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Abstract: In this paper, we present a new systematic method to obtain some discrete numerical
models for incompressible free-surface flows. The method consists in first discretizing the Euler
equations with respect to one variable, keeping the other ones unchanged and then performing an
asymptotic analysis on the resulting system. For the sake of simplicity, we choose to illustrate
this method in the context of the Peregrine asymptotic regime, that is we propose an alternative
numerical scheme for the so-called Peregrine equations. We then study the linear dispersion char-
acteristics of our new scheme and present several numerical experiments to measure the relevance
of the method.
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Discrete asymptotic equations

for long wave propagation

Résumé : Dans cet article on présente une nouvelle derivation systématique de modèles
numériques pour écoulements à surface libre. La méthode utilisé consiste en discretiser
les équations d’Euler dans la direction horizontale et apres en introduisant une expan-
sion asymptotique des equations discrètes obtenues. Pour simplicité dans ce travail on
considère que le cas d’un système analogue aus équations de Peregrine. On analyse les
propriétés de dispersion et du nouveau modele discret en montrant une nette amélioration
par rapport à la discretisation directe du système asymptotique continu.

Mots-clés : Asymptotic equations, discrete asymptotics, Boussinesq models, finite
elements
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1 Introduction

Wave transformation in near shore zone is well-described by the incompressible Euler
equations. Due to their three-dimensional character, these equations are often too costly
if one wants to perform numerical experiments, and often replaced by asymptotic depth-
averaged models known as Boussinesq equations. A major characteristic of these models
is their ability to describe the dispersive behaviour of wave propagation. Generally, the
linear and nonlinear dispersion characteristics of the waves represented by Boussinesq
models can be improved by including high order contributions in the double asymptotic
expansion in terms of the ratios wave height over wave length (dispersion) and wave
height over depth (nonlinearity) [12]. Other techniques to improve the linear dispersion
characteristics involve the inclusion of extra dispersive differential terms, derived either
from a linear wave equation [2, 13], or by replacing depth-averaged values by point values
at a properly chosen depth [14]. When numerically simulating the propagation of long
waves, the physics represented by these continuous systems of Partial Differential Equa-
tions (PDE) is further filtered by the numerical scheme, and in particular by the form
of the truncation error. For most of Boussinesq models, the task of designing an accu-
rate numerical discretization is a nontrivial one, due to the presence of dispersion terms.
Several approaches exist in literature, each with its own advantages and drawbacks. For
details, the interested reader may refer to [4, 8, 11, 16], to the review [5], and references
there in. The objective of this paper is to study the interaction scheme-PDE and to
propose a framework to obtain new schemes with improved characteristics w.r.t. existing
approaches. For this purpose, we introduce a new scheme reversing the model derivation
procedure. More precisely, we propose to discretize partially the incompressible Euler
equations with respect to one direction using a finite element method, and then follow
Peregrine’s derivation procedure. This new paradigm leads to a very promising scheme
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4 Bellec & Colin & Ricchiuto

with nice dispersion properties.

The paper is organized as follows. In Section 2 we introduce some notation and recall
our main result. The finite element discretization of a well known Boussinesq system, and
most of the algebraic operators involved in our analysis are presented in Section 3. In
Section 4, we detail the derivation of the new numerical scheme. The theoretical analysis
of these discrete asymptotic models is presented in Section 5. Finally, Section 6 presents
a numerical evaluation of the performances of the schemes, confirming our theoretical
results. The paper is ended by an overlook of future developments related to the new
approach proposed.

2 Setting, notations and main result.

Before going further, let us introduce some notations. For simplicity, in this article, we
only deal with 2-D and 1-D problems. Denote by (x, z) respectively the horizontal and
the vertical spatial dimension. Denote by d(x) the depth at still water and η(t, x) the
surface elevation from its rest position. The total depth is then h(t, x) = d(x) + η(t, x)
(see Figure 1).

Figure 1: Sketch of the free surface flow problem, main parameters description.

Let a be a typical wave amplitude, d0 a reference water depth and λ a typical wave-
length. In view of performing an asymptotic analysis, we introduce the nonlinearity
parameter ε and the dispersion parameter σ defined by

ε =
a

d0
, σ =

d0

λ
.

Under the Boussinesq hypothesis ε = O(σ2), Peregrine (see [15]) first derived, from the
Euler equations, the following standard system of Boussinesq’s type

ηt + [hū]x = 0,

ūt + ūūx + gηx + (d
2

6 ūtxx − d
2 [dū]txx) = 0.

(1)

The model describes the evolution of the depth-averaged velocity ū and the surface eleva-
tion η within an accuracy of O(εσ2, σ4) w.r.t. the Euler equations. The set of Equations
(1) is now well-understood from the computation point of view and a classical numerical
scheme can be obtained by using the finite element method in the following stetting. On
an intervall [r, s], we introduce a set of nodes

r = x0 < x1 < · · · < xN = s,

Inria



Discrete asymptotic equations for long waves 5

where, for simplicity, we take a constant space step ∆x = xj+1 − xj , ∀j ∈ {0, . . . , N}.
We denote by E, Ū , D and H the vectors of the nodal values of η, ū, d and h. Similarly
to what has been done in [18, 17] (cf. also [16] and references therein), we apply the P1

Galerkin method to approximate the variational form of (1). In particular, we denote by
{ϕj}0≤j≤N the standard piecewise linear continuous Lagrange basis, and introduce the
discrete velocity, wave height and depth polynomials as follows

ū∆(t, x) =

N
∑

j=0

ūj(t)ϕj(x), η∆(t, x) =

N
∑

j=0

ηj(t)ϕj(x), d∆(x) =

N
∑

j=0

djϕj(x). (2)

The Galerkin approximation of (1), under the hypothesis of exact integration w.r.t. all
the discrete polynomials involved, can be written in a compact matrix form

MEt +
1

3

(

2N (H ⋄ Ū) +H ⋄ (N Ū) + Ū ⋄ (NH)
)

= 0,

MŪt +
1

3

(

N (Ū2) + Ū ⋄ (N Ū)
)

+ gNE − 1

6
{D; Ūt} = 0,

(3)

where the operation A ⋄ B represents, for two given vectors A = (ai)0≤i≤N and B =
(bi)0≤i≤N , the column vector (aibi)0≤i≤N (note that, given a column vector A, notation
A2 simplifies A⋄A). Remark that the matrices M, N and Q are the usual mass, derivation,
and stiffness matrices arising in the Galerkin discretization and are detailed in the next
section. Moreover, for given columns vectors A and B, we set

{A;B} = Q(A2 ⋄B) +D ⋄ (Q(A ⋄B) + 2(A ⋄B) ⋄ (QA)−B ⋄ (QA).

The aim of this paper is to propose a systematic method to obtain new numerical
models describing free surface flows. It is based on the following idea : reverse the model
derivation procedure and first discretize partially the Incompressible Euler equations and
then derive fully discrete asymptotic equations by performing an asymptotic analysis. To
illustrate the potential of this idea, we apply this method to the couple Euler-Peregrine
equations by applying the Galerkin method to the variable x and then performing the
asymptotic analysis of Peregrine’s type to the resulting equations. Of course, when one
deals with non-linear equations, this procedure does not commute with the classical one.
In this paper, for simplicity, we deal with periodic boundary conditions. Note that our
strategy can be adapted directly to the Dirichlet boundary conditions, since the crucial
property (50) hold for this two kind of conditions. This strategy is similar to the one pro-
posed for compressible multiphase flows in [1]. As shown in the detailed derivation of the
next sections, the new procedure leads to the following discrete equations approximating
the discretized Euler system within an accuracy of O(εσ2, σ4)

MEt+M[H; Ū ] = 0,

MŪt+
1

3

(

N (Ū2) + Ū ⋄ (N Ū)
)

+ gNE +M
(

D2

6
⋄ (K2Ūt)−

D

2
⋄ (K[D; Ūt])

)

= 0,
(4)

having introduced the operator [· ; ·] defined by

[A;B] = A ⋄ (KB) +
1

3

[

K(A ⋄B)−M−1(A ⋄ (NB)) + 2M−1(B ⋄ (NA))
]

,

with K = M−1N . We see that, while involving similar algebraic operations, the new
discretization is different from the classical ones, even for a simple case like Peregrine
equations. The main differences are found in the treatment of the third order derivatives
terms as well as in the nonlinear ones in the continuity (wave height) equation. We
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6 Bellec & Colin & Ricchiuto

will show that scheme (3) also converges to an approximation of the Perigrine equations.
However, both the linear phase relation, and the lienar shoaling gradient provided by
(3) (see Section 5 and 6) are substantially closer to the exact ones than those given by
(4). this gain in accuracy is confirmed by the numerical tests showing a reduction of
the error of 5 to 10 times w.r.t. scheme (4). In the sequel, we show how to derive the
scheme (3) and prove that not only they are consistent with system (1), but that they
represent a substantial improvement w.r.t. the scheme obtained by discretizing directly
the asymptotic equations (1).

The paper is organized as follows. In Section 3, we recall the classic discretization
of Peregrine system (1). In Section 4, we detail the derivation of the new numerical
scheme. In Section 5, we present the study of the exact linear dispersion characteristics
for the two schemes presented before. Then, we compare the results with the theoretical
characteristics of Peregrine model. To conclude, in Section 6, we present two numerical
computations in order to evaluate the accuracy of the new scheme.

3 Galerkin discretization of the Peregrine equations

We start by deriving a spatially discretized version of (1) using the Galerkin finite element
scheme. Since we deal with varying bathymetry, we first rewrite (1) by developing the
derivatives terms

ηt + [(d+ η)ū]x = 0, (5)

ūt + ūūx + gηx − d2

3
ūtxx − ddxūtx − ddxx

2
ūt = 0. (6)

According to the Galerkin method (see [7]), we multiply (5) by the Galerkin basis φi and
we integrate the resulting equation between xi−1 and xi+1, for i ∈ {0, ..., N}, with the
convention x−1 = xN and xN+1 = x0 coming from the choice of the periodic boundary
conditions to obtain

∫ xi+1

xi−1

η∆(t, x)ϕi(x)dx−
∫ xi+1

xi−1

(d∆(x) + η∆(t, x))ū∆(t, x)ϕ
′
i(x)dx = 0. (7)

In the P1 case, evaluating all the integrals exactly w.r.t. the linear spatial variation of
d∆, η∆, and ū∆, we derive from (7), using the decomposition (2) and evaluating all the
integrals involving φi, for all i ∈ {0, ..., N}

∆x

6

∂

∂t
(ηi+1 + 4ηi + ηi−1)

+
1

3

(

2
hi+1ūi+1 − hi−1ūi−1

2
+ hi

ūi+1 − ūi−1

2
+ ūi

hi+1 − hi−1

2

)

= 0.
(8)

As already mentioned, for simplicity, the boundary conditions are assumed to be pe-
riodic, although other conditions can be embedded in the analysis. Applying the same
procedure to Equation (6), one has, performing integration by parts, for all i ∈ {0, ..., N},
∫ xi+1

xi−1

d

dt
ū∆(t, x)ϕi(x)dx−

∫ xi+1

xi−1

( ū2
∆(t, x)

2
+ gη∆(t, x))ϕ

′
i(x)dx

+

∫ xi+1

xi−1

{

−ϕi(x)dd
′
∆(ū∆)tx +

(d2∆(x)ϕi(x))x
3

(ū∆(t, x))tx +
(ϕi(x)d∆(x)(ū∆(t, x))t)x

2
d′∆

}

dx

= 0.

(9)Inria



Discrete asymptotic equations for long waves 7

Plugging relations (2) in (9), one derives after the computation of the different integrals,
for all i ∈ {0, ..., N}

∆x

6

d

dt
(ūi+1+4ūi + ūi−1) +

1

3

[

ū2
i+1 − ū2

i−1

2
+ ūi

ūi+1 − ūi−1

2

]

+ g
ηi+1 − ηi−1

2

− 1

6∆x

d

dt
[2diūi(di+1 − 2di + di−1) + (d2i+1ūi+1 − 2d2i ūi + d2i−1ūi−1)

+di(di+1ūi+1 − 2diūi + di−1ūi−1)− ūi(d
2
i+1 − 2d2i + d2i−1)] = 0.

(10)

In order to rewrite the discrete equations (9) in a simpler and more compact form, we define
the mass matrix M, the first order derivative matrix N and the second order derivative
matrix Q (which represents the laplacian operator with periodic boundary conditions) as
follows

M =
1

6

























4 1 0 · · · 0 1

1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 1

1 0 · · · 0 1 4

























, N =
1

2∆x

























0 1 0 · · · 0 −1

−1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 1

1 0 · · · 0 −1 0

























Q =
1

∆2
x

























−2 1 0 · · · 0 1

1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 1

1 0 · · · 0 1 −2

























.

In addition, we introduce the following column vectors

Ū = (ūi)0≤i≤N , E = (ηi)0≤i≤N , D = (di)0≤i≤N , H = D + E.

Equation (8) can thus be written as

∆x

d

dt
ME +

1

3

[

2N (hiūi)i∈{0,..,N} + (hi(N Ū)i)i∈{0,..,N} + (ūi(NH)i)i∈{0,..,N}

]

= 0.

To further simplify the notation for given columns vectors A = (ai)0≤i≤N and B =
(bi)0≤i≤N , we introduce the operator ⋄ :

R
N × R

N → R
N

(A,B) → A ⋄B := (aibi)0≤i≤N

In the sequel, for simplicity A2 simplifies A⋄A. As an example, the vector (hi(N Ū)i)i∈{1,..,n}

can be rewritten as H ⋄ (N Ū). Owning this notation, the discrete equations (8)-(10) can
be compactly written as

M d

dt
E +

1

3

(

2N (H ⋄ Ū) +H ⋄ (N Ū) + Ū ⋄ (NH)
)

= 0, (11)

d

dt
MŪ +

1

3

(

N (Ū2) + Ū ⋄ (N Ū)
)

+ gNE − 1

6
{D; Ūt} = 0, (12)

RR n° 8806



8 Bellec & Colin & Ricchiuto

where we have introduced

{D; Ūt} = Q(D2 ⋄ Ūt) +D ⋄ (Q(D ⋄ Ūt)) + 2(D ⋄ Ūt) ⋄ (QD)− Ūt ⋄ (QD2). (13)

Equations (11)-(12) will be taken in the sequel as the classical scheme for the Peregrine
equations and be used in Sections 5 and 6 to make some comparison with the new scheme
introduced in the next section.

4 A new setting for deriving discrete asymptotic mod-

els.

4.1 Semi-discretization of the 2D-Euler equations in non-dimensional

form.

The aim of this section is to derive an alternative set of discrete equations, possibly having
improved characteristics w.r.t. (11)-(12), for example a better evaluation of the shoaling
gradient phenomenon. For that purpose, we propose to discretize the 2D-Euler equations
with respect to one direction, x for example, and then to perform an asymptotic analysis
on the resulting equation, similar to the one used to obtain the Peregrine equations (1).
The Euler equations written in terms of velocity (u,w), pressure p, constant density ρ and
vertical gravity acceleration g reads :

ut + uux + wuz +
px

ρ
= 0, (14)

wt + uwx + wwz +
pz

ρ
+ g = 0, (15)

ux + wz = 0, (16)

uz − wx = 0, (17)

where the last equation represents the irrotationality condition. In this paper, since our
aim is to obtain a new scheme for the Peregrine system, we restrict ourselves to the
2D version of the Euler equation. We deal with periodic boundary conditions in the x

direction, while on the free surface and sea-bed level we use the classical conditions :

• at the free surface z = η

w = ηt + uηx, (18)

p = 0, (19)

• on the seafloor z = −d

w = −udx. (20)

Let d0 be the averaged depth, a a typical wave amplitude, and λ a typical wavelength.
The following usual non-dimensional variables are introduced

x̃ =
x

λ
, z̃ =

z

d0
, t̃ =

√
gd0

λ
t, η̃ =

η

a
,

ũ =
d0

a
√
gd0

u, w̃ =
λ

a

1√
gd0

w, p̃ =
p

gd0ρ
, ∆x̃ =

∆x

λ
.

Inria



Discrete asymptotic equations for long waves 9

Classically, we now consider the nonlinearity and dispersion parameters ε and σ defined
by

ε =
a

d0
, σ =

d0

λ
.

Using the notation introduced above, the Euler equations and the irrotationality condition
can be recast in a non-dimensional form as

εũt̃ + ε2ũũx̃ + ε2w̃ũz̃ + p̃x̃ = 0, (21)

εσ2w̃t̃ + ε2σ2ũw̃x̃ + ε2σ2w̃w̃z̃ + p̃z̃ + 1 = 0, (22)

ũx̃ + w̃z̃ = 0, (23)

ũz̃ − σ2w̃x̃ = 0 (so ũz̃ = O(σ2)), (24)

The boundary conditions become :

• at the free surface z̃ = εη̃

w̃ = η̃t̃ + εũη̃x̃, (25)

p̃ = 0, (26)

• at the bed z̃ = −d̃

w̃ = −d̃x̃ũ. (27)

Our goal is to obtain a Boussinesq’s type approximation of the Euler system (21)-(27),
under the assumptions ε << 1, σ << 1, and in the specific regime ε = O(σ2), meaning
that there exists constant C > 0 such that ε ≤ Cσ2. Using (24), we obtain from (21)

εũt̃ + ε2ũũx̃ + p̃x̃ = −ε2σ2w̃w̃x̃. (28)

We now apply a Galerkin method on the variable x keeping t and z unchanged. It is
assumed that the number of mesh points per wavelength is small, in particular ∆x̃ < 1,
however, we assume ∆x̃ = O(σ) (it transpires that ∆x = O(d0)).

In the sequel we drop the " ˜ " and we introduce for all i ∈ {0, ..., N}, ui(t, z) =
u(t, xi, z), wi(t, z) = w(t, xi, z), ηi(t, z) = η(t, xi, z), pi(t, z) = p(t, xi, z). In addition, the
discrete horizontal velocity, wave height, depth, vertical velocity and pressure polynomials
are written in the Galerkin basis as follows

u∆(t, x, z) =

N
∑

j=0

uj(t, z)ϕj(x), w∆(t, x, z) =

N
∑

j=0

wj(t, z)ϕj(x), η∆(t, x) =

N
∑

j=0

ηj(t)ϕj(x),

p∆(t, x, z) =

N
∑

j=0

pj(t, z)ϕj(x), d∆(x) =

N
∑

j=0

djϕj(x).

(29)

As in Section 3, we focus on periodic boundary condition that is we introduce x−1 = xN

and xN+1 = x0. The finite element discrete equations corresponding to (28)-(22)-(23)-(24)
can be written as, for all i ∈ {0, ..., N}

ε
∆x

6

d

dt
(ui+1 + 4ui + ui−1)+

ε2

3

(

u2
i+1 − u2

i−1

2
+ ui

ui+1 − ui−1

2

)

+
pi+1 − pi−1

2

=− ε2σ2

3

(

w2
i+1 − w2

i−1

2
+ wi

wi+1 − wi−1

2

)

,

(30)

RR n° 8806



10 Bellec & Colin & Ricchiuto

εσ2∆x

6

d

dt
(wi+1 + 4wi + wi−1)+

∆x

6

d

dz
(pi+1 + 4pi + pi−1) + ∆x

=− ε2σ2
(

ui

wi+1 − wi−1

2
− wi

ui+1 − ui−1

2

)

,

(31)

ui+1 − ui−1

2
+

∆x

6

d

dz
(wi+1 + 4wi + wi−1) = 0, (32)

∆x

6

d

dz
(ui+1 + 4ui + ui−1)− σ2wi+1 − wi−1

2
= 0. (33)

For the boundary conditions, we propose to integrate (25)-(26) along the curve z = εη

and equation (27) along the curve z = −d. For that purpose, we choose to introduce

ŵ∆ =

N
∑

i=0

w
(

t, εη(t, xi)
)

φi(x), w̌∆ =

N
∑

i=0

w
(

t,−d(xi)
)

φi(x),

û∆ =

N
∑

i=0

u
(

t, εη(t, xi)
)

φi(x), ǔ∆ =

N
∑

i=0

u
(

t,−d(xi)
)

φi(x).

(34)

The boundary conditions (25)-(26)-(27) then write

• at the free surface

∆x

6

(

wi+1(t,εηi+1) + 4wi(t, εηi) + wi−1(t, εηi−1)

)

=

∆x

6

d

dt
(ηi+1(t) + 4ηi(t) + ηi−1(t) +

1

3

[

εηi+1(t)ui+1(t, εηi+1)− εηi−1(t)ui−1(t, εηi−1)

2

−εηi(t)
ui+1(t, εηi+1)− ui−1(t, εηi−1)

2
+ 2ui(t, εηi)

εηi+1(t)− εηi−1(t)

2

]

,

(35)

∆x

6

(

pi+1(t, εηi+1) + 4pi(t, εηi) + pi−1(t, εηi−1)

)

= 0, (36)

• at the bed

∆x

6

(

wi+1(t,−di+1) + 4wi(t,−di) + wi−1(t,−di−1)

)

=

−1

3

[

di+1ui+1(t,−di+1)− di−1ui−1(t,−di−1)

2
−di

ui+1(t,−di+1)− ui−1(t,−di−1)

2

+ 2ui(t,−di)
di+1 − di−1

2

]

.

(37)

Introducing the following column vector

W = (wi)0≤i≤N , U = (ui)0≤i≤N , E = (ηi)0≤i≤N , P = (pi)0≤i≤N , I =







1
...
1







Ŵ =

(

wi(εηi)

)

0≤i≤N

, Û =

(

ui(εηi)

)

0≤i≤N

, W̌ =

(

wi(−di)

)

0≤i≤N

, Ǔ =

(

ui(−di)

)

0≤i≤N

,
Inria



Discrete asymptotic equations for long waves 11

we can rewrite Equations (30)-(37) into the following matrix-form :

ε
d

dt
MU +

ε2

3

(

N (U2) + U ⋄ (NU)
)

+NP = −ε2σ2

3

(

N (W 2) +W ⋄ (NW )
)

, (38)

εσ2 d

dt
MW +

d

dz
MP + I = −ε2σ2 (U ⋄ (NW )−W ⋄ (NU)) , (39)

NU +M d

dz
W = 0, (40)

M d

dz
U − σ2NW = 0. (41)

The boundary conditions become

• at the free surface

MŴ =
d

dt
ME +

ε

3
[N (E ⋄ Û)− E ⋄ (N Û) + 2Û ⋄ (NE)], (42)

MP̂ = 0, (43)

• at the bottom

MW̌ = −1

3

[

N (D ⋄ Ǔ)−D ⋄ (N Ǔ) + 2Ǔ ⋄ (ND)
]

. (44)

System (38)-(44) represents the first step in our analysis. The next two sections are
dedicated to the transformation of this system into an asymptotic set of equations.

4.2 Asymptotic expansions on the velocity U and the pressure p.

In this section, we derive an asymptotic expansion in terms of σ for the semi-discrete
horizontal velocity U = U(t, z) following the procedure presented by Peregrine in [15].
More precisely, we prove the following proposition.

Proposition 1. The pressure p and the velocity U satisfy expansion of the form

P = εE − zI + εσ2

(

z2

2
KU0 + z[D;U0]

)

+O(ε2σ2, εσ4)

U = Ū + σ2

[

D2

6
⋄ (K2Ū)− z2

2
K2Ū − zK[D; Ū ]− D

2
⋄ (K[D; Ū ])

]

+O(εσ2, σ4),

where the averaged velocity is defined in (56).

Proof. Since M is invertible, we obtain from the integration of (41) between 0 and an
arbitrary depth z,

U(t, z) = U0(t) +O(σ2), (45)

where U0(t) is a constant depending only on t and corresponds to the value of U at z = 0.
We directly deduce that

Ǔ(t) = U0(t) +O(σ2). (46)

Substituting relation (45) in equation (40) and setting K = M−1N , we derive

d

dz
W = −KU0 +O(σ2). (47)
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12 Bellec & Colin & Ricchiuto

Integrating each line i ∈ {0, ..., N} of equation (47) with respect to z between −di and an
arbitrary depth z (−di < z < ǫηi), using the boundary condition (44) and the estimates
(45) on U and (46) on Ǔ , we obtain

W =− zKU0 −D ⋄ (KU0)− 1

3
[K(D ⋄ U0)−M−1(D ⋄ (NU0))

+ 2M−1(U0 ⋄ (ND))] +O(σ2). (48)

Plugging (48) in (41) and integrating the resulting equation between 0 and z, one derives
the following expansion on U

U =U0 − σ2

(

z2

2
K2U0 + zK(D ⋄ (KU0)) +

z

3
K[K(D ⋄ U0)

−M−1(D ⋄ (NU0)) + 2M−1(U0 ⋄ (ND))]

)

+O(σ4). (49)

Looking for a similar expansion on the pressure array P , we substitute Equation (48) in
Equation (39) to obtain

d

dz
MP =− I − εσ2 d

dt

(

zKU0 +M(D ⋄ [KU0])

+
1

3

[

N (D ⋄ U0)−D ⋄ [NU0] + 2U0 ⋄ [ND]
]

)

+O(ε2σ2, εσ4).

Using the fact that
MI = I, (50)

the previous relation becomes

d

dz
P =− I − εσ2 d

dt

(

zKU0 +D ⋄ [KU0]

+
1

3

[

K(D ⋄ U0)−M−1(D ⋄ (NU0)) + 2M−1(U0 ⋄ (ND))
]

)

+O(ε2σ2, εσ4).

(51)

In view of (51), it is natural to introduce the following bracket

[A;B] = A ⋄ (KB) +
1

3

[

K(A ⋄B)−M−1(A ⋄ (NB)) + 2M−1(B ⋄ (NA))
]

. (52)

Remark that (49) then becomes

U = U0 − σ2

(

z2

2
K2U0 + z[D;U0]

)

+O(σ4). (53)

Furthermore, integrating (51) with respect to z from an arbitrary depth to the free surface
εηi, we can write

P = εE − zI + εσ2

(

z2

2
KU0 + z[D;U0]

)

+O(ε2σ2, εσ4) (54)

Substituting equations (54) and (49) in (38), we obtain an equation for the zero-th order
velocity U0, equivalent to Equation 2.28 in [17], which reads :

d

dt
MU0 +

ε

3

(

N (U0 ⋄ U0) + U0 ⋄ (NU0)
)

+NE = O(εσ2, σ4). (55)
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Note that the choice of the constant of integration in (45) is not unique. However it
transpires that the choice of U0 (which is the value of the horizontal velocity U at z = 0)
is not optimal as observed in [17]. This is why, in the sequel, we are going to get rid of it
by introducing the averaged velocity matrix Ū = (ūi)0≤i≤N where

ūi =
1

di + εηi

∫ εηi

−di

uidz, (56)

and by looking for the equation satisfied by Ū . In this direction, we first derive the relation
between U0 and Ū . Equation (53) provides, for all i ∈ {0, ..., N},

ui = u0
i − σ2

[

z2

2

(

K2U0
)

i
+ z

(

K[D;U0]
)

i

]

+O(σ4),

and by integration between −di and εηi, we immediately get, using Taylor expansion,

ūi = u0
i −

1

εηi + di
σ2

[∫ εηi

−di

z2

2
dz
(

K2U0
)

i
+

∫ εηi

−di

zdz
(

K[D;U0]
)

i

]

+O(σ4),

= u0
i −

σ2

(di + εηi)

[

d3i
6

(

K2U0
)

i
− d2i

2

(

K[D;U0]
)

i

]

+O(εσ2, σ4),

= u0
i − σ2

[

d2i
6

(

K2U0
)

i
− di

2

(

K[D;U0]
)

i

]

+O(εσ2, σ4).

This furnishes the desired relation

Ū = U0 − σ2

[

D2

6
⋄ (K2U0)− D

2
⋄ (K[D;U0])

]

+O(εσ2, σ4), (57)

or equivalently

U0 = Ū + σ2

[

D2

6
⋄ (K2U0)− D

2
⋄ (K[D;U0])

]

+O(εσ2, σ4). (58)

Then it transpires that
U0 = Ū +O(ε, σ2). (59)

Substituting (59) in (58), we derive

U0 = Ū + σ2

[

D2

6
⋄ (K2Ū)− D

2
⋄ (K[D; Ū ])

]

+O(εσ2, σ4). (60)

Finally, plugging (60) into (53), one obtains the expansion of U as a function of the depth
averaged velocity Ū

U = Ū + σ2

[

D2

6
⋄ (K2Ū)− z2

2
K2Ū − zK[D; Ū ]− D

2
⋄ (K[D; Ū ])

]

+O(εσ2, σ4), (61)

which ends the proof of Proposition 1. �

4.3 Depth-averaged equations

The aim of this section is to provide the final new discrete numerical model of Peregrine’s
type. In order to derive the equation on Ū (known as the momentum equation in the
literature), we substitute (60) in (55) to obtain :

d

dt
MŪ +

ε

3

[

N (Ū2) + Ū ⋄ (N Ū)
]

+NE

+ σ2M d

dt

[

D2

6
⋄ (K2Ū)− D

2
⋄ K[D; Ū ]

]

= O(εσ2, σ4) (62)
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14 Bellec & Colin & Ricchiuto

In addition, to derive an equation on E (that is the continuity equation), we combine (42)
and (44) to get

Ŵ − W̌ =
d

dt
E + ε

M−1

3
[N (E ⋄ Û)− E ⋄ (N Û) + 2Û ⋄ (NE)]

+
M−1

3
[N (D ⋄ Ǔ)−D ⋄ (N Ǔ) + 2Ǔ ⋄ (ND)].

(63)

We integrate each lines of (63) between −di and εηi, for all i ∈ {0, ..., N}, to obtain

∫ εηi

−di

(KU)idz + Ŵi − W̌i = 0,

which can be recast as

Et + [H; Ū ] +B = 0, (64)

where

B =

(∫ εηi

−di

(KU)idz

)

0≤i≤N

− [H; Ū ]

+
ε

3
[K(E ⋄ Û)−M−1(E ⋄ (N Û)) + 2M−1(Û ⋄ (NE))]

−1

3
[K(−D ⋄ Ǔ)−M−1(−D ⋄ (N Ǔ)) + 2M−1(Ǔ ⋄ (N (−D)))].

(65)

We can remark that the expression B is no more than a discretized version of the so-
called Leibniz’ Rule1. As a consequence, it transpires that B has the same accuracy of
order O(εσ2, σ4) than that of the equations and then can be neglected in the sequel (see
Proposition 2 below for more details). In order to be more precise, we compute explicitly
B by taking successively z = εηi and z = −di in (61) to obtain the values of Û and Ǔ :

Û =Ū + σ2

[

D2

6
⋄ (K2Ū)− ε3E2

2
K2Ū − εE ⋄ K[D; Ū ]− D

2
⋄ (K[D; Ū ])

]

+O(εσ2, σ4)

Ǔ =Ū + σ2

[

−D2

3
⋄ (K2Ū) +

D

2
⋄ (K[D; Ū ])

]

+O(εσ2, σ4).

(66)

By substituting Equations (61) and (66) into Equation (65), this provides the complete
expression of B

B = σ2

[

1

6
D ⋄ (K(D2 ⋄ (K2Ū)))− 1

6
D3 ⋄ (K3Ū)− 1

9
K(D3 ⋄ (K2Ū))

+
1

9
M−1D ⋄ (N (D2 ⋄ (K2Ū))) +

1

2
D2 ⋄ (K2[D; Ū ])− 1

2
D ⋄ (K(D ⋄ (K[D; Ū ])))

+
1

6
K(D2 ⋄ (K[D; Ū ]))− 1

6
M−1D ⋄ (ND ⋄ (K[D; Ū ]))

− 2

9
M−1(ND) ⋄ (D2 ⋄ (K2Ū)) +

1

3
M−1((ND) ⋄ (D ⋄ (K[D; Ū ])))

]

+O(εσ2, σ4).

1We recall the Leibniz’ Rule : Given f(x, z), a(x) and b(x), where f and
∂f
∂x

are continuous in x and

z, and a and b are differentialble functions of x,

∂

∂x

(

∫ b(x)

a(x)
f(x, z)dz

)

=

∫ b(x)

a(x)

∂

∂x
f(x, z)dz + f(x, b(x))b′(x)− f(x, a(x))a′(x).
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Discrete asymptotic equations for long waves 15

Finally, our new non-dimensionalized system reads (note that we have multiply (64) by
M)

d

dt
ME +M[H; Ū ] +MB = 0. (67)

d

dt
MŪ +

ε

3

[

N (Ū2) + Ū ⋄ (N Ū)
]

+NE

+ σ2M d

dt

[

D2

6
⋄ (K2Ū)− D

2
⋄ K[D; Ū ]

]

= O(εσ2, σ4) (68)

To go further, we now investigate the behavior of the vector B by establishing the
following proposition.

Proposition 2. For any bathymetry d, the additional term B in Equation (67) satisfies

B = O(εσ2, σ4).

As a consequence, the numerical scheme (67)-(68) becomes

d

dt
ME +M[H; Ū ] = O(εσ2, σ4), (69)

d

dt
MŪ +

1

3

[

N (Ū2) + Ū ⋄ (N Ū)
]

+NE − σ2 d

dt

[

d20
3
(NKŪ)

]

= O(εσ2, σ4), (70)

and is consistent with the Peregrine Equations (1).

Proof. For a better understanding, we first assume that the batymetry d = d0 is constant.
In this setting, one has D = d0I and the operator D⋄ is no more than the multiplication
by the real d0, that is, for example, D ⋄ U = d0U . Hence B is equal to

B = σ2

[

d30
6
K3Ū − d30

6
K3Ū − d30

9
K3Ū +

d30
9
K3Ū +

d30
2
K3Ū − d30

2
K3Ū +

d30
6
K3Ū − d30

6
K3Ū

]

+O(εσ2, σ4).

= 0 +O(εσ2, σ4).

More generally, assume now that the bathymetry d is not constant. For any regular
function u and its discrete version (ui)0≤i≤N , a Taylor expansion provides

ui+1 = ui +∆xux(xi) +
∆2

x

2
uxx(xi) +

∆3
x

6
uxxx(xi) + ..., (71)

and

ui−1 = ui −∆xux(xi) +
∆2

x

2
uxx(xi)−

∆3
x

6
uxxx(xi) + ... (72)

Combining (71) and (72), we can prove that, for all i ∈ {0, ..., N}

(NU)i = ux(xi) +
∆2

x

6
uxx(xi) +O(∆4

x),

(KU)i = ux(xi) +O(∆4
x),

(M−1U)i = u(xi)−
∆2

x

6
uxx(xi) +O(∆4

x).
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16 Bellec & Colin & Ricchiuto

Plugging these expansions in Equations (67) and (68), we obtain, dividing by ∆x at each
point xi

ηt + [hū]x − ∆2
x

6

[

ηtxx + [hū]xxx + hxxūx + σ2(
d2dxxūxxx

6
+

7

6
ddxdxxūxx

+ (
3

2
dd2xxd

2
xdxx +

5

6
ddxdxxx)ūx + ddxxdxxxū)

]

+O(∆4
x) = O(εσ2, σ4),

ūt + ūūx + ηx + σ2

(

d2

6
ūtxx − d

2
[dū]txx

)

+
∆2

x

6

[(

ūt + ūūx + ηx + σ2 d
2

6
ūtxx

−σ2 d

2
[dū]txx

)

xx

− ūxūxx + σ2 d

2
(dxxūx)x

]

+O(∆4
x) = O(εσ2, σ4),

proving that our numerical scheme is consistent with the continuous Peregrine equa-
tions(1).
In addition, B is equal to

B =− σ2∆
2
x

6

(

d2dxxūxxx

6
+

7

6
ddxdxxūxx + (

3

2
dd2xxd

2
xdxx +

5

6
ddxdxxx)ūx + ddxxdxxxū

)

+O(∆4
x) +O(εσ2, σ4),

from which it transpires that B contains only terms of order ∆2
xσ

2, εσ2 or σ4 (actually,
B is consistent with Leibniz’ Rule). Recalling that ∆x̃ = O(σ), one has

B = σ2O(∆2
x̃) +O(εσ2, σ4) = O(εσ2, σ4),

which ends the proof of Proposition 2

To end this section, we return to the physical variables and neglect the contribution
of B in (67)-(68) to obtain our new numerical scheme for the Peregrine Equations (1)

d

dt
ME +M[H; Ū ] = 0, (73)

d

dt
MŪ +

1

3

[

N (Ū2) + Ū ⋄ (N Ū)
]

+ gNE +M d

dt

[

D2

6
⋄ (K2Ū)− D

2
⋄ (K[D; Ū ])

]

= 0.

(74)

5 Study of the linear dispersion characteristics.

The aim of this section is to give some insights to measure the accuracy of the new method
developped in the previous sections. For that purpose, we exhibit the dispersion relation
as well as the shoaling coefficients of the linearized version of the scheme (73)-(74). This
study is widely inspired by the one proposed by Dingemans in [6] in the context of slowly-
varying water depth, that is we assume that d = d(βx) with β << 1. For the sake of
completness, we also compare our computations with the ones performed on the linearized
version of the classical scheme (11)-(12).

5.1 Linear characteristics of the new numerical model.

We first introduce the linearized version of the scheme (73)-(74) around the rest state
which reads

d

dt
ME +M[D; Ū ] = 0, (75)
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d

dt
MŪ + gNE +M d

dt

[

D2

6
⋄ (K2Ū)− D

2
⋄ (K[D; Ū ])

]

= 0. (76)

As usual, when one deals with linear equations, a lot of computations can be performed
explicitly. Indeed, differentiating (76) with respect to t, multiplying (75) by N and sub-
stituting the resulting equations, one obtains a decouple equation on the vector Ū :

MŪtt − gN [D; Ū ] +M
[

D2

6
⋄ (K2Ū)− D

2
⋄ (K[D; Ū ])

]

tt

= 0. (77)

In order to exhibit the dispersion relation associated with (75)-(76), we then look for a
plane-wave solution under the form

Ū =
(

ūi

)

0≤i≤N

where

ūi = ū(t, xi) with ū(t, x) = U(βx) exp

[

−jωt+
j

β
K(βx)

]

, j2 = −1. (78)

Owning the solution Ū , it is pertinent to introduce the wave number

k(βx) =
∂

∂x

(

1

β
K(βx)

)

,

and for all i = 0, ..., N , ki = k(βxi). Then, we determine conditions on k and U so that
Ū is a solution to the linear system (77). A Taylor expansion around the point x = xi

provides directly

ūi+1 =

[

1 + β(j
∆2

x

2
k′(βxi) + ∆x

U′(βxi)

Ui

)

]

ūie
jki∆x +O(β2), (79)

ūi−1 =

[

1 + β(j
∆2

x

2
k′(βxi)−∆x

U′(βxi)

Ui

)

]

ūie
−jki∆x +O(β2). (80)

In view of (77), we deduce that, ∀i ∈ {1, .., n}

(N Ū)i =

(

jki sinc(ki∆x)− β
k2i∆

2
x

2
sinc(ki∆x)

k′(βxi)

ki

+β cos(ki∆x)
U′(βxi)

Ui

)

ūi +O(β2). (81)

(MŪ)i =

(

1

3
(2 + cos(ki∆x)) + jβ

ki∆
2
x

6
(cos(ki∆x)

k′(βxi)

ki
+

2 sinc(ki∆x)
U′(βxi)

Ui

)

)

ūi +O(β2). (82)

Note that it is not possible to plug directly (81)-(82) into (77), due to the presence of
the vector (M−1Ū) in the bracket [D; Ū ]. Indeed, it is necessary to express each term
(M−1Ū) with respect to ūi. To overcome this difficulty, the idea is to introduce the
following new variables :

V = M−1N
(

D ⋄ Ū
)

, X = M−1N Ū , Z = M−1
(

D ⋄ (N Ū)
)

,

W = M−1(Ū ⋄ (ND)), Y = M−1NX,

T =

(

D ⋄X +
1

3
(V − Z + 2W )

)

, S = M−1NT.

RR n° 8806



18 Bellec & Colin & Ricchiuto

and to perform asymptotic expansions of order β2 on these variables. Using these new
vectors, one can rewrite Equation (77) into

MŪtt − gNT +M
(

D2

6
⋄ Ytt −

D

2
⋄ Stt

)

= 0 (83)

Note first that the vectors V , X, Z, W , Y and T depends only on Ū . It is then natural
to introduce the following functions

v = V(βx) exp

[

−jωt+
j

β
K(βx)

]

,x = X(βx) exp

[

−jωt+
j

β
K(βx)

]

,

z = Z(βx) exp

[

−jωt+
j

β
K(βx)

]

,w = W(βx) exp

[

−jωt+
j

β
K(βx)

]

,

y = Y(βx) exp

[

−jωt+
j

β
K(βx)

]

, t = T(βx) exp

[

−jωt+
j

β
K(βx)

]

,

s = S(βx) exp

[

−jωt+
j

β
K(βx)

]

,

where V(βx), X(βx), Z(βx), W(βx), Y(βx), T(βx) and S(βx) denote the amplitude of
repectively v, x, z, w, y, t and s. Using Equations (81) and (82), one can rewite (83) for
all i ∈ {1, .., n}

− ω2

(

1

3
(2 + cos(ki∆x)) + jβ

ki∆
2
x

6
(cos(ki∆x)

k′(βxi)

ki
+ 2 sinc(ki∆x)

U′(βxi)

ūi

)

)

ūi

− g

(

jki sinc(ki∆x)− β
k2i∆

2
x

2
sinc(ki∆x)

k′(βxi)

ki
+ β cos(ki∆x)

T′(βxi)

T(βxi)

)

T(βxi)

− ω2

6

(

1

3
(2 + cos(ki∆x)) + jβ

ki∆
2
x

6
(cos(ki∆x)

k′(βxi)

ki
+ 2 sinc(ki∆x)

(d2(βxi)Y(βxi))
′

d2iY(βxi)
)

)

d2iY(βxi)

+
(ω2)

2

(

1

3
(2 + cos(ki∆x)) + jβ

ki∆
2
x

6
(cos(ki∆x)

k′(βxi)

ki
+ 2 sinc(ki∆x)

(di(βxi)S(βxi))
′

dS(βxi)
)

)

diS(βxi) = 0.

It remains to estimate the first order derivatives U′(βxi), T
′(βxi), Y

′(βxi) and S′(βxi).
First observe that MX = NŪ which provides, using (81)-(82),

(

1

3
(2 + cos(ki∆x)) + jβ

ki∆
2
x

6

(

cos(ki∆x)
k′(βxi)

ki
+ 2 sinc(ki∆x)

X′(βxi)

X(βxi)

))

X(βxi)

=

(

jki sinc(ki∆x)− β
k2i∆

2
x

2
sinc(ki∆x)

k′(βxi)

ki
+ β cos(ki∆x)

U′(βxi)

U(βxi)

)

U(βxi) +O(β2).

(84)

Collecting the terms of order β0 in the last expression, one gets

X(βxi) = jki
sinc(ki∆x)

1
3 (2 + cos(ki∆x))

U(βxi) +O(β). (85)

Assuming that Equation (85) is valid for the continuous variable x, one derives by first
applying the neperian logarithm and then by differentiating the resulting relation

X′(βxi)

X(βxi)
=

U′(βxi)

U(βxi)
+

(

cos(ki∆x)

sinc(ki∆x)
+

k2i∆
2
x

3

sinc(ki∆x)
1
3 (2 + cos(ki∆x))

)

k′(βxi)

ki
+O(β). (86)
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Plugging (86) in Equation (84), one obtains

X(βxi) = jki
sinc(ki∆x)

1
3 (2 + cos(ki∆x))

U(βxi)

+ β

[(

cos(ki∆x)
1
3 (2 + cos(ki∆x))

+
k2i∆

2
x

3

sinc(ki∆x)
2

[ 13 (2 + cos(ki∆x))]2

)

U′(βxi)

U(βxi)

+

(

k2i∆
2
x

3

sinc(ki∆x)(cos(ki∆x)− 1)

[ 13 (2 + cos(ki∆x))]2
+

k4i∆
4
x

9

sinc(ki∆x)
3

[ 13 (2 + cos(ki∆x))]3

)

k′(βxi)

ki

]

U(βxi)+O(β2).

(87)

Following the same procedure, we express the variables Z and W in terms of U as follows

Z(βxi) =jkidi
sinc(ki∆x)

1
3 (2 + cos(ki∆x))

U(βxi) + βdi

[

βdi

(

k2i∆
2
x

3

sinc(ki∆x)
2

[ 13 (2 + cos(ki∆x))]2

)

d′(βxi)

di

+

(

cos(ki∆x)
1
3 (2 + cos(ki∆x))

+
k2i∆

2
x

3

sinc(ki∆x)
2

[ 13 (2 + cos(ki∆x))]2

)

U′(βxi)

U(βxi)

+ βdi

(

k2i∆
2
x

3

sinc(ki∆x)(cos(ki∆x)− 1)

[ 13 (2 + cos(ki∆x))]2
+

k4i∆
4
x

9

sinc(ki∆x)
3

[ 13 (2 + cos(ki∆x))]3

)

k′(βxi)

ki

]

U(βxi)

+O(β2), (88)

W(βxi) =
βdi

1
3 (2 + cos(ki∆x))

d′(βxi)

di
U(βxi). (89)

Recalling that MV = N (D ⋄ Ū), one can deduce the expression of V by substituting in
(87) X by V and U by dU. Then T is computed directly by using the relation

T =

(

D ⋄X +
1

3
(V − Z + 2W )

)

.

Furthermore, Y and S are obtained using the relations MY = NX and MS = NT and
(87).

Coming back to (83), one obtains the expression of ω, using the expressions of the
amplitudes of U , T , Y and S and collecting in the resulting equation the term of order
β0, for all i = 0, ..., N ,

ω2

gdik
2
i

=
sinc(ki∆x)

2

[ 13 (2 + cos(ki∆x))]2 +
k2
i
d2
i

3 sinc(ki∆x)2
. (90)

Furthermore, collecting the term of order β, one obtains a relation between U, k, and the
bathymetry d :

α
(1)
1,i

U′(βxi)

Ui

+ α
(1)
2,i

d′(βxi)

di
+ α

(1)
3,i

k′(βxi)

ki
= 0. (91)

Equation (91) describes the effect of linear shoaling since the numbers α
(1)
1,i , α

(1)
2,i and α

(1)
3,i

are known as the linear shoaling coefficients. Using (90), one can compute these three
coefficients (we omitt the details for simplicity), for all i = 0, ..., N ,

α
(1)
1,i = 2 cos(ki∆x)

[ 13 (2 + cos(ki∆x))]

sinc(ki∆x)
+ 2

k2i∆
2
x

3
sinc(ki∆x)

α
(1)
2,i = 2

1 + 2 cos(ki∆x)

3

[ 13 (2 + cos(ki∆x))]

sinc(ki∆x)
− 1 + 2 cos(ki∆x)

3

sinc(ki∆x)

[ 13 (2 + cos(ki∆x))]

k2i d
2
i

3
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α
(1)
3,i =

cos(ki∆x)
2

sinc(ki∆x)2

[

1

3
(2 + cos(ki∆x))

]

+ 2
k2i∆

2
x

3
(cos(ki∆x)− 1) +

k4i∆
4
x

9

sinc(ki∆x)
2

[ 13 (2 + cos(ki∆x))]

+
k2i d

2
i

3

[

cos(ki∆x)
2

2 sinc(ki∆x)

(

[ 13 (2 + cos(ki∆x))]
2

sinc(ki∆x)
− 1

)

+ 2
k4i∆

4
x

9

sinc(ki∆x)
2(1− cos(ki∆x))

[ 13 (2 + cos(ki∆x))]2

]

.

Differentiating formally the dispersion relation (90) and assuming that ω is constant, we
deduce that ki has to satisfy the following condition

k′(βxi)

ki
= −α

(1)
4

d′(βxi)

di
, (92)

where, for all i = 0, ..., N ,

α
(1)
4,i =

1

2

1− k2
i
d2
i

3
sinc(ki∆x)

2

[ 13 (2+cos(ki∆x))]
2

cos(ki∆x)
sinc(ki∆x)

+
k2
i
∆2

x

3
sinc(ki∆x)

[ 13 (2+cos(ki∆x))]

.

This relation is used to compute formally ki for i = 0, ..., N and for a given bathymetry

and therefore to obtain the coefficients α
(1)
1,i , α

(1)
2,i and α

(1)
3,i . Finally, following [6], we obtain

an expression of the amplitude of the surface elevation A, for all i = 0, ..., N

A′
i

Ai

= −α
(1)
s,i

d′i
di
, (93)

where

α
(1)
s,i =

α
(1)
2,i −

(

α
(1)
3,i + α

(1)
1,i

)

α
(1)
4,i

α
(1)
1,i

. (94)

5.2 Linear characteristics of the classical Peregrine model.

We consider now the classical numerical model presented in Section 3. We reproduce the
same procedure as in Section 5.1. The terms of order of β0 gives the linear dispersion
relation, for all i = 0...N ,

ω2

gdik
2
i

=
sinc(ki∆x)

2

1
3 (2 + cos(ki∆x))

(

1
3 (2 + cos(ki∆x)) +

1−cos(ki∆x)
k2
i
∆2

x

2

k2
i
d2
i

3

) , (95)

whereas the terms of order of β provides the linear shoaling coefficients as follows

α
(2)
1,i = 2

[

1

3
(2 + cos(ki∆x))

]

sinc(ki∆x) cos(ki∆x)+

2
k2i d

2
i

3

(

sinc(ki∆x) cos(ki∆x)
1− cos(ki∆x)

k2
i
∆2

x

2

− sinc(ki∆x)
3

)

+
k2i∆

2
x

3

(

2 sinc(ki∆x)
3 +

k2i d
2
i

3

sinc(ki∆x)
3

1
3 (2 + cos(ki∆x))

1− cos(ki∆x)
k2
i
∆2

x

2

)

,

α
(2)
2,i =

[

1

3
(2 + cos(ki∆x))

]

sinc(ki∆x)
5 cos(ki∆x) + 1

3

+
k2i d

2
i

3

(

1− cos(ki∆x)
k2
i
∆2

x

2

sinc(ki∆x)
5 cos(ki∆x) + 1

3
− 3 sinc(ki∆x)

)

+
k2i∆

2
x

3

(

sinc(ki∆x)
3 +

k2i d
2
i

3

sinc(ki∆x)
3

[ 13 (2 + cos(ki∆x))]

1− cos(ki∆x)
k2
i
∆2

x

2

)

,
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α
(2)
3,i =

[

1

3
(2 + cos(ki∆x))

]

cos(ki∆x)
2 +

k2i d
2
i

3

(

1− cos(ki∆x)
k2
i
∆2

x

2

cos(ki∆x)
2

− sinc(ki∆x)
2 cos(ki∆x)

)

+
k2i∆

2
x

6

(

4 sinc(ki∆x)
2 cos(ki∆x)− 3 sinc(ki∆x)

2

− k2i d
2
i

1− cos(ki∆x)
k2
i
∆2

x

2

sinc(ki∆x)
2

1
3 (2 + cos(ki∆x))

)

+
k4i d

4
i

9

(

sinc(ki∆x)
4

1
3 (2 + cos(ki∆x))

+
k2i d

2
i

3

sinc(ki∆x)
4

[ 13 (2 + cos(ki∆x))]2
1− cos(ki∆x)

k2
i
∆2

x

2

)

.

Differentiating Equation (95), assuming that ω is constant, we obtain the relation that
must satisfies each ki for all i = 0, ..., N

k′i
ki

= −α
(2)
4,i

d′i
di
, (96)

where

α
(2)
4,i =

1

2C

(

1
3 (2 + cos(ki∆x))

cos(ki∆x)
− k2i d

2
i

3

1− cos(ki∆x)

cos(ki∆x)
k2
i
∆2

x

2

)

,

and

C =
1
3 (2 + cos(ki∆x))

sinc(ki∆x)
+

k2i d
2
i

3

(

1− cos(ki∆x)

sinc(ki∆x)
k2
i
∆2

x

2

− sinc(ki∆x)

cos(ki∆x)

)

+
k2i∆

2
x

3 cos(ki∆x)

[

sinc(ki∆x) +
k2i d

2
i

6

sinc(ki∆x)(1− cos(ki∆x))

1
3 (2 + cos(ki∆x))

k2
i
∆2

x

2

]

.

Again, we obtain the relation between the amplitude A of the surface elevation and the
bathymetry which reads, for all i = 1, ..., N ,

A′
i

Ai

= −α
(2)
s,i

d′i
di
, (97)

where

α
(2)
s,i =

α
(2)
2,i −

(

α
(2)
3,i + α

(2)
1,i

)

α
(2)
4,i

α
(2)
1,i

.

5.3 Analysis of the computations.

In this section, we study the linear dispersion relations derived in Section 5.1 and 5.2.
More precisely, we draw the phase velocity and the amplitude of the wave with respect
to the dispersion parameter σ in shoaling conditions for each scheme and we compare the
results with the ones predicted by the linear theory associated to the Peregrine equations
(1).

5.3.1 Phase velocity

For a given numerical scheme, the phase velocity is usually given by the relation

C =
ω

k
.
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As observe in literature, we can consider k and d as constant functions (k = k0, and
d = d0 see [17] for more details). Then, the phase velocity of our new numerical scheme
(75)-(76) is

C2
(1) = gd

sinc(k∆x)
2

[ 13 (2 + cos(k∆x))]2 +
k2d2

3 sinc(k∆x)2
, (98)

while that derived for the classical scheme (11)-(12) reads

C2
(2) = gd

sinc(k∆x)
2

1
3 (2 + cos(k∆x))

(

1
3 (2 + cos(k∆x)) +

1−cos(k∆x)
k2∆2

x

2

k2d2

3

) . (99)

Our aim is to plot the two curves (98)-(99) and compare with the one predicted by the
linear theory :

C2
P =

√

gd

1 + k2d2

3

. (100)

We first fix the wavelength λ and we put ∆x = λ
Nλ

where Nλ is the number of discretization
points by wavelength. A direct computation gives :

k∆x =
2π

Nλ

.

We recall that σ = d
λ
, showing that kd = 2πσ. In Figure 2, we draw the relative errors

between (98) and (99) and the phase velocity predicted by the linear theory. The error er
is defined, for each scheme, by

er = 100

(

C − CP

CP

)

.
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Figure 2: Comparison of the phase velocity (Nλ = 5 on the left, Nλ = 10 on the right) of
the classical and the new numerical scheme with the one given by the linear theory w.r.t
σ.

In Figure 2, one can observe that for Nλ = 5, the error coming from the new scheme is
acceptable (less than 1.6%) whereas the one of the classical scheme is greater than 5% for
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depths bigger than 0, 3. For Nλ = 10, although the error of the classical scheme is better
than in the previous case (less than 2%), the one of the new scheme is much better and
stay very close to 0. We conclude here that our new numerical scheme seems to reproduce
much better the linear dispersive effects.

5.3.2 Linear shoaling test

We first recall the expression of the shoaling coefficients given by the linear theory asso-
ciated with the Peregrine equations (1) (see [6]):

α1 = 2, α2 = 2− k2d2

3
, α3 = 1, α4 =

1

2

(

1− k2d2

3

)

.

Our aim is to compare, for a given situation, the evolution of the amplitude of the waves
with respect to the space variable x given by the two relations (93) and (97) and the one
derived from the linear theory. We consider a periodic wave with an initial amplitude
a = 0.05 and a wavelength λ = 15 starting from the position x = 100. It propagates over
an initial constant water depth d0 = 13. The bottom is flat until x = 150 and it has a
constant up-slope of 1

50 from x = 150 to x = 790. We compute the evolution of the wave
amplitude with respect to x. For that, we propose the following procedure. Firstly, we
integrate formally the relation between k and d ((92) for the new scheme and (96) for the
classical one), given by the differential equation

k′

k
= −α4

d′

d
.

We use a Strongly Stability-Preserving Runge-Kutta method (SSP-RK) to compute the
solution k, using k0 = 2π

λ
as initial condition. Then, we substitute this function k in the

expression of αs, and we compute the amplitude of the wave A by integrating the relation
((93) for the new scheme and (97) for the classical one)

A′

A
= −αs

d′

d
.

Again, we use a SSP-RK method and A(100) = 0.05 as initial condition. Fixing the value
of ∆x, it is possible to compute formally the surface elevation amplitude for each scheme.
The results are presented in Figure 3.
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Figure 3: Evolution of the wave amplitude for the two numerical schemes and for Peregrine
equations. Top left : ∆x = 0, 5 (Nλ = 30). Top right : ∆x = 1, 5 (Nλ = 10). Down :
∆x = 3 (Nλ = 5)

We observe that when ∆x is small, the curves of the two schemes matched the the-
oretical one, meaning that both schemes converges. However, when ∆x becomes larger,
one can see that the curve computed with the new scheme stay closed to the theoreti-
cal one while the one computed with the classical scheme underestimates drastically the
amplitude of the wave.

6 Numerical experiments

This section is devoted to the investigation of the nonlinear behavioir of the two schemes
(73)-(74) and (11)-(12). To this end, we present two different test cases : the propagation
of solitary waves over a flat bathymetry and a shoaling test for which some solitary wave
profile is computed in a situation close to wave breaking (see [10] for details). These test
cases bring to the fore major differences between the two numerical models and confirm
the premiminary results of Section 5.
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6.1 Soliton propagation

We first consider the propagation of an exact solitary wave solution to the Peregrine
equations, with an amplitude equal to 0, 2 (details on the computation of this solution as
well as mathematical conditions for the existence are given in [3]) over a flat bathymetry
d0 = 1. The space intervall is equal to [0, 100]. In order to check our implementations, we
have performed a grid convergence analysis. Numerical results have been compared with
the initial profile (which is the profile of the exact solution). The meshes used contain
respectively 1000, 2000, 4000 and 8000 points. In Figure 4, we have plotted the L2-norm
of the rescaled error for each scheme. The slope obtained for the scheme (73)-(74) shows
a convergence of order 2 while that corresponding to (11)-(12) is equal to 1.7. We deduce
that with the same initial finite elements method, the new procedure improves the order
of convergence.
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Figure 4: Grid convergence results for the two numerical schemes.

6.2 Shoaling test

This test case is dedicated to the wave shoaling characteristics of the two models considered
here in conditions close to wave breaking. It has been initially proposed by Grilli et al.
in [10] and consists in propagating a solitary wave of amplitude 0.2 m on a water depth
d0 = 1 m during a time 13 s. The shoaling takes place onto a constant slope of 1

35 (see
Figure 5).

Figure 5: Shoaling of a solitary wave; computational configuration (Grilli and al).
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Note that, to our knowledge, it is not possible to give an analytical solution in this
configuration. We then decide to compute a reference solution using a very refined mesh
of 8000 points and the scheme (11)-(12). This solution is used as a standard in the sequel
to make the comparisons.

In Figure 6, we have plotted the shoaling wave profile using succesively a mesh con-
taining 250 points (left side) and 500 points (right side) for the two numerical schemes as
well as the reference solution.
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Figure 6: Shoaling wave profiles of Peregrine schemes. Left : mesh with 250 points. Right
: mesh with 500 points

Clearly, one can observe a major difference in the behaviour of the two schemes. For a
mesh with 250 points (∆x = 0, 3), the solution emanating from the new scheme (73)-(74)
matches very well the reference curve, showing that the convergence as already occurs
with a few numbers of points while it is obviously not the case for the scheme (11)-
(12). Indeed, the green curve exhibit some amplitude and phase defects. To push on
the analysis, we repeat the same computations with a grid mesh containing 500 points
(∆x = 0, 15). Again, we can see that the solution computed with the scheme (73)-(74)
coincides perfectly with the reference curve. However, in this case, one can observe that
the classical scheme provides better results without reaching the precision of the other
scheme. Note that the conclusion doesn’t changed if one computes the reference solution
with the scheme (73)-(74). In addition, the Table 7 contains the relative errors in L2 and
L∞ norms for each scheme, where the errors are defined by

E2 =
||E − Eref ||2

||Eref ||2
, E∞ =

∣

∣

∣

∣

||E||∞ − ||Eref ||∞
||Eref ||∞

∣

∣

∣

∣

, (101)

Eref being the reference solution and E the one of the two numerical schemes. The
computations have been made with respectively 250, 500, 1000 and 2000 points.
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Relative error\ Points per meshes 250 500 1000 2000

E2 for the New scheme 1.55% 0.34% 0.09% 0.03%

E2 for the Classical scheme 31.25% 12.67% 3.70% 0.81%

E∞ for the New scheme 6.01%, 1.03% 0.07% 0.04%

E∞ for the Classical scheme 20.19% 9.67% 3.31% 0.85%

Figure 7: Relatives errors between the two numerical schemes and the reference solution
for meshes with 250, 500,1000 and 2000 points

It transpires that the new scheme gives results very close to the exact solution, whereas
the classical one need more points to give similar approximations. Finally, to compare the
accuracy of the two models, we have performed a grid convergence analysis. In Figure 8,
we have plotted the error defined in (101) in the L2-norm for each scheme, corresponding
to succesively 500, 1000 and 2000 points.
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Figure 8: Grid convergence results for the shoaling of the two numerical schemes.

The slopes obtained for the error are similar for the two schemes. However, it is clear
that the new model gives better results with 500 points that the classical scheme with
2000 points. We can deduce from this analysis that the new numerical scheme better
reproduce physical effects and dispersion characteristics.

7 Conclusions and perspectives

We have presented a new systematic method to obtain discrete numerical model in the
study of incompressible free surface flows. In order to evaluate the power of this method,
we have considered the case of the so-called Peregrine equations and performed the com-
putations in this academic situation. We have compared our new numerical scheme with
the one obtained by performing directly a Galerkin method on the Peregrine equations.
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Finally, by the use of several numerical experiments, we have shown the efficiency of our
new scheme.

Moreover, we claim that it is possible to obtain other different numerical scheme, con-
sistent with the Peregrine equations, by changing the initial discretization of the Euler
equations. For example, by choosing the following discrete boundary conditions :

• At the free surface :

Ŵ = Et +K(E ⋄ Û)− E ⋄ (KÛ).

• On the seafloor :

W̌ = −
(

K(D ⋄ Ǔ)−D ⋄ (KǓ)

)

,

we are able to derive a new numerical scheme in a conservative form

Et +K(H ⋄ Ū) = 0,

Ūt +

(

KŪ2 − Ū ⋄ (KŪ)

)

+ gKE +

[

D2

6
⋄ (K2Ūt)−

D

2
⋄
(

K2(D ⋄ Ūt)

)]

= 0.

In the future, we plan to apply this new procedure to derive numerical schemes for Ex-
tended Boussinesq’s models as well as for the Green-Naghdi equations. By this procedure,
one of our goal is, for example, to enhance the linear dispersion characteristics of these
models.
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