ‖∇x`(x, v)‖ + A‖∇v`(x, v)‖, with dark repre-
senting large values. Increasing the number of generators
K, decreases the term (gx,k + Agv,k)‖xk − xk−1‖ in (18),
whereas increasing the density of sampling over the edges
of the Voronoi diagram decreases εx. It should be noted that
this type of sampling does not correspond to a finite-elements
approximation to the continuous HJB equation.

We considered a couple of alternative sampling algorithms
and contrasted them with honeycomb sampling. The first
method is the simplest and does not explore the structure
of the cost weight `:

Algorithm 2 (Randomized uniform sampling): Construct
X by randomly extracting N points, with a uniform spacial
probability density over R. �

The following method is also inspired by (18) but simply
attempts to minimize the term (gx,k + Agv,k)‖xk − xk−1‖.

Algorithm 3 (Randomized gradient-based sampling):
Construct X by randomly extracting N points, with
a spacial probability density over R proportional to
(

supv∈V ‖∇x`(x, v)‖ + A‖∇v`(x, v)‖
)n

. �

In the next section we compare the performance of these
three sampling algorithms in the context of minimum-risk
path planning.

V. MINIMUM-RISK PATH PLANNING FOR UAVS

Consider a group of m UAVs flying in a region R ⊂
R

3 under the threat of k SAM sites located at positions
z1, z2, . . . , zk ∈ R

3. In this context one would like to
compute a path ρ : [0, T ] → R for the group of UAVs that
starts at an initial position xi and ends at a final position xf ,
maximizing the probability that the UAVs will survive the
journey.

In general different UAVs may have different defen-
sive/stealth capabilities and therefore their probabilities of
survival are distinct. Because of this, minimal-risk path
planning is a multi-criteria optimization problem. We will
pursue here Pareto-optimal paths, i.e., paths for which the
probability of any single UAV surviving cannot be improved
without decreasing the survivability of another UAV in the
group.

Denoting by psurvive
j [ρ] the probability that the jth UAV

safely reaches the destination, Pareto-optimal (maximal)
paths can be obtained as the solution to single-criteria opti-
mization problems of the form

max
ρ

m
∑

j=1

λjp
survive
j [ρ],

where the λj denote positive constants [4]. Assuming that
velocities are normalized so the maximum speed of the
slowest UAV is equal to one, the optimization should be

performed as ρ ranges over the set P considered in the
previous sections. Note that in general, risk is minimized
for the maximum speed so there is no reason to consider
paths with speeds smaller than the maximum. We ignore here
all constraints posed by the aircraft dynamics, other than its
maximum speed. The path generated by this optimization
would serve as a reference trajectory for the group, to be
used by algorithms such as the ones proposed in [6, 15, 16].
One could also take fuel consumption and path length as
additional criteria for Pareto-optimality. Although we do not
pursue this here, it would be straightforward.

A. Risk Model
The probability of the jth UAV being hit by the ith SAM

in an elementary time interval dt is assumed to be given by

ηij(x, ẋ, zi)dt,

where x and ẋ denote the position and velocity of the group
of UAVs. The function ηij is called the risk density for the jth
UAV with respect to the ith SAM. When the SAMs operate
independently, the probability of the jth UAV surviving all
the SAMs is given by

n
∏

i=1

(1 − ηij(x, ẋ, zi)dt).

The main reason why risk density functions depend on the
position of the SAMs and the position and velocity of the
UAVs, is that the radar signature of the UAVs is a function
of their distance and flight angle with respect to the SAMs.

Suppose now that the group of UAVs fly along a path
ρ : [0, T ] → R. Assuming that the probability of being hit
over disjoint path elements is independent, the probability
psurvive

j [ρ] of the jth UAV surviving the whole path ρ is
given by the limit as dt → 0 of

T/dt
∏

k=0

n
∏

i=1

(

1 − ηij

(

ρ(kdt), ρ̇(kdt), zi

)

dt
)

.

Taking log and making dt → 0, we obtain3

log psurvive
j [ρ] = −

n
∑

i=1

∫ T

0

ηij(ρ(t), ρ̇(t), zi)dt.

We therefore conclude that, under the previous risk model,
we can express psurvive[ρ] as

psurvive
j [ρ] = e−

∫

T
0

`j(ρ(t),ρ̇(t))dt,

where

`j(x, v) :=

n
∑

i=1

ηij(x, v, zi). (20)

This model is consistent with the expectation that if one re-
mains under danger for a long amount of time, the probability
of survival eventually converges to zero.

Since the function s 7→ e−s is monotone decreasing, paths
that are Pareto-optimal (maximal) with respect to the rewards

3Here, we used the fact that log(1 − ε) ≈ −ε for ε � 1.



psurvive
j [ρ] are also Pareto-optimal (minimal) with respect to

the costs

Jj [ρ] :=

∫ T

0

`j(ρ(t), ρ̇(t))dt. (21)

We can therefore find these paths by solving the Weighted
Anisotropic Shortest-Path Problem 1 considered in Sec-
tions III–IV.

B. Numerical results
In this section we analyze the performance of the algo-

rithms proposed to solve Problem 1, in the context of the
minimum-risk path planning problem formulated above. We
utilize a cost of the form (21), computed from a realistic risk
density function.

The risk density function ηij defined before depends on the
distance and attitude of the UAVs with respect to the SAM
sites. This is because SAMs are usually guided by a tracking
radar that locks on the target UAV and guides the SAM
until interception. Therefore, ηij depends significantly on the
aircraft’s Radar Cross Section (RCS), which is a measure of
its ability to reflect radar signals in the direction of the radar
receiver. It turns out that the RCS of an aircraft is a function
of the azimuth and the elevation angles of the line-of-sight
vector from the UAV to the radar. Since these angles are
defined in the body frame, the RCS—and consequently the
risk density functions ηij—depend on the relative attitude of
the aircraft with respect to the radar and therefore on the
aircraft’s position and velocity. This leads to an anisotropic
cost-weighting `j given by (20). The results summarized
below use the strongly anisotropic risk density functions
consistent with RCSs taken from a challenge problem set
forth by Boeing for the DARPA program Mixed Initiative
Control of Automa-teams (MICA) [2, 3]. The positions and
characteristics of the SAM sites were also taken from the
same challenge problem.
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Fig. 2. The Scenario and Typical Minimum-Risk Paths

In this study we consider the scenario shown in Figure 2,
which is representative of typical minimal-risk path plan-
ning problem. This scenario considers three medium range
SAM sites (MS1, MS2, and MS3), appearing in the figure
surrounded by circles that indicate their maximum firing

range. However, one should emphasize that it is possible
for the UAVs to fly well inside the SAMs’ ranges without
being threatened, provided that their RCSs are kept low
by appropriate choice of position and attitude. The figure
also shows three minimum-risk paths, each obtained using a
different sampling method.

Figure 3 shows typical paths obtained using the honey-
comb, uniform, and gradient-based sampling methods. These
plots illustrate how honeycomb sampling can produce better
result with a much smaller sampling density than the other
methods.

Figure 4 summarizes the results obtained from running a
large number of optimizations on the test scenario. In the
vertical axis we plot the optimal cost obtained and in the
horizontal axis the time it took to compute it. The algorithms
were implemented in MATLAB and ran on a Dell Dimension
4500 workstation (Pentium 4 processor, 2GHz clock, 768Mb
of RAM) under Linux. We compare the results obtained
using the three sampling algorithms described in Section IV:
honeycomb, randomized uniform, and randomized gradient-
based. For each algorithm we considered several sampling
densities, leading to distinct execution times and distinct op-
timal costs. We can see that, for the same computation time,
honeycomb sampling consistently produces lower costs than
the other methods. Moreover, for computation times larger
than roughly 15 seconds, the majority of the honeycomb
optimizations resulted in very good paths with costs below
10.4 The same is not true for the other sampling methods
that proved much less consistent.

TABLE I

MEAN AND STANDARD DEVIATION OF THE COSTS

honeycomb uniform gradient
Mean 8.6892 9.3878 9.7667

Standard Deviation (σ) 0.8294 0.8286 0.8006
3σ Upper Bound (99.7%) 11.1774 11.8767 12.1685

This is confirmed by Table I, which shows the mean
value and the standard deviation of the costs obtained with
each sampling method. The average cost from honeycomb
sampling is about 7% smaller than the other ones and its 3σ
upper bound is also smaller. It should be noted that a 7% cost
improvement is significant, because the costs obtained using
sampling do not seem to be very far from the best achievable
in this scenario (which is probably just below 7).

VI. CONCLUSION

In this paper we propose an algorithm for the computation
of weighted anisotropic shortest-paths, which reduces the
continuous problem to an optimization over a finite graph that
can be efficiently solved. The algorithm proposed restricts
the search to paths formed by the concatenation of straight-
line segments between points from a suitably chosen dis-
cretization of the continuous region. To maximize efficiency,
the discretization should not be uniform. We propose a

4Essentially, most honeycomb optimizations fit below the dashed line
except for four points indicated by arrows. They resulted from particularly
unfavorable configurations of cells. This type of situation is unavoidable
with randomized methods.
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Fig. 3. Sampling Points and Corresponding Optimal Path for Each Method
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“honeycomb” sampling algorithm that minimizes the cost
penalty introduced.

This methodology is applied to the computation of paths
for groups of UAVs that minimize the risk of being destroyed
by ground defenses. We show that this problem can be for-
mulated as a shortest-path optimization and that honeycomb
sampling method can efficiently produce low-risk paths with
less computation time than other methods, for the same or
better costs.

Future work will include the computation of non-
conservative bounds on the cost penalty introduced by dis-
cretization with honeycomb and other sampling algorithms.
We are also studying the integration of sampling and the
graph optimization algorithms to avoid oversampling.
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